首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organismal metabolic rate, a fundamental metric in biology, demonstrates an allometric scaling relationship with body size. Fractal-like vascular distribution networks of biological systems are proposed to underlie metabolic rate allometric scaling laws from individual organisms to cells, mitochondria, and enzymes. Tissue-specific metabolic scaling is notably absent from this paradigm. In the current study, metabolic scaling relationships of hearts and brains with body size were examined by improving on a high-throughput whole-organ oxygen consumption rate (OCR) analysis method in five biomedically and environmentally relevant teleost model species. Tissue-specific metabolic scaling was compared with organismal routine metabolism (RMO2), which was measured using whole organismal respirometry. Basal heart OCR and organismal RMO2 scaled identically with body mass in a species-specific fashion across all five species tested. However, organismal maximum metabolic rates (MMO2) and pharmacologically-induced maximum cardiac metabolic rates in zebrafish Danio rerio did not show a similar relationship with body mass. Brain metabolic rates did not scale with body size. The identical allometric scaling of heart and organismal metabolic rates with body size suggests that hearts, the power generator of an organism’s vascular distribution network, might be crucial in determining teleost metabolic rate scaling under routine conditions. Furthermore, these findings indicate the possibility of measuring heart OCR utilizing the high-throughput approach presented here as a proxy for organismal metabolic rate—a useful metric in characterizing organismal fitness. In addition to heart and brain OCR, the current approach was also used to measure whole liver OCR, partition cardiac mitochondrial bioenergetic parameters using pharmacological agents, and estimate heart and brain glycolytic rates. This high-throughput whole-organ bioenergetic analysis method has important applications in toxicology, evolutionary physiology, and biomedical sciences, particularly in the context of investigating pathogenesis of mitochondrial diseases.  相似文献   

2.
Allometric scaling of metabolic rates is commonly described as a power function and 0.75 is a widely accepted exponent. The universality of this exponent is in doubt and, particularly for insects, contradictory results have been obtained. Furthermore, sexual differences in scaling exponents are observed for several species that could lead to artefacts when they are not considered in intra‐ and interspecific scaling. Whether the metabolic scaling exponent in the lesser wax moth Achroia grisella differs significantly from 0.75 is tested, as well as whether it differs between the sexes. Adults of this moth neither feed nor drink, rendering them as suitable subjects for a study of metabolic rates. Neglecting sex differences, a metabolic scaling exponent of 0.8 is recorded. However, there are significant differences in metabolic scaling between the sexes. When considered separately, males scale with 0.96 and females with 0.67. Thus, in this species, a scaling exponent of 0.75 does not appear to exist either for males or females. The body size optimization model offers a potential explanation for the sex differences in metabolic scaling, although it remains to be tested in wax moths. With insects in particular, there is the need for more detailed studies on the scaling of metabolic rates that also take sexual differences into account.  相似文献   

3.
It has been widely assumed that the stepwise increase in the exoskeleton size of larval insects approximately follows a geometric progression from instar to instar, known as Dyar's Rule. However, it is not clear whether the per-instar increase in body size follows this rule. In insects, Dyar's Rule has been identified either by regressing the log-scaled size on the instar number (log-linear regression analysis) or by comparing the postmolt/premolt size ratio between instars (growth rate analysis). A previous study on the body mass of caterpillars showed the methodological pitfall that Dyar's Rule was statistically supported by log-linear regression analysis, but not at all by growth rates analysis. I considered this concern here by examining the per-stage growth rates of head and body sizes for larvae of the beetle Trypoxylus dichotomus using both methods and compared the resulting growth rates for body size within and between taxonomic orders. Dyar's Rule was statistically supported by the log-linear regression analysis but not by growth rate analysis for both the head and body sizes in T. dichotomus. The body size growth rate in T. dichotomus decreased as the instar progressed. This developmental pattern was also found in reported data for the other six scarabs, but not in data for Lepidoptera or Hymenoptera. These findings confirm that the per-stage growth rate of body size does not follow Dyar's Rule in a wide range of insects, and suggest that developmental change in the body size growth rate varies among insect groups.  相似文献   

4.
Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the “hotter is better” hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The remaining unexplained variation in development time likely reflects additional ecological and evolutionary differences among insect species.  相似文献   

5.
WBE 模型及其在生态学中的应用:研究概述   总被引:7,自引:0,他引:7  
李妍  李海涛  金冬梅  孙书存 《生态学报》2007,27(7):3018-3031
介绍了WBE模型,综述了该模型在生态学中的应用进展。WBE模型,以及以该模型为基础的MTE模型,假设生物体为自相似分形网络结构,提出代谢速率和个体大小之间存在3/4指数关系,分别预测了从个体到生物圈多个尺度上的生物属性之间的异速生长关系,而且部分得到了验证。WBE模型的应用涵盖了个体组织生物量、年生长率,种群密度和生态系统单位面积产量、能量流动率等多个方面;即使在生物圈大尺度上,WBE模型也可用来预测试验中无法直接测量的特征变量的属性,如全球碳储量的估算等。至今,关于WBE和MTE模型仍然存在各种褒贬争论,讨论焦点主要集中于模型建立的前提假设以及权度指数的预测。今后的研究工作应规范试验技术和方法,考虑物种多样性和环境等因素的影响,提出符合各类生物的模型结构体系,使其具有更广泛的应用性和预测性。  相似文献   

6.
Body size is a key feature of organisms and varies continuously because of the effects of natural selection on the size-dependency of resource acquisition and mortality rates. This review provides a critical and synthetic overview of body size variation in insects from a predominantly macroecological (large-scale temporal and spatial) perspective. Because of the importance of understanding the proximate determinants of adult size, it commences with a brief summary of the physiological mechanisms underlying adult body size and its variation, based mostly on findings for the model species Drosophila melanogaster and Manduca sexta . Variation in nutrition and temperature have variable effects on critical weight, the interval to cessation of growth (or terminal growth period) and growth rates, so influencing final adult size. Ontogenetic and phylogenetic variation in size, compensatory growth, scaling at the intra- and interspecific levels, sexual size dimorphism, and body size optimisation are then reviewed in light of their influences on individual and species body size frequency distributions. Explicit attention is given to evolutionary trends, including gigantism, Cope's rule and the rates at which size change has taken place, and to temporal ecological trends such as variation in size with succession and size-selectivity during the invasion process. Large-scale spatial variation in size at the intraspecific, interspecific and assemblage levels is considered, with special attention being given to the mechanisms proposed to underlie clinal variation in adult body size. Finally, areas particularly in need of additional research are identified.  相似文献   

7.
James L. Maino  Michael R. Kearney 《Oikos》2015,124(12):1564-1570
The uptake of resources from the environment is a basic feature of all life. Consumption rate has been found to scale with body size with an exponent close to unity across diverse organisms. However, past analyses have ignored the important distinction between ontogenetic and interspecific size comparisons. Using principles of dynamic energy budget theory, we present a mechanistic model for the body mass scaling of consumption, which separates interspecific size effects from ontogenetic size effects. Our model predicts uptake to scale with surface‐area (mass2/3) during ontogenetic growth but more quickly (between mass3/4 and mass1) for interspecific comparisons. Available data for 41 insect species on consumption and assimilation during ontogeny provides strong empirical support for our theoretical predictions. Specifically, consumption rate scaled interspecifically with an exponent close to unity (0.89) but during ontogenetic growth scaled more slowly with an exponent of 0.70. Assimilation rate (consumption minus defecation) through ontogeny scaled more slowly than consumption due to a decrease in assimilation efficiency as insects grow. Our results highlight how body size imposes different constraints on metabolism depending on whether the size comparison is ontogenetic or inter‐specific. Synthesis One of the most robust patterns in biology is the effect of body size on metabolism – a relationship that underlies the rapidly emerging field of metabolic ecology. However, the precise energetic constraints imposed by body size have been notoriously difficult to entangle. Here we show that the constraints imposed on metabolism by body size are different depending on whether the size comparison is ontogenetic or interspecific. Using a single unifying theory of animal metabolism and a newly compiled data set on insect consumption and assimilation rates, we show that interspecific comparisons generally lead to the estimation of higher scaling exponents compared with ontogenetic comparisons. Our results help to explain large variation in estimated metabolic scaling exponents and will encourage future studies in metabolic ecology to make the important distinction between ontogenetic and evolutionary size changes.  相似文献   

8.
Metabolic rates vary among individuals according to food availability and phenotype, most notably body size. Disentangling size from other factors (e.g., age, reproductive status) can be difficult in some groups, but modular organisms may provide an opportunity for manipulating size experimentally. While modular organisms are increasingly used to understand metabolic scaling, the potential of feeding to alter metabolic scaling has not been explored in this group. Here, we perform a series of experiments to examine the drivers of metabolic rate in a modular marine invertebrate, the bryozoan Bugula neritina. We manipulated size and examined metabolic rate in either fed or starved individuals to test for interactions between size manipulation and food availability. Field collected colonies of unknown age showed isometric metabolic scaling, but those colonies in which size was manipulated showed allometric scaling. To further disentangle age effects from size effects, we measured metabolic rate of individuals of known age and again found allometric scaling. Metabolic rate strongly depended on access to food: starvation decreased metabolic rate by 20% and feeding increased metabolic rate by 43%. In comparison to other marine invertebrates, however, the increase in metabolic rate, as well as the duration of the increase (known as specific dynamic action, SDA), were both low. Importantly, neither starvation nor feeding altered the metabolic scaling of our colonies. Overall, we found that field‐collected individuals showed isometric metabolic scaling, whereas metabolic rate of size‐manipulated colonies scaled allometrically with body size. Thus, metabolic scaling is affected by size manipulation but not feeding in this colonial marine invertebrate.  相似文献   

9.
代谢异速生长理论及其在微生物生态学领域的应用   总被引:1,自引:0,他引:1  
贺纪正  曹鹏  郑袁明 《生态学报》2013,33(9):2645-2655
新陈代谢是生物的基本生理过程,影响生物在不同环境中参与物质循环和能量转化的过程.代谢速率作为生物体重要的生命过程指标,几乎影响所有的生物活性速率,且在很多研究中均表现出异速生长现象.所谓代谢异速是指生物体代谢速率与其个体大小(或质量)之间存在的幂函数关系.代谢异速生长理论的提出,从机制模型角度解释了代谢异速关系这一普遍存在的生命现象.该理论利用分形几何学及流体动力学等原理,从生物能量学角度阐释了异速生长规律的机理,证实了3/4权度指数的存在;但同时有研究表明,权度指数因环境因素等影响处于2/3-1范围之间而非定值.随着研究工作的深入,代谢异速生长理论研究从起初的宏观动植物领域拓展到了微生物领域,在研究微生物的代谢异速生长理论时,可将微生物的可操作分类单元(Operational taxonomic unit,OTU)或具有特定功能的功能群视为一个微生物个体,基于其遗传多样性和功能多样性特征进行表征,以便于将微生物群落多样性与其生态功能性联系起来,使该理论在微生物生态学领域得到有效的补充和完善.尽管细菌具有独特的生物学特性,但与宏观生物系统中观测到的现象表现出明显的一致性.有研究表明,3个农田土壤细菌基于遗传多样性的OTU数的平均周转率分别为0.71、0.80和0.84,介于2/3与1之间,可能与生物代谢异速指数有一定关联,为微生物代谢异速指数的研究提出了一个参考解决方案.鉴于微生物个体特征和生物学特性,在分析代谢速率与个体大小关系中,从微生物单位个体的定义、个体大小表征到计量单位的统一,仍需更多的理论支持.分析了代谢异速生长理论在微生物与生态系统功能关系研究中的可能应用,延伸了该理论的应用范围,并对尚待加强的研究问题进行了评述和展望.  相似文献   

10.
Metabolism constitutes a fundamental property of all organisms. Metabolic rate is commonly described to scale as a power function of body size and exponentially with temperature, thereby treating the effects of body size and temperature independently. Mounting evidence shows that the scaling of metabolic rate with body mass itself depends on temperature. Across‐species analyses in fishes suggest that the mass‐scaling exponent decreases with increasing temperature. However, whether this relationship holds at the within‐species level has rarely been tested. Here, we re‐analyse data on the metabolic rates of four freshwater fish species, two coregonids and two cyprinids, that cover wide ranges of body masses and their naturally experienced temperatures. We show that the standard metabolic rate of the coregonids is best fit when accounting for a linear temperature dependence of the scaling of metabolic rate with body mass, whereas a constant mass‐scaling exponent is supported in case of the cyprinids. Our study shows that phenotypic responses to temperature can result in temperature‐dependent scaling relationships at the species level and that these responses differ between taxa. Together with previous findings, these results indicate that evolutionarily adaptive and phenotypically plastic responses to temperature affect the scaling of metabolic rate with body mass in fishes.  相似文献   

11.
We examined how maxillary molar dimensions change with body and skull size estimates among 54 species of living and subfossil strepsirrhine primates. Strepsirrhine maxillary molar areas tend to scale with negative allometry, or possibly isometry, relative to body mass. This observation supports several previous scaling analyses showing that primate molar areas scale at or slightly below geometric similarity relative to body mass. Strepsirrhine molar areas do not change relative to body mass(0.75), as predicted by the metabolic scaling hypothesis. Relative to basicranial length, maxillary molar areas tend to scale with positive allometry. Previous claims that primate molar areas scale with positive allometry relative to body mass appear to rest on the incorrect assumption that skull dimensions scale isometrically with body mass. We identified specific factors that help us to better understand these observed scaling patterns. Lorisiform and lemuriform maxillary molar scaling patterns did not differ significantly, suggesting that the two infraorders had little independent influence on strepsirrhine scaling patterns. Contrary to many previous studies of primate dental allometry, we found little evidence for significant differences in molar area scaling patterns among frugivorous, folivorous, and insectivorous groups. We were able to distinguish folivorous species from frugivorous and insectivorous taxa by comparing M1 lengths and widths. Folivores tend to have a mesiodistally elongated M1 for a given buccolingual M1 width when compared to the other two dietary groups. It has recently been shown that brain mass has a strong influence on primate dental eruption rates. We extended this comparison to relative maxillary molar sizes, but found that brain mass appears to have little influence on the size of strepsirrhine molars. Alternatively, we observed a strong correlation between the relative size of the facial skull and relative molar areas among strepsirrhines. We hypothesize that this association may be underlain by a partial sharing of the patterning of development between molar and facial skull elements.  相似文献   

12.
Previously, it has been suggested that insect gas exchange cycle frequency (fC) is mass independent, making insects different from most other animals where periods typically scale as mass-0.25. However, the claim for insects is based on studies of only a few closely related taxa encompassing a relatively small size range. Moreover, it is not known whether the type of gas exchange pattern (discontinuous versus cyclic) influences the fC-mass scaling relationship. Here, we analyse a large database to examine interspecific fC-mass scaling. In addition, we investigate the effect of mode of gas exchange on the fC-scaling relationship using both conventional and phylogenetically independent approaches. Cycle frequency is scaled as mass(-0.280) (when accounting for phylogenetic non-independence and gas exchange pattern), which did not differ significantly from mass(-0.25). The slope of the fC-mass relationship was shallower with a significantly lower intercept for the species showing discontinuous gas exchange than for those showing the cyclic pattern, probably due to lower metabolic rates in the former. Insects therefore appear no different from other animals insofar as the scaling of gas exchange fC is concerned, although gas exchange fC may scale in distinct ways for different patterns.  相似文献   

13.
Effects of body size and temperature on population growth   总被引:1,自引:0,他引:1  
For at least 200 years, since the time of Malthus, population growth has been recognized as providing a critical link between the performance of individual organisms and the ecology and evolution of species. We present a theory that shows how the intrinsic rate of exponential population growth, rmax, and the carrying capacity, K, depend on individual metabolic rate and resource supply rate. To do this, we construct equations for the metabolic rates of entire populations by summing over individuals, and then we combine these population-level equations with Malthusian growth. Thus, the theory makes explicit the relationship between rates of resource supply in the environment and rates of production of new biomass and individuals. These individual-level and population-level processes are inextricably linked because metabolism sets both the demand for environmental resources and the resource allocation to survival, growth, and reproduction. We use the theory to make explicit how and why rmax exhibits its characteristic dependence on body size and temperature. Data for aerobic eukaryotes, including algae, protists, insects, zooplankton, fishes, and mammals, support these predicted scalings for rmax. The metabolic flux of energy and materials also dictates that the carrying capacity or equilibrium density of populations should decrease with increasing body size and increasing temperature. Finally, we argue that body mass and body temperature, through their effects on metabolic rate, can explain most of the variation in fecundity and mortality rates. Data for marine fishes in the field support these predictions for instantaneous rates of mortality. This theory links the rates of metabolism and resource use of individuals to life-history attributes and population dynamics for a broad assortment of organisms, from unicellular organisms to mammals.  相似文献   

14.
Cable JM  Enquist BJ  Moses ME 《PloS one》2007,2(11):e1130

Background

Understanding the mechanisms that control rates of disease progression in humans and other species is an important area of research relevant to epidemiology and to translating studies in small laboratory animals to humans. Body size and metabolic rate influence a great number of biological rates and times. We hypothesize that body size and metabolic rate affect rates of pathogenesis, specifically the times between infection and first symptoms or death.

Methods and Principal Findings

We conducted a literature search to find estimates of the time from infection to first symptoms (tS) and to death (tD) for five pathogens infecting a variety of bird and mammal hosts. A broad sampling of diseases (1 bacterial, 1 prion, 3 viruses) indicates that pathogenesis is controlled by the scaling of host metabolism. We find that the time for symptoms to appear is a constant fraction of time to death in all but one disease. Our findings also predict that many population-level attributes of disease dynamics are likely to be expressed as dimensionless quantities that are independent of host body size.

Conclusions and Significance

Our results show that much variability in host pathogenesis can be described by simple power functions consistent with the scaling of host metabolic rate. Assessing how disease progression is controlled by geometric relationships will be important for future research. To our knowledge this is the first study to report the allometric scaling of host/pathogen interactions.  相似文献   

15.
The energy equivalence rule (EER) is a macroecological hypothesis that posits that total population energy use (PEU) should be independent of species body mass, because population densities and energy metabolisms scale with body mass in a directly inverse manner. However, evidence supporting the EER is equivocal, and the use of basal metabolic rate (BMR) in such studies has been questioned; ecologically-relevant indices like field metabolic rate (FMR) are probably more appropriate. In this regard, Australian marsupials present a novel test for the EER because, unlike eutherians, marsupial BMRs and FMRs scale differently with body mass. Based on either FMR or BMR, Australian marsupial PEU did not obey an EER, and scaled positively with body mass based on ordinary least squares (OLS) regressions. Importantly, the scaling of marsupial population density with body mass had a slope of −0.37, significantly shallower than the expected slope of −0.75, and not directly inverse of body-mass scaling exponents for BMR (0.72) or FMR (0.62). The findings suggest that the EER may not be a causal, universal rule, or that for reasons not yet clear, it is not operating for Australia’s unique native fauna.  相似文献   

16.
The allometric scaling of metabolic rate with organism body mass can be partially accounted for by differences in cellular metabolic rates. For example, hepatocytes isolated from horses consume almost 10-fold less oxygen per unit time as mouse hepatocytes [Porter and Brand, Am J Physiol Regul Integr Comp Physiol 269: R226-R228, 1995]. This could reflect a genetically programmed, species-specific, intrinsic metabolic rate set point, or simply the adaptation of individual cells to their particular in situ environment (i.e., within the organism). We studied cultured cell lines derived from 10 mammalian species with donor body masses ranging from 5 to 600,000 g to determine whether cells propagated in an identical environment (media) exhibited metabolic rate scaling. Neither metabolic rate nor the maximal activities of key enzymes of oxidative or anaerobic metabolism scaled significantly with donor body mass in cultured cells, indicating the absence of intrinsic, species-specific, cellular metabolic rate set points. Furthermore, we suggest that changes in the metabolic rates of isolated cells probably occur within 24 h and involve a reduction of cellular metabolism toward values observed in lower metabolic rate organisms. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms. To examine the effect of oxygen on steady-state cellular respiration rates, we grew cells under a variety of physiologically relevant oxygen regimens. Long-term exposure to higher medium oxygen levels increased respiration rates of all cells, consistent with the hypothesis that higher rates of oxygen delivery in smaller mammals might increase cellular metabolic rates.  相似文献   

17.
Explanations for the hypoallometric scaling of metabolic rate through ontogeny generally fall into two categories: supply-side constraints on delivery of oxygen, or decreased mass-specific intrinsic demand for oxygen. In many animals, supply and demand increase together as the body grows, thus making it impossible to tease apart the relative contributions of changing supply and demand to the observed scaling of metabolic rate. In larval insects, the large components of the tracheal system are set in size at each molt, but then remain constant in size until the next molt. Larvae of Manduca sexta increase up to ten-fold in mass between molts, leading to increased oxygen need without a concomitant increase in supply. At the molt, the tracheal system is shed and replaced with a new, larger one. Due to this discontinuous growth of the tracheal system, insect larvae present an ideal system in which to examine the relative contributions of supply and demand of oxygen to the ontogenetic scaling of metabolic rate. We observed that the metabolic rate at the beginning of successive instars scales hypoallometrically. This decrease in specific intrinsic demand could be due to a decrease in the proportion of highly metabolically active tissues (the midgut) or to a decrease in mitochondrial activity in individual cells. We found that decreased intrinsic demand, mediated by a decrease in the proportion of highly metabolically active tissues in the fifth instar, along with a decrease in the specific mitochondrial activity, contribute to the hypoallometric scaling of metabolic rate.  相似文献   

18.
Cope's rule, wherein a lineage increases in body size through time, was originally motivated by macroevolutionary patterns observed in the fossil record. More recently, some authors have argued that evidence exists for generally positive selection on individual body size in contemporary populations, providing a microevolutionary mechanism for Cope's rule. If larger body size confers individual fitness advantages as the selection estimates suggest, thereby explaining Cope's rule, then body size should increase over microevolutionary time scales. We test this corollary by assembling a large database of studies reporting changes in phenotypic body size through time in contemporary populations, as well as studies reporting average breeding values for body size through time. Trends in body size were quite variable with an absence of any general trend, and many populations trended toward smaller body sizes. Although selection estimates can be interpreted to support Cope's rule, our results suggest that actual rates of phenotypic change for body size cannot. We discuss potential reasons for this discrepancy and its implications for the understanding of Cope's rule.  相似文献   

19.
Quantifying variation in ecosystem metabolism is critical to predicting the impacts of environmental change on the carbon cycle. We used a metabolic scaling framework to investigate how body size and temperature influence phytoplankton community metabolism. We tested this framework using phytoplankton sampled from an outdoor mesocosm experiment, where communities had been either experimentally warmed (+ 4 °C) for 10 years or left at ambient temperature. Warmed and ambient phytoplankton communities differed substantially in their taxonomic composition and size structure. Despite this, the response of primary production and community respiration to long‐ and short‐term warming could be estimated using a model that accounted for the size‐ and temperature dependence of individual metabolism, and the community abundance‐body size distribution. This work demonstrates that the key metabolic fluxes that determine the carbon balance of planktonic ecosystems can be approximated using metabolic scaling theory, with knowledge of the individual size distribution and environmental temperature.  相似文献   

20.
There is a widely held assumption that skeletal weights of mammals increase disproportionately with increased body size. Recent empirical studies have supported this assumption, and it has been suggested that this might account for the fact that metabolic rate scales to body weight with a negative allometry. Other studies, however, have suggested that skeletal weight in primates is directly proportionate to body weight. The results of this study support this latter interpretation and also indicate that the same is true for two other orders of mammals that were a part of the earlier allometric studies. The evidence suggests that skeletal weight scales isometricallywith body weight within individual mammalian orders. From this it is concluded that skeletal weight does not play any part in determining the negatively allometric scaling of metabolic rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号