首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 500 毫秒
1.
植物密度调控及其对环境变化响应的研究进展   总被引:5,自引:0,他引:5  
植物密度调控规律研究对于推动植物生态学理论的发展和指导林业、农业、牧业的合理密植以及恢复、改良不良生态环境等具有重要意义.文章综述了植物-3/2与-1/2自疏法则,自疏指数的不稳定性与争论,以及自疏法则与密度调控指数的关系的研究,总结了密度调控指数对水分梯度、盐分浓度、海拔以及光照条件等环境变化的响应,讨论了植物个体间的正负相互作用及其生态场、植物形态、盖度等植物密度调控机理与环境变化的关系,指出自疏指数研究经历从恒定、变异、随环境变化的发展,最后从WBE模型和代谢生态理论(MTE)、植物邻体效应、根冠整合机制、植物根际微生物对植物相互作用的调控、宏观与微观结合等方面展望了植物密度调控规律的研究发展趋势.  相似文献   

2.
植物代谢速率与个体生物量关系研究进展   总被引:3,自引:0,他引:3  
植物的各项生理生态功能(例如,呼吸、生长和繁殖)都与个体生物量成异速生长关系。West, Brown及Enquist基于分形网络结构理论所提出的WBE模型认为:植物的代谢(呼吸)速率正比于个体生物量的3/4次幂。然而,恒定的“3/4异速生长指数”与实测数据、植物生理生态学等研究之间存在矛盾,引发激烈的争论。论文分析了不同回归方法对代谢指数的影响,重点对植物代谢速率与个体生物量异速生长关系研究进展进行了综述,分析并得出了植物代谢指数在小个体时接近1.0,并随着生物量的增加而系统减小,且其密切依赖于氮含量的调控的结论。据此,提出了进一步深入研究植物代谢速率个体生物量关系需要解决的一些科学问题。  相似文献   

3.
陆地生物圈模型的发展与应用   总被引:1,自引:0,他引:1       下载免费PDF全文
陆地生物圈与大气圈和水圈之间能量、水和碳氮等元素的交换和循环对整个地球系统产生了深刻的影响。陆地生物圈模型(TBM)是研究陆地生态系统如何响应和反馈全球变化的重要方法和工具。通过对从生态系统到区域和全球陆地生物圈不同空间尺度的植被动态、生物地球物理和生物地球化学循环过程、水循环和水文过程、自然干扰和人类活动等过程时间动态的模拟, 陆地生物圈模型被广泛地应用于评估和归因过去陆地生物圈的时空变化和预测陆地生物圈对未来全球变化的响应和反馈。该文简要回顾了陆地生物圈模型的发展, 总结了模型对陆地生态系统主要过程的刻画和模型在生态系统生态学的应用, 并对未来陆地生物圈模型的发展和应用进行了展望。  相似文献   

4.
异速生长模型研究概述   总被引:2,自引:0,他引:2  
最近,关于异速生长模型的讨论再次成为焦点,讨论热点为异速生长指数的取值及其理论解释.本文综述了WBE 97、BMR(99)模型的相关研究,重点介绍了MGL模型及由此模型得到的结果:个体整体的新陈代谢率与个体的质量没有明显依赖关系,其标度指数不是一个固定的值,而是一个区间[2/3,1].考虑的视角从个体整体的新陈代谢率转到单位质量的新陈代谢率,通过对不同物种、不同环境的单位质量新陈代谢率的研究,发现对大多数物种,其值落在一个具有普适性的上、下界的区间内;认为存在单位质量的新陈代谢率最小值确定了个体的大小,并建立基于该最小值的描述个体大小与温度关系的数学模型,该模型得到实验数据验证.  相似文献   

5.
幂指数异速生长机制模型综述   总被引:23,自引:0,他引:23       下载免费PDF全文
 个体大小对生物的各种生理属性有重要意义, 描述个体大小和生理属性关系的规律叫做异速生长。生物的异速生长通常以幂函数的形 式表示, 在众多的异速生长关系中, Kleiber定律所描述的新陈代谢率和个体大小的3/4幂指数关系最为重要和基本, 解释此有充分数据支持的 定律的机理也最具挑战性。围绕该著名的3/4幂指数异速生长关系, 该文回顾历史上主要的有关模型假说, 并重点介绍1990年代中期以来, 由 West等提出的分形分配网络模型和由其它研究人员建立的代表性模型: 最少载体网络模型、多因理论、最小总熵理论、构造理论、细胞优化生 长理论和能量消耗理论。  相似文献   

6.
原始生物大分子动态的数学模型及其进化意义   总被引:2,自引:0,他引:2  
张尚宏 《遗传学报》1993,20(2):185-191
本文应用生态学上关于种群增长及种间竞争的逻辑斯缔方程,提出原始生物大分子动态的数学模型,对从该模型推导得的几种可能结果进行了分析,得出在生命起源初期的原始生物圈的生物多样性是很低的结论,即原始生物圈中较大量存在的只是一些种类单一的,可复制的原始生物大分子,因此,可以认为生物进化就是建立在这样的一个基础上,并沿着生物多样性不断提高的途径演化,该模型还有助于对广泛存在于现代生物基因组中的重复序列的起源的认识。  相似文献   

7.
代谢异速生长理论及其在微生物生态学领域的应用   总被引:1,自引:0,他引:1  
贺纪正  曹鹏  郑袁明 《生态学报》2013,33(9):2645-2655
新陈代谢是生物的基本生理过程,影响生物在不同环境中参与物质循环和能量转化的过程.代谢速率作为生物体重要的生命过程指标,几乎影响所有的生物活性速率,且在很多研究中均表现出异速生长现象.所谓代谢异速是指生物体代谢速率与其个体大小(或质量)之间存在的幂函数关系.代谢异速生长理论的提出,从机制模型角度解释了代谢异速关系这一普遍存在的生命现象.该理论利用分形几何学及流体动力学等原理,从生物能量学角度阐释了异速生长规律的机理,证实了3/4权度指数的存在;但同时有研究表明,权度指数因环境因素等影响处于2/3-1范围之间而非定值.随着研究工作的深入,代谢异速生长理论研究从起初的宏观动植物领域拓展到了微生物领域,在研究微生物的代谢异速生长理论时,可将微生物的可操作分类单元(Operational taxonomic unit,OTU)或具有特定功能的功能群视为一个微生物个体,基于其遗传多样性和功能多样性特征进行表征,以便于将微生物群落多样性与其生态功能性联系起来,使该理论在微生物生态学领域得到有效的补充和完善.尽管细菌具有独特的生物学特性,但与宏观生物系统中观测到的现象表现出明显的一致性.有研究表明,3个农田土壤细菌基于遗传多样性的OTU数的平均周转率分别为0.71、0.80和0.84,介于2/3与1之间,可能与生物代谢异速指数有一定关联,为微生物代谢异速指数的研究提出了一个参考解决方案.鉴于微生物个体特征和生物学特性,在分析代谢速率与个体大小关系中,从微生物单位个体的定义、个体大小表征到计量单位的统一,仍需更多的理论支持.分析了代谢异速生长理论在微生物与生态系统功能关系研究中的可能应用,延伸了该理论的应用范围,并对尚待加强的研究问题进行了评述和展望.  相似文献   

8.
陈国鹏  赵文智 《生态学杂志》2016,27(6):1870-1876
新陈代谢速率是植物最基本的生物学速率,与地表植被的水碳代谢过程密切相关.表征代谢速率及其替代指标(如叶生物量等)与个体大小间相关生长关系的代谢指数是生态学研究的一个热点,WBE模型论证的3/4恒定代谢指数最为经典,但也饱受争议.本研究以毛乌素沙地南缘沙柳为对象,检验了WBE模型的可用性,揭示代谢指数随丛生枝生长发育的变化规律.结果表明: 基于叶生物量和茎叶生物量估计的沙柳丛生枝代谢指数α为0.97,显著大于WBE模型的恒定指数3/4;分支半径指数1/a和分支长度指数1/b分别为2.67和3.83,均显著大于理论值2.0和3.0.分龄级估计的丛生枝分支半径指数和分支长度指数分别为2.64~3.24和2.86~4.30,各龄级代谢指数的估计值和计算值分别为1.01~1.29和0.94~1.13,龄级差异均不显著.斜率异质性检验表明,不同龄级的丛生枝共有代谢指数估计值1.08和计算值1.00、分支半径指数2.84和分支长度指数3.35,均显著大于理论值.在各龄级丛生枝共有代谢指数1.08下,代谢常数在y轴上的负向漂移幅度随龄级增加而显著增大.尽管枝龄未引起沙柳丛生枝代谢指数的显著变化,但在给定大小的枝条上,大龄枝较低龄枝的代谢活性下降明显.  相似文献   

9.
《植物生态学报》2014,38(6):599
West、Brown和Enquist提出的植物分形网络模型(简称WBE模型)认为: 植物的分支指数(1/a, 1/b)决定植物的代谢指数, 当分支指数1/a、1/b分别为理论值2.0、3.0时, 代谢速率与个体大小的3/4次幂成正比, 但是恒定的3/4代谢指数并不能全面地反映植物的代谢情况。基于分支指数的协同变化, Price、Enquist和Savage对WBE模型进行扩展, 提出植物分支参数协同变化模型(简称PES模型)。该文借助于PES模型分析了7种木本植物的分支指数和代谢指数。结果表明: 物种间叶面积与叶生物量呈异速生长关系, 基于叶面积得到的分支指数1/a和代谢指数θ在物种间无显著差异, 基于叶生物量得到的分支指数1/a、1/b和代谢指数θ在物种间均存在显著差异, 但基于叶面积和叶生物量分别拟合出的整体分支指数1/a、1/b和代谢指数θ与理论值均无显著差异, 且用叶面积作为代谢速率的替代指标比用叶生物量分析得出的代谢指数与理论值更接近。今后研究应当关注植物叶面积与叶生物量的异速生长关系对植物代谢速率及相关功能特性的影响。  相似文献   

10.
West、Brown和Enquist提出的植物分形网络模型(简称WBE模型)认为: 植物的分支指数(1/a, 1/b)决定植物的代谢指数, 当分支指数1/a、1/b分别为理论值2.0、3.0时, 代谢速率与个体大小的3/4次幂成正比, 但是恒定的3/4代谢指数并不能全面地反映植物的代谢情况。基于分支指数的协同变化, Price、Enquist和Savage对WBE模型进行扩展, 提出植物分支参数协同变化模型(简称PES模型)。该文借助于PES模型分析了7种木本植物的分支指数和代谢指数。结果表明: 物种间叶面积与叶生物量呈异速生长关系, 基于叶面积得到的分支指数1/a和代谢指数θ在物种间无显著差异, 基于叶生物量得到的分支指数1/a、1/b和代谢指数θ在物种间均存在显著差异, 但基于叶面积和叶生物量分别拟合出的整体分支指数1/a、1/b和代谢指数θ与理论值均无显著差异, 且用叶面积作为代谢速率的替代指标比用叶生物量分析得出的代谢指数与理论值更接近。今后研究应当关注植物叶面积与叶生物量的异速生长关系对植物代谢速率及相关功能特性的影响。  相似文献   

11.
Lack of Evidence for 3/4 Scaling of Metabolism in Terrestrial Plants   总被引:6,自引:0,他引:6  
Scaling, as the translation of information across spatial, temporal, and organizational scales, is essential to predictions and understanding in all sciences and has become a central issue in ecology. A large body of theoretical and empirical evidence concerning allometric scaling in terrestrial individual plants and plant communities has been constructed around the fractal volume-filling theory of West, Brown, and Enquist (the WBE model). One of the most thought-provoking findings has been that the metabolic rates of plants, like those of animals, scale with their size as a 3/4 power law. The earliest, single most-important study cited in support of the application of the WBE model to terrestrial plants claims that whole-plant resource use in terrestrial plants scales as the 3/4 power of total mass, as predicted by the WBE model. However, in the present study we show that empirical data actually do not support such a claim. More recent studies cited as evidence for 3/4 scaling also suffer from several statistical and data-related problems. Using a forest biomass dataset including 1 266 plots of 17 main forest types across China, we explored the scaling exponents between tree productivity and tree mass and found no universal value across forest stands. We conclude that there is not sufficient evidence to support the existence of a single constant scaling exponent for the metabolism-biomass relationship for terrestrial plants.  相似文献   

12.
The functional association between body size and metabolic rate (BS-MR) is one of the most intriguing issues in ecological physiology. An average scaling exponent of 3/4 is broadly observed across animal and plant taxa. The numerical value of 3/4 is theoretically predicted under the optimized version of West, Brown, and Enquist's vascular resource supply network model. Insects, however, have recently been proposed to express a numerically different scaling exponent and thus application of the WBE network model to insects has been rejected. Here, we re-analyze whether such variation is indeed supported by a global deviation across all insect taxa at the order and family levels to assess if specific taxa influence insect metabolic scaling. We show that a previous reported deviation is largely due to the effect of a single insect family (Termitidae). We conclude that the BS-MR relationship in insects broadly supports the core predictions of the WBE model. We suggest that the deviation observed within the termites warrants further investigation and may be due to either difficulty in accurately measuring termite metabolism and/or particularities of their life history. Future work on allometric scaling should assess the nature of variation around the central tendencies in scaling exponents in order to test if this variation is consistent with core assumptions and predictions of the WBE model that stem by relaxing its secondary optimizing assumptions that lead to the 3/4 exponent.  相似文献   

13.
14.
Scaling, as the translation of information across spatial, temporal, and organizational scales, is essential to predictions and understanding in all sciences and has become a central issue in ecology. A large body of theoretical and empirical evidence concerning allometric scaling in terrestrial individual plants and plant communities has been constructed around the fractal volume-filling theory of West, Brown, and Enquist (the WBE model). One of the most thought-provoking findings has been that the metabolic rates of plants, like those of animals, scale with their size as a 3/4 power law. The earliest, single most-important study cited in support of the application of the WBE model to terrestrial plants claims that whole-plant resource use in terrestrial plants scales as the 3/4 power of total mass, as predicted by the WBE model.However, in the present study we show that empirical data actually do not support such a claim. More recent studies cited as evidence for 3/4 scaling also suffer from several statistical and data-related problems. Using a forest biomass dataset including 1 266 plots of 17 main forest types across China, we explored the scaling exponents between tree productivity and tree mass and found no universal value across forest stands. We conclude that there is not sufficient evidence to support the existence of a single constant scaling exponent for the metabolism-biomass relationship for terrestrial plants.  相似文献   

15.
The metabolic theory of ecology (MTE) is an intriguing but controversial theory that tries to explain ecological patterns at all scales on the basis of first principles. Temperature plays a pivotal role in this theory. According to MTE, the Arrhenius relationship that describes the effect of temperature on biochemical reactions extends to a 'universal temperature dependence' that encompasses all kinds of processes and scales up to the cellular, the organismal, and the community level. In this study we test the prediction that community growth rate is temperature dependent in an Arrhenius-like way. First, we performed a literature review of the scanty data on the temperature dependence of the rates of metabolism, photosynthesis and growth of communities. In contrast to the predictions of MTE, the community activation energies did not cluster around 0.32 eV, the activation energy of photosynthesis and primary production or around 0.65 eV, the activation energy of metabolism. However, in none of the published studies the conditions were sufficiently controlled to allow firm conclusions. We therefore also performed replicated and controlled experiments using natural assemblages of marine plankton. As predicted by MTE, the maximal growth rates of community biomass increased linearly in an Arrhenius plot, with a slope close to 0.32 eV. However, a diversity of other models for the temperature dependence of community growth rates fit our data equally well. Hence, our results are at best a weak confirmation of MTE.  相似文献   

16.
Theoretical predictions regarding fine root production are needed in many ecosystem models but are lacking. Here, we expand the classic pipe model to fine roots and predict isometric scaling relationships between leaf and fine root biomass and among all major biomass production components of individual trees. We also predict that fine root production scales more slowly against increases in leaf production across global forest ecosystems at the stand level. Using meta‐analysis, we show fine root biomass scales isometrically against leaf biomass both at the individual tree and stand level. However, despite isometric scaling between stem and coarse root production, fine root production scales against leaf production with a slope of about 0.8 at the stand level, which probably results from more rapid increase of turnover rate in leaves than in fine roots. These analyses help to improve our understandings of allometric theory and controls of belowground C processes.  相似文献   

17.
? Premise of the study: An overarching but vigorously debated plant model proposed by the West, Brown, Enquist (WBE) theory predicts the scaling relationships for numerous botanical phenomena. However, few studies have evaluated this model's basic assumptions, one of which is that natural selection has resulted in hierarchal networks that minimize the energy required to distribute nutrients internally and have thus produced highly efficient organisms. ? Methods: If these core assumptions are correct, an "idealized" plant complying with all of the scaling relationships emerging from the WBE plant model should rapidly outcompete other plants, even those that differ slightly from it. To test this reasoning, a computer model was used to simulate competition between an idealized WBE plant, a generic "average" angiosperm (GA), and one of seven variants of the idealized WBE plant, each being similar to the GA in one of the GA's scaling parameters. ? Key results: Replicate simulations show that the idealized WBE plant rapidly outcompetes all other plants under light-shade and open-field conditions. However, changing only one of the WBE's scaling parameters results in death or in the coexistence of WBE and GA plants. ? Conclusions: These simulations support a core assumption of the WBE plant model and suggest why this idealized plant has not evolved.  相似文献   

18.
The WBE model was used to predict intraspecific scaling relationships among mean branch, needle, stem, root, and above-ground masses across eight stands of Pinus massoniana to test whether the scaling exponent was (1) dependent on site and (2) in accordance with WBE theory. The results showed that mean stem and root masses as well as mean above-ground and root masses scaled in a near-isometric manner across sites, except at two sites, which exhibited an exponent slightly less than unity. Mean needle mass scaled as 3/4 power of mean stem mass, except at one site, which exhibited an exponent slightly higher than 3/4. Mean branch mass scaled isometrically with mean stem mass at each site. These results supported the WBE theory. However, mean branch mass across sites scaled neither as 3/4 nor 1 power of mean stem mass, indicating that the scaling relationship predicted by WBE theory for these two components did not hold in P. massoniana stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号