首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
Sclerosteosis is a progressive sclerosing bone dysplasia. Sclerostin (the SOST gene) was originally identified as the sclerosteosis-causing gene. However, the physiological role of sclerostin remains to be elucidated. Sclerostin was intensely expressed in developing bones of mouse embryos. Punctuated expression of sclerostin was localized on the surfaces of both intramembranously forming skull bones and endochondrally forming long bones. Sclerostin-positive cells were identified as osteoclasts. Recombinant sclerostin protein produced in cultured cells was efficiently secreted as a monomer. We examined effects of sclerostin on the activity of BMP2, BMP4, BMP6, and BMP7 for mouse preosteoblastic MC3T3-E1 cells. Sclerostin inhibited the BMP6 and BMP7 activity but not the BMP2 and BMP4 activity. Sclerostin bound to BMP6 and BMP7 with high affinity but bound to BMP2 and BMP4 with lower affinity. In conclusion, sclerostin is a novel secreted osteoclast-derived BMP antagonist with unique ligand specificity. We suggest that sclerostin negatively regulates the formation of bone by repressing the differentiation and/or function of osteoblasts induced by BMPs. Since sclerostin expression is confined to the bone-resorbing osteoclast, it provides a mechanism whereby bone apposition is inhibited in the vicinity of resorption. Our findings indicate that sclerostin plays an important role in bone remodeling and links bone resorption and bone apposition.  相似文献   

2.
Sclerostin is a highly conserved, secreted, cystine-knot protein which regulates osteoblast function. Humans with mutations in the sclerostin gene (SOST), manifest increased axial and appendicular skeletal bone density with attendant complications. In adult bone, sclerostin is expressed in osteocytes and osteoblasts. Danio rerio sclerostin-like protein is closely related to sea bass sclerostin, and is related to chicken and mammalian sclerostins. Little is known about the expression of sclerostin in early developing skeletal or extra-skeletal tissues. We assessed sclerostin (sost) gene expression in developing zebrafish (D. rerio) embryos with whole mount is situ hybridization methods. The earliest expression of sost mRNA was noted during 12h post-fertilization (hpf). At 15hpf, sost mRNA was detected in the developing nervous system and in Kupffer's vesicle. At 18, 20 and 22hpf, expression in rhombic lip precursors was seen. By 24hpf, expression in the upper and lower rhombic lip and developing spinal cord was noted. Expression in the rhombic lip and spinal cord persisted through 28hpf and then diminished in intensity through 44hpf. At 28hpf, sost expression was noted in developing pharyngeal cartilage; expression in pharyngeal cartilage increased with time. By 48hpf, sost mRNA was clearly detected in the developing pharyngeal arch cartilage. Sost mRNA was abundantly expressed in the pharyngeal arch cartilage, and in developing pectoral fins, 72, 96 and 120hpf. Our study is the first detailed analysis of sost gene expression in early metazoan development.  相似文献   

3.
Lrp4 is a multifunctional member of the low density lipoprotein-receptor gene family and a modulator of extracellular cell signaling pathways in development. For example, Lrp4 binds Wise, a secreted Wnt modulator and BMP antagonist. Lrp4 shares structural elements within the extracellular ligand binding domain with Lrp5 and Lrp6, two established Wnt co-receptors with important roles in osteogenesis. Sclerostin is a potent osteocyte secreted inhibitor of bone formation that directly binds Lrp5 and Lrp6 and modulates both BMP and Wnt signaling. The anti-osteogenic effect of sclerostin is thought to be mediated mainly by inhibition of Wnt signaling through Lrp5/6 within osteoblasts. Dickkopf1 (Dkk1) is another potent soluble Wnt inhibitor that binds to Lrp5 and Lrp6, can displace Lrp5-bound sclerostin and is itself regulated by BMPs. In a recent genome-wide association study of bone mineral density a significant modifier locus was detected near the SOST gene at 17q21, which encodes sclerostin. In addition, nonsynonymous SNPs in the LRP4 gene were suggestively associated with bone mineral density. Here we show that Lrp4 is expressed in bone and cultured osteoblasts and binds Dkk1 and sclerostin in vitro. MicroCT analysis of Lrp4 deficient mutant mice revealed shortened total femur length, reduced cortical femoral perimeter, and reduced total femur bone mineral content (BMC) and bone mineral density (BMD). Lumbar spine trabecular bone volume per total volume (BV/TV) was significantly reduced in the mutants and the serum and urinary bone turnover markers alkaline phosphatase, osteocalcin and desoxypyridinoline were increased. We conclude that Lrp4 is a novel osteoblast expressed Dkk1 and sclerostin receptor with a physiological role in the regulation of bone growth and turnover, which is likely mediated through its function as an integrator of Wnt and BMP signaling pathways.  相似文献   

4.
Sclerostin is expressed by osteocytes and has catabolic effects on bone. It has been shown to antagonize bone morphogenetic protein (BMP) and/or Wnt activity, although at present the underlying mechanisms are unclear. Consistent with previous findings, Sclerostin opposed direct Wnt3a-induced but not direct BMP7-induced responses when both ligand and antagonist were provided exogenously to cells. However, we found that when both proteins are expressed in the same cell, sclerostin can antagonize BMP signaling directly by inhibiting BMP7 secretion. Sclerostin interacts with both the BMP7 mature domain and pro-domain, leading to intracellular retention and proteasomal degradation of BMP7. Analysis of sclerostin knock-out mice revealed an inhibitory action of sclerostin on Wnt signaling in both osteoblasts and osteocytes in cortical and cancellous bones. BMP7 signaling was predominantly inhibited by sclerostin in osteocytes of the calcaneus and the cortical bone of the tibia. Our results suggest that sclerostin exerts its potent bone catabolic effects by antagonizing Wnt signaling in a paracrine and autocrine manner and antagonizing BMP signaling selectively in the osteocytes that synthesize simultaneously both sclerostin and BMP7 proteins.  相似文献   

5.
Cysteine-rich protein 61 (Cyr61) is a member of a family of growth factor-inducible immediate-early genes. It regulates cell adhesion, migration, proliferation, and differentiation and is involved in tumor growth. In our experiments, the role of Cyr61 in non-small cell lung cancer (NSCLC) was examined. Expression of Cyr61 mRNA was decreased markedly in four of five human lung tumor samples compared with their normal matched lung samples. NSCLC cell lines NCI-H520 and H460, which have no endogenous Cyr61, formed 60-90% fewer colonies after being transfected with a Cyr61 cDNA expression vector than cells transfected with the same amount of empty vector. After stable transfection of a Cyr61 cDNA expression vector, proliferation of both H520-Cyr61 and H460-Cyr61 sublines decreased remarkably compared with the cells stably transfected with empty vector. The addition of antibody against Cyr61 partially rescued the growth suppression of both H520-Cyr61 and H460-Cyr61 cells. Cell cycle analysis revealed that both H520-Cyr61 and H460-Cyr61 cells developed G(1) arrest, prominently up-regulated expression of p53 and p21(WAF1), and had decreased activity of cyclin-dependent kinase 2. The increase of pocket protein pRB2/p130 was also detected in these cells. Notably, both of the Cyr61-stably transfected lung cancer cell lines developed smaller tumors than those formed by the wild-type cells in nude mice. Taken together, we conclude that Cyr61 may play a role as a tumor suppressor in NSCLC.  相似文献   

6.
Genetic studies recently unraveled the genetic cause of sclerosteosis, a rare skeletal dysplasia characterized by a generalized increase in bone mass. Different loss-of-function mutations were identified in SOST, a gene with no homology to any known gene. This SOST gene is also involved in the pathogenesis of van Buchem disease, a disorder closely resembling sclerosteosis, since a 52-kb deletion located downstream of SOST is found in patients diagnosed with this condition. Molecular studies showed a very restricted expression pattern of SOST and its gene product, sclerostin, with areas in the bone tissue, more precisely in cells of the osteoblast lineage, being the major sites of expression. Sclerostin is a secreted protein with a cysteine knot motif. In vitro studies demonstrated that sclerostin acts as a modulator of BMP signaling by binding to different members of the BMP growth factor family and acting on downstream BMP signal transduction events. The important function of sclerostin in bone metabolism has also been proven in vivo by the osteopenic phenotype of transgenic mice overexpressing SOST in bone. The identification of sclerostin as an important protein in bone metabolism opens new perspectives for the development of anabolic therapeutics to prevent and treat osteoporosis.  相似文献   

7.
8.
Cysteine-rich protein 61 (Cyr61)/CCN1 is a product of an immediate early gene and functions in mediating cell adhesion and inducing cell migration. We previously showed that increased production of Cyr61 by fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA) promotes FLS proliferation and participates in RA pathogenesis with the IL-17-dependent pathway. However, whether Cyr61 in turn regulates Th17 cell differentiation and further enhances inflammation of RA remained unknown. In the current study, we explored the potential role of Cyr61 as a proinflammatory factor in RA pathogenesis. We found that Cyr61 treatment dramatically induced IL-6 production in FLS isolated from RA patients. Moreover, IL-6 production was attenuated by Cyr61 knockdown in FLS. Mechanistically, we showed that Cyr61 activated IL-6 production via the αvβ5/Akt/NF-κB signaling pathway. Further, using a coculture system consisting of purified CD4(+) T cells and RA FLS, we found that RA FLS stimulated Th17 differentiation, and the pro-Th17 differentiation effect of RA FLS can be attenuated or stimulated by Cyr61 RNA interference or addition of exogenous Cyr61, respectively. Finally, using the collagen-induced arthritis animal model, we showed that treatment with the anti-Cyr61 mAb led to reduction of IL-6 levels, decrease of Th17 response, and attenuation of inflammation and disease progression in vivo. Taken together, our results reveal a novel role of Cyr61 in promoting Th17 development in RA via upregulation of IL-6 production by FLS, thus adding a new layer into the functional interplay between FLS and Th17 in RA pathogenesis. Our study also suggests that targeting of Cyr61 may represent a novel strategy in RA treatment.  相似文献   

9.
Sclerostin is an extracellular negative regulator of bone formation that is a recognized therapeutic target for osteoporosis therapy. In the present study, we performed DNA aptamer selection against sclerostin, then characterized aptamer-sclerostin binding and the ability to inhibit sclerostin function in cell culture. We show that a selected DNA aptamer was highly selective for binding to sclerostin with affinities in the nanomolar range as determined by solid-phase assays and by isothermal titration calorimetry. Binding between sclerostin and the aptamer was exothermic and enthalpically driven. CD confirmed that the aptamer had temperature-dependent parallel G-quadruplex characteristics. The aptamer was stabilized with 3' inverted thymidine to investigate efficacy at inhibiting sclerostin function in cell culture. The stabilized DNA aptamer showed potent and specific dose-dependent inhibition of sclerostin's antagonistic effect on Wnt activity using a reporter assay. Taken together, the present findings suggest an alternative approach to inhibiting sclerostin function with therapeutic potential.  相似文献   

10.
Sclerostin is widely reported to be a monomeric osteocyte specific protein. In this study we have investigated whether sclerostin is produced in different forms and in which cell and tissue types they are produced.  相似文献   

11.
12.
Sclerostin is a product of mature osteocytes embedded in mineralised bone and is a negative regulator of bone mass and osteoblast differentiation. While evidence suggests that sclerostin has an anti-anabolic role, the possibility also exists that sclerostin has catabolic activity. To test this we treated human primary pre-osteocyte cultures, cells we have found are exquisitely sensitive to sclerostin, or mouse osteocyte-like MLO-Y4 cells, with recombinant human sclerostin (rhSCL) and measured effects on pro-catabolic gene expression. Sclerostin dose-dependently up-regulated the expression of receptor activator of nuclear factor kappa B (RANKL) mRNA and down-regulated that of osteoprotegerin (OPG) mRNA, causing an increase in the RANK:OPG mRNA ratio. To examine the effects of rhSCL on resulting osteoclastic activity, MLO-Y4 cells plated onto a bone-like substrate were primed with rhSCL for 3 days and then either mouse splenocytes or human peripheral blood mononuclear cells (PBMC) were added. This resulted in cultures with elevated osteoclastic resorption (approximately 7-fold) compared to untreated co-cultures. The increased resorption was abolished by co-addition of recombinant OPG. In co-cultures of MLO-Y4 cells with PBMC, SCL also increased the number and size of the TRAP-positive multinucleated cells formed. Importantly, rhSCL had no effect on TRAP-positive cell formation from monocultures of either splenocytes or PBMC. Further, rhSCL did not induce apoptosis of MLO-Y4 cells, as determined by caspase activity assays, demonstrating that the osteoclastic response was not driven by dying osteocytes. Together, these results suggest that sclerostin may have a catabolic action through promotion of osteoclast formation and activity by osteocytes, in a RANKL-dependent manner.  相似文献   

13.
Long noncoding RNA CPS1-IT1 is recently recognized as a tumor suppressor in several cancers. Here, we investigate the role of CPS1-IT1 in human melanoma. Presently, our study reveals the low expression of CPS1-IT1 in human melanoma tissues and cell lines, which is significantly associated with metastasis and tumor stage. Besides, the potential of CPS1-IT1 as a prognosis-predictor is strongly indicated. Functionally, CPS1-IT1 overexpression inhibits cell migration, invasion, epithelial–mesenchymal transition, and angiogenesis in melanoma cells. CYR61, an angiogenic factor that participates in tumor metastasis as well as a recognized oncogene in melanoma, is shown to be confined under CPS1-IT1 overexpression in melanoma cells. Furthermore, enforced expression of Cyr61 in CPS1-IT1-silenced melanoma cells dramatically normalized the protein level of Cyr61 and that of its downstream targets vascular endothelial growth factor and matrix metalloproteinase-9, as well as the repressive effect of CPS1-IT1 overexpression on melanoma cell metastasis. BRG1, a core component of SWI/SNF complex, is implied to interact with both CPS1-IT1 and Cyr61 in melanoma cells. Moreover, CPS1-IT1 negatively regulates Cyr61 expression by blocking the binding of BRG1 to Cyr61 promoter. Jointly, CPS1-IT1 controls melanoma metastasis through impairing Cyr61 expression via competitively binding with BRG1, uncovering a novel potential therapeutic and prognostic biomarker for patients with melanoma.  相似文献   

14.
Marrow mesenchymal stem cells are pluripotent progenitors that can differentiate into bone, cartilage, muscle, and fat cells. Wnt signaling has been implicated in regulating osteogenic differentiation of mesenchymal stem cells. Here, we analyzed the gene expression profile of mesenchymal stem cells that were stimulated with Wnt3A. Among the 220 genes whose expression was significantly changed by 2.5-fold, we found that three members of the CCN family, CCN1/Cyr61, CCN2/connective tissue growth factor (CTGF), and CCN5/WISP2, were among the most significantly up-regulated genes. We further investigated the role of CCN1/Cyr61 in Wnt3A-regulated osteogenic differentiation. We confirmed that CCN1/Cyr61 was up-regulated at the early stage of Wnt3A stimulation. Chromatin immunoprecipitation analysis indicates that CCN1/Cyr61 is a direct target of canonical Wnt/beta-catenin signaling. RNA interference-mediated knockdown of CCN1/Cyr61 expression diminished Wnt3A-induced osteogenic differentiation. Furthermore, exogenously expressed CCN1/Cyr61 was shown to effectively promote mesenchymal stem cell migration. These findings suggest that tightly regulated CCN1/Cyr61 expression may play an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells.  相似文献   

15.
Cysteine-rich 61 (Cyr61/CCN1), one of the members of CCN family, has been implicated in the progression of human malignancies. Previously, our studies have demonstrated that Cyr61/CCN1 has a role in promoting gastric cancer cell invasion, but the mechanism is not clear yet. Here, we found that hypoxia-inducing factor-1alpha (HIF-1alpha) protein, but not mRNA, expression was significantly elevated in gastric cancer cells overexpressing Cyr61. Supportively, a profound reduction of endogenous HIF-1alpha protein was noted in one highly invasive cell line, TSGH, when transfected with antisense Cyr61. By comparison, the induction kinetics of HIF-1alpha protein by recombinant Cyr61 (rCyr61) was distinct from that of insulin-like growth factor-1 and CoCl(2) treatment, both well known for induction of HIF-1alpha. Using cycloheximide and MG132, we demonstrated that the Cyr61-mediated HIF-1alpha up-regulation was through de novo protein synthesis, rather than increased protein stability. rCyr61 could also activate the PI3K/AKT/mTOR and ERK1/2 signaling pathways, both of which were essential for HIF-1alpha protein accumulation. Blockage of HIF-1alpha activity in Cyr61-expressing cells by transfecting with a dominant negative (DN)-HIF-1alpha strongly inhibited their invasion ability, suggesting that elevation in HIF-1alpha protein is vital for Cyr61-mediated gastric cancer cell invasion. In addition, several HIF-1alpha-regulated invasiveness genes were examined, and we found that only plasminogen activator inhibitor-1 (PAI-1) showed a significant increase in mRNA and protein levels in cells overexpressing Cyr61. Treatment with PAI-1-specific antisense oligonucleotides or function-neutralizing antibodies abolished the invasion ability of the Cyr61-overexpressing cells. Transfection with dominant negative-HIF-1alpha to block HIF-1alpha activity also effectively reduced the elevated PAI-1 level. In conclusion, our data provide a detailed mechanism by which Cyr61 promoted gastric cancer cell invasive ability via an HIF-1alpha-dependent up-regulation of PAI-1.  相似文献   

16.
17.
Overexpressed cysteine-rich protein 61 (Cyr61) is believed to enhance osteosarcoma (OS) cell metastasis, but the mechanism of Cyr61 overexpression in OS is not clear so far. In this study 33 OS samples were analyzed by immunostaining and focused on two parts: the correlation between overexpression of Cyr61 and OS metastasis; the mechanism of regulating Cyr61 expression in OS. Twenty-five out of 33 cases (75.76 %) with metastasis showed high expression of Cyr61. Furthermore, Cyr61 expression in Saos-2 cells was reduced by siRNA, and lower expression of Cyr61 in Saos-2 cell resulted in a cell migration deficiency and had no effect on cell proliferation. Particularly, Cyr61 expression was significantly increased in Saos-2 cells in response to different dosages of transforming growth factor beta (TGF-β), indicating that the expression of Cyr61 is TGF-β dependent. A transwell assay showed that Saos-2 cells stimulated with TGF-β had a greater capacity for migration than the control cells. The p38 MAPK-specific inhibitor SB203580 was able to reduce Cyr61 expression and inhibit the migration of Saos-2 cells stimulated with TGF-β. These results obtained provide new evidence that overexpressed Cyr61 plays a key role in the metastasis of OS cells and Cyr61 is a potential target downstream of TGF-β/p38 MAPK to regulate cell migration.  相似文献   

18.
19.
20.
Cyr61/CCN1 is a secreted extracellular matrix associated protein involved in diverse biological functions and plays multiple roles in tumorigenesis. Cyr61 was down-regulated in HCC tumor tissues as observed in our previous cDNA microarray study, but its potential role in hepatocarcinogenesis is still unclear. To explore the biological significance of Cyr61 in HCC development, over-expression of this gene was established in HCC cell lines and its effects on cell proliferation, adhesion, migration and invasion were analyzed in this study. Cyr61 expression was down-regulated in HCC tumors as measured by quantitative real-time PCR and its protein level was decreased in most HCC cell lines as detected by Western blot. Over-expression of Cyr61 in HCC cell lines suppressed cell proliferation in monolayer and anchorage-independent growth in soft agar, whereas down-regulation of Cyr61 by siRNA increased cell proliferation rate. Over-expression of Cyr61 also significantly enhanced adhesion activities of HepG2 cells to various ECM proteins. Moreover, stably transfected HepG2-Cyr61 cells showed inhibited cell mobility (40-45%) and reduced invasiveness (30-40%) compared to HepG2-Neo controls. Furthermore, upon exposure to 5-Fluorouracil and UV irradiation, Cyr61 was rapidly induced in both p53(+/+) HepG2 and p53(-/-) Hep3B cells. However, only HepG2 cells showed increased G2/M phase arrest with concomitant up-regulation in p53 and p21 levels, suggesting that Cyr61 may play an active role in regulating HCC cell growth involving p53 as well as alternative pathways. In conclusion, we demonstrated that Cyr61 is a tumor suppressor in hepatocarcinogenesis and is involved in DNA damage response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号