首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine signalling facilitates motivated behaviours, and the D2 dopamine receptor (D2R) is important in mother–infant interactions. D2R antagonists disrupt maternal behaviour and, in isolated rat pups, reduce ultrasonic vocalizations (USVs) that promote maternal interaction. Here, we examined the effects of genetic D2R signalling deficiency on pup‐dam interaction with Drd2 knockout (D2R KO) mice. Using heterozygous (HET) cross littermates, the effect of pup genotype on isolation‐induced USVs was quantified. Independent of parental genotype, D2R‐deficient pups emitted fewer USVs than wild type (WT) littermates in a gene dose‐dependent manner. Using reciprocal D2R KO‐WT crosses, we examined how parental genotype affects pup USVs. Heterozygous pups from D2R KO dams produced fewer USVs than HET pups from WT dams. Also, exposure to USV‐emitting pups increased plasma prolactin levels in WT dams but not in D2R KO dams, and KO dams showed delayed pup retrieval and nest building. These findings indicate the importance of the interaction between pup and dam genotypes on behaviour and further support the role of D2R signalling in maternal care.  相似文献   

2.
Deficits in social communication and language development belong to the earliest diagnostic criteria of autism spectrum disorders. Of the many risk factors for autism spectrum disorder, the contactin-associated protein-like 2 gene, CNTNAP2, is thought to be important for language development. The present study used a rat model to investigate the potential compounding effects of autism spectrum disorder risk gene mutation and environmental challenges, including breeding conditions or maternal immune activation during pregnancy, on early vocal communication in the offspring. Maternal isolation-induced ultrasonic vocalizations from Cntnap2 wildtype and knockout rats at selected postnatal days were analyzed for their acoustic, temporal and syntax characteristics. Cntnap2 knockout pups from heterozygous breeding showed normal numbers and largely similar temporal structures of ultrasonic vocalizations to wildtype controls, whereas both parameters were affected in homozygously bred knockouts. Homozygous breeding further exacerbated altered pitch and transitioning between call types found in Cntnap2 knockout pups from heterozygous breeding. In contrast, the effect of maternal immune activation on the offspring's vocal communication was confined to call type syntax, but left ultrasonic vocalization acoustic and temporal organization intact. Our results support the “double-hit hypothesis” of autism spectrum disorder risk gene–environment interactions and emphasize that complex features of vocal communication are a useful tool for identifying early autistic-like features in rodent models.  相似文献   

3.
Malnutrition during pregnancy adversely affects postnatal forebrain development; its effect upon brain stem development is less certain. To evaluate the role of tryptophan [critical for serotonin (5-HT) synthesis] on brain stem 5-HT and the development of cardiorespiratory function, we fed dams a diet ~45% deficient in tryptophan during gestation and early postnatal life and studied cardiorespiratory variables in the developing pups. Deficient pups were of normal weight at postnatal day (P)5 but weighed less than control pups at P15 and P25 (P < 0.001) and had lower body temperatures at P15 (P < 0.001) and P25 (P < 0.05; females only). Oxygen consumption (Vo(2)) was unaffected. At P15, deficient pups had an altered breathing pattern and slower heart rates. At P25, they had significantly lower ventilation (Ve) and Ve-to-Vo(2) ratios in both air and 7% CO(2). The ventilatory response to CO(2) (% increase in Ve/Vo(2)) was significantly increased at P5 (males) and reduced at P15 and P25 (males and females). Deficient pups had 41-56% less medullary 5-HT (P < 0.01) compared with control pups, without a difference in 5-HT neuronal number. These data indicate important interactions between nutrition, brain stem physiology, and age that are potentially relevant to understanding 5-HT deficiency in the sudden infant death syndrome.  相似文献   

4.
Perinatal undernutrition affects not only fetal and neonatal growth but also adult health outcome, as suggested by the metabolic imprinting concept. However, the exact mechanisms underlying offspring metabolic adaptations are not yet fully understood. Specifically, it remains unclear whether the gestation or the lactation is the more vulnerable period to modify offspring metabolic flexibility. We investigated in a rodent model of intrauterine growth restriction (IUGR) induced by maternal protein restriction (R) during gestation which time window of maternal undernutrition (gestation, lactation or gestation–lactation) has more impact on the male offspring metabolomics phenotype. Plasma metabolome and hepatic lipidome of offspring were characterized through suckling period and at adulthood using liquid chromatography–high-resolution mass spectrometry. Multivariate analysis of these fingerprints highlighted a persistent metabolomics signature in rats suckled by R dams, with a clear-cut discrimination from offspring fed by control (C) dams. Pups submitted to a nutritional switch at birth presented a metabolomics signature clearly distinct from that of pups nursed by dams maintained on a consistent perinatal diet. Control rats suckled by R dams presented transiently higher branched-chain amino acid (BCAA) oxidation during lactation besides increased fatty acid (FA) β-oxidation, associated with preserved insulin sensitivity and lesser fat accretion that persisted throughout their life. In contrast, IUGR rats displayed permanently impaired β-oxidation, associated to increased glucose or BCAA oxidation at adulthood, depending on the fact that pups experienced slow postnatal or catch-up growth, as suckled by R or C dams, respectively. Taken together, these findings provide evidence for a significant contribution of the lactation period in metabolic programming.  相似文献   

5.
Iodine deficiency disorders affect reproductive performance in the afflicted populations. Environmental iodine deficiency (ID) and goitrogens are important in their aetiology. We observed earlier that chronic maternal dietary ID but not goitrogen feeding altered the blood-brain barrier nutrient transport in adult rats. Whether similar differences exist in their effects on reproduction of dams and postnatal performance of the offspring has been assessed. Inbred, female, weaning WNIN rats were rendered hypothyroid by feeding for 8-12 weeks, a low iodine test diet or a control diet with added potassium thiocyanate (KSCN) (@ 25 mg/rat/day). Following mating with control males, they continued on their respective diets till their pups were weaned. Indices of reproductive performance such as percentage of conception, mortality of dams during pregnancy and parturition, litter size, and survival of pups till weaning were affected markedly by ID but not thiocyanate feeding. Neither ID nor thiocyanate feeding from conception or parturition affected their reproductive performance. Nevertheless, postnatal weight gain of pups was less in all the three ID groups but not thiocyanate fed dams. Rehabilitation of chronically ID pregnant dams from conception or parturition did not improve their pregnancy weight gain, litter size or birth weight of pups but decreased abortion and mortality of mothers during pregnancy and parturition. Rehabilitation improved the pups' postnatal weight gain but the effect was only moderate. Based on the results of the present study it may be suggested that maternal ID but not thiocyanate feeding affects reproductive performance and postnatal performance of their offspring.  相似文献   

6.
Maternal care is an indispensable behavioral component necessary for survival and reproductive success in mammals, and postpartum maternal behavior is mediated by an incompletely understood complex interplay of signals including effects of epigenetic regulation. We approached this issue using our recently established mice with targeted deletion of heterochromatin protein 1 binding protein 3 (HP1BP3), which we found to be a novel epigenetic repressor with critical roles in postnatal growth. Here, we report a dramatic reduction in the survival of pups born to Hp1bp3?/? deficient mouse dams, which could be rescued by co‐fostering with wild‐type dams. Hp1bp3?/? females failed to retrieve both their own pups and foster pups in a pup retrieval test, and showed reduced anxiety‐like behavior in the open‐field and elevated‐plus‐maze tests. In contrast, Hp1bp3?/? females showed no deficits in behaviors often associated with impaired maternal care, including social behavior, depression, motor coordination and olfactory capability; and maintained unchanged anxiety‐associated hallmarks such as cholinergic status and brain miRNA profiles. Collectively, our results suggest a novel role for HP1BP3 in regulating maternal and anxiety‐related behavior in mice and call for exploring ways to manipulate this epigenetic process.  相似文献   

7.
Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.  相似文献   

8.
Maternal posttraumatic stress disorder (PTSD) following trauma exposure during pregnancy is associated with an increased risk of affective disorders in children. To investigate the mechanisms by which prenatal trauma and/or maternal PTSD affect brain development and behavior we established a mouse model of prenatal traumatic (PT) experience based on the application of an electric foot shock to C57Bl/6N female mice on the gestational day 12 during their pregnancy. The model is based on a previously validated animal model of PTSD. We found high anxiety levels and poor maternal care along with reduced serum prolactin and increased corticosterone levels in dams following maternal trauma (MT). PT‐pups were born smaller and stayed smaller throughout their life. We show increased time and frequency of ultrasonic calls in PT‐pups when separated from the mothers on the postnatal day (PND) 9. Cross‐fostering experiments reveal lower anxiety levels in PT pups raised by healthy mothers as compared to trauma‐naive pups raised by MT‐dams. Importantly, the combination of prenatal trauma and being raised by a traumatized mother leads to: (1) the highest corticosterone levels in pups, (2) longest USV‐call time and (3) highest anxiety levels in comparison to other experimental groups. Our data indicates a distinct change in maternal care following MT which is possibly associated with trauma‐induced decrease in prolactin levels. Furthermore, we show that maternal behavior is crucial for the development of the offspring anxiety and specific aspects in maternal care overwrite to a significant extend the effects of in utero and postnatal environment. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1254–1265, 2016  相似文献   

9.
This work investigates the effects of maternal adrenalectomy (ADX) on the development of the adrenal medulla. Adrenal catecholamines (AC) were measured at postnatal day (PN) 1, 8, 12 and 22 in rat offspring of ADX dams and in pups of control dams. The pups of ADX rats showed a reduction in AC concentrations in the adrenal medulla at PN 1, 12 and 22, although these were higher than in the pups of sham dams at PN 8. Further, in the pups of control mothers, there was an increase in ACs during the first two weeks of life whereas pups of ADX mothers only showed increases in noradrenaline, dopamine and adrenaline levels at day 8. These results suggest that maternal absence of corticosterone affects the medulla catecholamine content during development. These data support the idea that a maternal glucocorticoids are involved in the differentiation or/and maturation of the adrenal medulla.  相似文献   

10.

Background

Metabolic and endocrine environment during early life is crucial for metabolic imprinting. When dams were fed a high fat diet (HF diet), rat offspring developed hypothalamic leptin resistance with lean phenotype when weaned on a normal diet. Interestingly, when grown on the HF diet, they appeared to be protected against the effects of HF diet as compared to offspring of normally fed dams. The mechanisms involved in the protective effect of maternal HF diet are unclear.

Methodology/Principal Findings

We thus investigated the impact of maternal high fat diet on offspring subjected to normal or high palatable diet (P diet) on metabolic and endocrine parameters. We compared offspring born to dams fed P or HF diet. Offspring born to dams fed control or P diet, when fed P diet exhibited a higher body weight, altered hypothalamic leptin sensitivity and metabolic parameters suggesting that maternal P diet has no protective effect on offspring. Whereas, maternal HF diet reduces body weight gain and circulating triglycerides, and ameliorates corpulence index of offspring, even when subjected to P diet. Interestingly, this protective effect is differently expressed in male and female offspring. Male offspring exhibited higher energy expenditure as mirrored by increased hypothalamic UCP-2 and liver AdipoR1/R2 expression, and a profound change in the arcuate nucleus astrocytic organization. In female offspring, the most striking impact of maternal HF diet is the reduced hypothalamic expression of NPY and POMC.

Conclusions/Significance

HF diet given during gestation and lactation protects, at least partially, offspring from excessive weight gain through several mechanisms depending upon gender including changes in arcuate nucleus astrocytic organization and increased hypothalamic UCP-2 and liver AdipoR1/2 expression in males and reduced hypothalamic expression of NPY and POMC in females. Taken together our results reveal new mechanisms involved in the protective effect of maternal HF diet.  相似文献   

11.
ABSTRACT

Timber wolf Canis lupus pups vocalize within hours of birth. In this report we examine aspects of the acoustical structure of these vocalizations. We installed an unobtrusive monitoring system in a den excavated by a group of pack-reared timber wolves at the Dalhousie Animal Behavior Field Station in order to observe and record at close range the activities of a female wolf with her litter of pups. We obtained audio and video recordings from birth through the first six postnatal weeks, after which time the pups emerged from the den. The audio recordings were analyzed spectrographically and the vocalizations were classified according to gross spectral type, duration, presence and rate of frequency modulation, and spectral bandwidth. Joint differences in at least two dimensions were necessary to classify vocalizations. The most common sounds, present as early as day one, were harmonically structured, with fundamental frequencies that decreased with age. Other vocalizations, which were rare and resembled recognizable adult sound types, were not apparent until after the second postnatal week.  相似文献   

12.
Mutations in CHD8 are one of the highest genetic risk factors for autism spectrum disorder. Studies in mice that investigate underlying mechanisms have shown Chd8 haploinsufficient mice display some trait disruptions that mimic clinical phenotypes, although inconsistencies have been reported in some traits across different models on the same strain background. One source of variation across studies may be the impact of Chd8 haploinsufficiency on maternal-offspring interactions. While differences in maternal care as a function of Chd8 genotype have not been studied directly, a previous study showed that pup survival was reduced when reared by Chd8 heterozygous dams compared with wild-type (WT) dams, suggesting altered maternal care as a function of Chd8 genotype. Through systematic observation of the C57BL/6 strain, we first determined the impact of Chd8 haploinsufficiency in the offspring on WT maternal care frequencies across preweaning development. We next determined the impact of maternal Chd8 haploinsufficiency on pup care. Compared with litters with all WT offspring, WT dams exhibited less frequent maternal behaviors toward litters consisting of offspring with mixed Chd8 genotypes, particularly during postnatal week 1. Dam Chd8 haploinsufficiency decreased litter survival and increased active maternal care also during postnatal week 1. Determining the impact of Chd8 haploinsufficiency on early life experiences provides an important foundation for interpreting offspring outcomes and determining mechanisms that underlie heterogeneous phenotypes.  相似文献   

13.
"The goal of this study was to examine the effect of maternal iron deficiency on the developing hippocampus in order to define a developmental window for this effect, and to see whether iron deficiency causes changes in glucocorticoid levels. The study was carried out using pre-natal, post-natal, and pre + post-natal iron deficiency paradigm. Iron deficient pregnant dams and their pups displayed elevated corticosterone which, in turn, differentially affected glucocorticoid receptor (GR) expression in the CA1 and the dentate gyrus. Brain Derived Neurotrophic Factor (BDNF) was reduced in the hippocampi of pups following elevated corticosterone levels. Reduced neurogenesis at P7 was seen in pups born to iron deficient mothers, and these pups had reduced numbers of hippocampal pyramidal and granule cells as adults. Hippocampal subdivision volumes also were altered. The structural and molecular defects in the pups were correlated with radial arm maze performance; reference memory function was especially affected. Pups from dams that were iron deficient throughout pregnancy and lactation displayed the complete spectrum of defects, while pups from dams that were iron deficient only during pregnancy or during lactation displayed subsets of defects. These findings show that maternal iron deficiency is associated with altered levels of corticosterone and GR expression, and with spatial memory deficits in their pups."  相似文献   

14.
Two experiments were performed to investigate the interactive effects of prenatal coadministration of cocaine hydrochloride (C) and nicotine tartrate (N). Experiment I was designed to determine doses of C and N that could be coadministered without altering maternal gestational parameters and/or fetal viability. Exposure of Sprague-Dawley rats to combined high-dose C (20 mg/kg) and high-dose N (5.0 mg/kg) on gestation days 8–21 was not more toxic to dam or fetus than that of exposure to C alone. Experiment II investigated pregnancy outcome, postnatal development, and behavior of the offspring following drug exposure to either high-dose cocaine (20 mg/kg: CS), high-dose nicotine (5.0 mg/kg: NS), or both (NC) on gestation days 8–21. N was administered by osmotic minipump and C by sc injection. Saline-injected dams, fitted with saline-filled pumps (SS), and untreated dams, pair-fed (PF) to NC females, served as controls. Alterations in maternal variables were limited to a 10–15% decrease in food consumption in NC and CS groups. Pregnancy outcome and birth statistics were unaffected by prenatal treatment, as was offspring body weight during the first four postnatal weeks. However, the development of surface righting was delayed in CS pups, and only CS offspring were underresponsive to the stimulatory effects of dopamine agonists on activity and stereotypy. Behavioral responses to N challenge were similar in all groups. In addition, only CS offspring showed altered behavioral responses in a spontaneous alternation task. Treatment effects on dopamine D1 and D2 binding in the caudate nucleus were not observed. The combination of N and C did not exacerbate any of the behavioral changes seen in CS offspring. These results support the hypothesis that C is a behavioral teratogen in rodents, and suggest that in the present model, nicotine can mitigate some of the consequences ofin utero exposure to cocaine.  相似文献   

15.
Animal studies demonstrate that circadian rhythm disruption during pregnancy can be deleterious to reproductive capacity and the long-term health of the progeny. Our previous studies in rats have shown that exposure of pregnant dams to an environment that significantly disrupts maternal circadian rhythms programs increased adiposity and poor glucose metabolism in offspring. In this study, we used mice with a ClockΔ19 mutation to determine whether foetal development within a genetically disrupted circadian environment affects pregnancy outcomes and alters the metabolic health of offspring. Ten female ClockΔ19+MEL mutant mice were mated with 10 wildtype males, and 10 wildtype females were mated with 10 ClockΔ19+MEL mutant males. While genetically identical, the heterozygote foetuses were exposed to either a normal (wildtype dams) or disrupted (ClockΔ19+MEL mutant dams) circadian environment during gestation. Pregnancy outcomes including time to mate, gestation length, litter size and birth weight were assessed. One male and one female offspring from each litter were assessed for postnatal growth, body composition, intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test at 3 and 12 months of age. There was no effect of maternal genotype on pregnancy outcomes, with days to plug, gestation length, litter size and perinatal mortality not significantly different between wildtype and ClockΔ19+MEL mutant dams. Similarly, there was no effect of maternal genotype on weight of the offspring at birth or at any stage of postnatal growth. While there was an effect of sex on various tissue weights at 3 and 12 months of age, there were minimal effects of maternal genotype. Relative adrenal weight was significantly reduced (?32%) in offspring from ClockΔ19+MEL mutant dams, whereas gastrocnemius muscle was significantly increased (+16%) at 3 months of age only. Intraperitoneal glucose tolerance tests at 3 months of age revealed female offspring from ClockΔ19+MEL mutant dams had significantly reduced area under the curve following glucose administration (?25%), although no differences were found at 12 months of age. There was no effect of maternal genotype on intraperitoneal insulin tolerance at 3 or 12 months of age for either sex. These results demonstrate that foetal growth within a genetically disrupted circadian environment during gestation has no effect on pregnancy success, and only marginal impacts upon the long-term metabolic health of offspring. These results do not support the hypothesis that circadian rhythm disruption during pregnancy programs poor metabolic homeostasis in offspring. However, when maintained on a 12L:12D photoperiod, the ClockΔ19+MEL mutant dams display relatively normal patterns of activity and melatonin secretion, which may have reduced the impact of the mutation upon foetal metabolic programming.  相似文献   

16.
Risk of obesity in adult life is subject to programming during gestation. To examine whether in utero exposure to maternal obesity increases the risk of obesity in offspring, we developed an overfeeding-based model of maternal obesity in rats utilizing intragastric feeding of diets via total enteral nutrition. Feeding liquid diets to adult female rats at 220 kcal/kg(3/4) per day (15% excess calories/day) compared with 187 kcal/kg(3/4) per day for 3 wk caused substantial increase in body weight gain, adiposity, serum insulin, leptin, and insulin resistance. Lean or obese female rats were mated with ad libitum AIN-93G-fed male rats. Exposure to obesity was ensured to be limited only to the maternal in utero environment by cross-fostering pups to lean dams having ad libitum access to AIN-93G diets throughout lactation. Numbers of pups, birth weight, and size were not affected by maternal obesity. Male offspring from each group were weaned at postnatal day (PND)21 to either AIN-93G diets or high-fat diets (45% fat calories). Body weights of offspring from obese dams did not differ from offspring of lean dams when fed AIN-93G diets through PND130. However, offspring from obese dams gained remarkably greater (P < 0.005) body weight and higher % body fat when fed a high-fat diet. Body composition was assessed by NMR, X-ray computerized tomography, and weights of adipose tissues. Adipose histomorphometry, insulin sensitivity, and food intake were also assessed in the offspring. Our data suggest that maternal obesity at conception leads to fetal programming of offspring, which could result in obesity in later life.  相似文献   

17.
The developing fetus and neonate are highly sensitive to maternal environment. Besides the well‐documented effects of maternal stress, nutrition and infections, maternal mutations, by altering the fetal, perinatal and/or early postnatal environment, can impact the behavior of genetically normal offspring. Mutation/premutation in the X‐linked FMR1 (encoding the translational regulator FMRP) in females, although primarily responsible for causing fragile X syndrome (FXS) in their children, may also elicit such maternal effects. We showed that a deficit in maternal FMRP in mice results in hyperactivity in the genetically normal offspring. To test if maternal FMRP has a broader intergenerational effect, we measured social behavior, a core dimension of neurodevelopmental disorders, in offspring of FMRP‐deficient dams. We found that male offspring of Fmr1+/? mothers, independent of their own Fmr1 genotype, exhibit increased approach and reduced avoidance toward conspecific strangers, reminiscent of ‘indiscriminate friendliness’ or the lack of stranger anxiety, diagnosed in neglected children and in patients with Asperger's and Williams syndrome. Furthermore, social interaction failed to activate mesolimbic/amygdala regions, encoding social aversion, in these mice, providing a neurobiological basis for the behavioral abnormality. This work identifies a novel role for FMRP that extends its function beyond the well‐established genetic function into intergenerational non‐genetic inheritance/programming of social behavior and the corresponding neuronal circuit. As FXS premutation and some psychiatric conditions that can be associated with reduced FMRP expression are more prevalent in mothers than full FMR1 mutation, our findings potentially broaden the significance of FMRP‐dependent programming of social behavior beyond the FXS population.  相似文献   

18.
Yu P  Wang J  Tai F  Broders H  An S  Zhang X  He F  An X  Wu R 《Behavioural processes》2011,88(3):162-167
Early deprivation is popularly used in rodent models as an early life social stress to investigate and determine the factors that affect the development of the brain and behavior. Ultrasonic calls made by pups play an important role in parental–pup interactions during the neonatal period. However, whether repeated early deprivation affects the properties of ultrasonic vocalizations (USVs) produced by mandarin vole (Microtus mandarinus) pups, and whether ontogenetic development is subsequently affected, remains unclear. Here we measured USVs and developmental parameters in mandarin vole pups deprived of their parents and littermates for 3 h per day (ED, which is significantly different from 5 min isolation used to induce USVs) and another pup group developed under normal nest conditions (PC). Repeated measures analysis indicated that the number of USVs from ED pups was significantly lower than those from PC pups during the postnatal period (p < 0.05). The pulse durations of ED pups were longer than those of PC pups at two (p < 0.001) and five days of age (p < 0.05), but shorter at 14 days of age (p < 0.001). Compared with PC pups, the frequency range of the ED pups was wider at 18–45 kHZ, variable during the first week, smaller and narrower at 18–30 kHZ at eight and 11 days of age, and became stable similar to PC pups at 25 kHZ after 14 days of age. ED also reduced pup body weight significantly and resulted in earlier eye opening compared with PC pups (p < 0.001). A positive relationship was also found between USV emissions and levels of parental care received by pups. It appears that pup USVs are an important age-dependent behavioral phenotype and an effective communicative method between parents and offspring. Prolonged parental and littermate deprivation (ED) may alter USVs emitted by pups and then ontogenetic development and parental care. Mandarin voles show USV properties similar to socially monogamous rodents and this add further support to the hypothesis that species with different social systems produce different patterns of ultrasonic vocalizations. USVs, ontogenetic development and parental care are closely associated.  相似文献   

19.
20.
Maternal care is an indispensable component of offspring survival and development in all mammals and necessary for reproductive success. Although brain areas regulating maternal behaviors are innervated by serotonergic afferents, very little is known about the role of this neurotransmitter in these behaviors. To evaluate the contribution of serotonin to maternal care, we used mice with a null mutation in the gene for tryptophan hydroxylase‐2 (TPH2), which results in a genetic depletion of brain serotonin, and tested them in a wide range of maternal behavior paradigms. We found that litters born to and reared by TPH2?/? mothers showed decreased survival, lower weaning weights and increased cannibalization. In addition, TPH2?/? mothers performed poorly in pup retrieval, huddling, nest construction and high‐arched back nursing. Aggression in TPH2?/? dams was not triggered by lactation and was steadily high. Survival and weaning weight deficits of TPH2?/? pups were rescued by cross‐fostering and in litters of mixed genotype (TPH2?/? and TPH2?/+). However, the maternal behaviors of TPH2?/? dams did not improve when rearing either TPH2+/+ pups or mixed‐genotype litters. In addition, TPH2?/? pups significantly worsened the behavior of TPH2+/+ dams with respect to cannibalism, weaning weight and latency to attack. Olfactory and auditory functions of TPH2?/? females or anxiety‐like behaviors did not account for these maternal alterations as they were equal to their TPH2+/+ counterparts. These findings illustrate a profound influence of brain serotonin on virtually all elements of maternal behavior and establish that TPH2?/? pups can engender maladaptive mothering in dams of both genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号