首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
2.
3.
The objective of this experiment was to investigate whether the ergot alkaloid, ergotamine (ET), an alkaloid used to model fescue toxicosis in cattle, modifies the response of cattle to endotoxin (LPS) challenge. Steers (n = 16) were divided into the following treatment groups: control (C), ergotamine (ET), endotoxin (LPS), and ET + LPS. ET and ET + LPS groups received a single bolus intravenous injection of ET (40 microg. kg. body wt(-1)), whereas C and LPS steers received a single bolus injection of sterile vehicle. Thirty minutes after ET/vehicle administration, a single bolus intravenous injection of LPS (0.2 microg. kg. body wt(-1)) was given. Blood was collected at various time points for 48 hr post. Endotoxin increased rectal temperature (RT) and the circulating levels of tumor necrosis factor-alpha (TNF-alpha), cortisol, haptoglobin (Hp), thromboxane B(2) (TXB(2)). The circulating Hp, TNF-alpha, and TXB(2) increases were blunted by pretreatment with ET compared with ET + LPS. Ergotamine by itself increased circulating cortisol and RT, whereas it decreased serum prolactin (PRL). Therefore, whereas administration of LPS at 0.2 microg/kg to steers resulted in an expected response, the combination of ET + LPS attenuated major effects of LPS alone. Thus, acute administration of ET appeared to be anti-inflammatory as it decreased the inflammatory response to LPS, an effect likely driven at least in part by the ET-caused cortisol increase.  相似文献   

4.
Upregulation of CD14 in Kupffer cells has been implicated in the pathogenesis of several forms of liver injury, including alcoholic liver disease. However, it remains unclear whether CD14 mediates lipopolysaccharide (LPS) signaling in this specialized liver macrophage population. In this series of experiments, we determined the role of CD14 in LPS activation of Kupffer cells by using several complementary approaches. First, we isolated Kupffer cells from human livers and studied the effects of anti-CD14 antibodies on LPS activation of these cells. Kupffer cells were incubated with increasing concentrations of LPS in the presence and absence of recombinant human LPS binding protein (LBP). With increasing concentrations of LPS, human Kupffer cell tumor necrosis factor-alpha (TNF-alpha) production (a marker for Kupffer cell activation) increased in a dose-dependent manner in the presence and absence of LBP. In the presence of anti-human CD14 antibodies, the production of TNF-alpha was significantly diminished. Second, we compared LPS activation of Kupffer cells isolated from wild-type and CD14 knockout mice. Kupffer cells from CD14 knockout mice produced significantly less TNF-alpha in response to the same amount of LPS. Together, these data strongly support a critical role for CD14 in Kupffer cell responses to LPS.  相似文献   

5.
Mammalian myeloid and epithelial cells express several kinds of antibacterial peptides (alpha-/beta-defensins and cathelicidins) that contribute to the innate host defense by killing invading micro-organisms. In this study we evaluated the LPS-neutralizing activities of cathelicidin peptides human CAP18 (cationic antibacterial proteins of 18 kDa) and guinea pig CAP11 using the CD14(+) murine macrophage cell line RAW264.7 and the murine endotoxin shock model. Flow cytometric analysis revealed that CAP18 and CAP11 inhibited the binding of FITC-conjugated LPS to RAW264.7 cells. Likewise, Northern and Western blot analyses indicated that CAP18 and CAP11 suppressed LPS-induced TNF-alpha mRNA and protein expression by RAW264.7 cells. Interestingly, CAP18 and CAP11 possessed LPS-binding activities, and they strongly suppressed the interaction of LPS with LPS binding protein that mediates the transport of LPS to CD14 to facilitate the activation of CD14(+) cells by LPS. Moreover, when CAP18 and CAP11 were preincubated with RAW264.7 cells, they bound to the cell surface CD14 and inhibited the binding of FITC-LPS to the cells. Furthermore, in the murine endotoxin shock model, CAP18 or CAP11 administration inhibited the binding of LPS to CD14(+) cells (peritoneal macrophages) and suppressed LPS-induced TNF-alpha expression by these cells. Together these observations indicate that cathelicidin peptides CAP18 and CAP11 probably exert protective actions against endotoxin shock by blocking the binding of LPS to CD14(+) cells, thereby suppressing the production of cytokines by these cells via their potent binding activities for LPS and CD14.  相似文献   

6.
To study the mechanisms involved in leukocyte recruitment induced by local bacterial infection within the CNS, we used intravital microscopy to visualize the interaction between leukocytes and the microvasculature in the brain. First, we showed that intracerebroventricular injection of LPS could cause significant rolling and adhesion of leukocytes in the brain postcapillary venules of wild-type mice, while negligible recruitment was observed in TLR4-deficient C57BL/10ScCr mice and CD14 knockout mice, suggesting recruitment is mediated by TLR4/CD14-bearing cells. Moreover, we observed reduced but not complete inhibition of recruitment in MyD88 knockout mice, indicating both MyD88-dependent and -independent pathways are involved. The leukocyte recruitment responses in chimeric mice with TLR4-positive microglia and endothelium, but TLR4-negative leukocytes, were comparable to normal wild-type mice, suggesting either endothelium or microglia play a crucial role in the induction of leukocyte recruitment. LPS injection induced both microglial and endothelial activation in the CNS. Furthermore, minocycline, an effective inhibitor of microglial activation, completely blocked the rolling and adhesion of leukocytes in the brain and blocked TNF-alpha production in response to LPS in vivo. Minocycline did not affect activation of endothelium by LPS in vitro. TNFR p55/p75 double knockout mice also exhibited significant reductions in both rolling and adhesion in response to LPS, indicating TNF-alpha signaling is critical for the leukocyte recruitment. Our results identify a TLR4 detection system within the blood-brain barrier. The microglia play the role of sentinel cells detecting LPS thereby inducing endothelial activation and leading to efficient leukocyte recruitment to the CNS.  相似文献   

7.
LPS-binding protein (LBP) and CD14 potentiate cell activation by LPS, contributing to lethal endotoxemia. We analyzed the contribution of LBP/CD14 in models of bacterial infection. Mice pretreated with mAbs neutralizing CD14 or LBP showed a delay in TNF-alpha production and died of overwhelming infection within 24 h, after a challenge with 250 CFU of virulent Klebsiella pneumoniae. Blockade of TNF-alpha also increased lethality, whereas pretreatment with TNF-alpha protected mice, even in the presence of LBP and CD14 blockade. Anti-LBP or anti-CD14 mAbs did not improve or decrease lethality with a higher inoculum (10(5) K. pneumoniae) and did not affect outcome following injections of low or high inocula of Escherichia coli O111. These results point to the essential role of LBP/CD14 in innate immunity against virulent bacteria.  相似文献   

8.
Effect of CD14 blockade in rabbits with Escherichia coli pneumonia and sepsis   总被引:12,自引:0,他引:12  
CD14, a pattern recognition receptor found on myeloid cells, is a critical component of the innate immune system that mediates local and systemic host responses to Gram-negative and Gram-positive bacterial products. Previous studies in normal animals have tested the effect of CD14 blockade on the systemic response to i.v. LPS. The goals of the study were to determine whether CD14 blockade protected against the deleterious systemic response associated with Escherichia coli pneumonia and to determine whether this strategy affected the pulmonary response to tissue infection. Rabbits were pretreated with either anti-CD14 mAb or isotype control mAb at 2.5 mg/kg. E. coli (1 x 109 CFU) was inoculated into the lungs, and the animals were observed for either 4 or 24 h. The blockade of CD14 improved the mean arterial blood pressure (p = 0.001) and decreased the i.v. fluid requirements (p = 0.01). Although this therapy protected the vascular compartment, rabbits treated with anti-CD14 mAb had increased bacterial burdens in the bronchoalveolar lavage fluid recovered from the instilled lung (p = 0.005) and widened alveolar-arterial oxygen difference. Blockade of CD14 prevents the deleterious systemic responses that occur in sepsis; however, other measures are necessary to control bacterial proliferation at the primary site of infection.  相似文献   

9.
Microglia rapidly mount an inflammatory response to pathogens in the central nervous system (CNS). Heparan sulfate proteoglycans (HSPGs) have been attributed various roles in inflammation. To elucidate the relevance of microglial HSPGs in a pro-inflammatory response we isolated microglia from mice overexpressing heparanase (Hpa-tg), the HS-degrading endoglucuronidase, and challenged them with lipopolysaccharide (LPS), a bacterial endotoxin. Prior to LPS-stimulation, the LPS-receptor cluster-of-differentiation 14 (CD14) and Toll-like receptor 4 (TLR4; essential for the LPS response) were similarly expressed in Ctrl and Hpa-tg microglia. However, compared with Ctrl microglia, Hpa-tg cells released significantly less tumor necrosis factor-α (TNFα), essentially failed to up-regulate interleukin-1β (IL1β) and did not initiate synthesis of proCD14. Isolated primary astroyctes expressed TLR4, but notably lacked CD14 and in contrast to microglia, LPS challenge induced a similar TNFα response in Ctrl and Hpa-tg astrocytes, while neither released IL1β. The astrocyte TNFα-induction was thus attributed to CD14-independent TLR4 activation and was unaffected by the cells HS status. Equally, the suppressed LPS-response in Hpa-tg microglia indicated a loss of CD14-dependent TLR4 activation, suggesting that microglial HSPGs facilitate this process. Indeed, confocal microscopy confirmed interactions between microglial HS and CD14 in LPS-stimulated microglia and a potential HS-binding motif in CD14 was identified. We conclude that microglial HSPGs facilitate CD14-dependent TLR4 activation and that heparanase can modulate this mechanism.  相似文献   

10.
11.
It has been reported that ligation of CD40 with CD40 ligand (CD40L) results in microglial activation as evidenced by p44/42 mitogen-activated protein kinase (MAPK) dependent tumor necrosis factor alpha (TNF-alpha) production. Previous studies have shown that CD45, a functional transmembrane protein-tyrosine phosphatase, is constitutively expressed at moderate levels on microglial cells and this expression is greatly elevated on activated microglia. To investigate the possibility that CD45 might modulate CD40L-induced microglial activation, we treated primary cultured microglial cells with CD40L and anti-CD45 antibody. Data show that cross-linking of CD45 markedly inhibits CD40L-induced activity of the Src family kinases Lck and Lyn. Further, co-treatment of microglia with CD40L and anti-CD45 antibody results in significant inhibition of microglial TNF-alpha production through inhibition of p44/42 MAPK activity, a downstream signaling event resulting from Src activation. Accordingly, primary cultured microglial cells from mice deficient in CD45 demonstrate hyper-responsiveness to ligation of CD40, as evidenced by increased p44/42 MAPK activation and TNF-alpha production. Taken together, these results show that CD45 plays a novel role in suppressing CD40L-induced microglial activation via negative regulation of the Src/p44/42 MAPK cascade.  相似文献   

12.
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer-membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4/myeloid differentiation factor-2 complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, mass spectrometry-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications.  相似文献   

13.
During cognate interaction with CD40 ligand (CD154)-expressing T cells, Ag-presenting accessory cells are activated for increased cytokine synthetic and costimulatory function. We examined whether CD40 modulates in vivo innate immune function over time, hypothesizing that distinct cytokine responses evolve to delayed microbial exposure. C3H/HeN mice pretreated with activating anti-CD40 Ab (FGK45) produced 10-fold more serum IFN-gamma and IL-12 p70 to delayed, but not synchronous, challenge with LPS. A novel finding was that LPS-induced IFN-alpha increased by 20-fold in mice pretreated for 24 h, but not 6 h or less, with anti-CD40. Anti-CD40-pretreated C57BL/6 RAG-2(-/-) mice similarly increased IFN-alpha responses to delayed LPS challenge, confirming mediation by innate immunity. Type I IFNR- and IFN-gamma-deficient mice treated with anti-CD40 failed to expand serum IFN-alpha responses to LPS challenge. Combined pretreatment with anti-CD40 and anti-IFN-gamma mAb showed that IFN-gamma produced after anti-CD40 pretreatment, but before LPS challenge, was necessary for IFN-alpha synthetic enhancement. Anti-CD40 also increased polyinosinic-polycytidylic acid (poly(I:C))-inducible IFN-alpha by 5-fold in an IFN-gamma-dependent fashion, but did not significantly increase IFN-alpha production to CpG or Pam(3)Cys challenges. Poly(IC)-stimulated splenocytes from anti-CD40-pretreated mice produced 4-fold more IFN-alpha than controls and production associated with CD11c(+) cells. Finally, rIFN-gamma and anti-CD40 combined synergistically to increase poly(IC)-inducible IFN-alpha synthetic capacity in bone marrow dendritic cells. We conclude that innate immune production of IFN-alpha is cooperatively regulated by CD40 and IFN-gamma acting on dendritic cells, suggesting a unique mechanism by which innate immune function evolves in response to specific adaptive immune signals.  相似文献   

14.
Chronic heart failure (CHF) may be considered a state of immune activation and persistent inflammation expressed by increased circulating levels of pro- and anti-inflammatory cytokines. The purpose of the study was to investigate the immune status in patients with CHF compared to normal individuals. We measured serum cytokine levels as well as cytokine production after ex vivo LPS stimulation of whole blood taken from 14 patients with CHF and 14 healthy volunteers. We used 500 pg/ml of LPS for an incubation period of 4h to stimulate 100 microL of whole blood. Patients with CHF had significantly higher levels of TNF-RI, and TNF-RII in serum compared to normal individuals. TNF-alpha, IL-6, and IL-10 did not differ significantly. After LPS stimulation, patients with CHF had significantly higher levels of TNF-alpha and IL-10, and significantly lower IL-6 levels compared to normal individuals. TNF-alpha receptors did not differ significantly. Patients with CHF may be found in a pro- as well as an anti-inflammatory state. They also do not develop endotoxin tolerance in an ex vivo laboratory model using whole blood stimulated with LPS. They may have increased TNF-alpha and IL-10 production after LPS stimulation of whole blood, which may contribute to a worsening of heart function, more severe disease presentation and a worse outcome during infections.  相似文献   

15.
16.
17.
Recent studies have shown that erythropoietin (EPO) offers protection against ischemia, hemorrhagic shock and systemic inflammation in many tissues and it has been suggested that EPO has anti-inflammatory effects. With the aim of investigating the potential acute anti-inflammatory effects of EPO in a human in vivo model of acute systemic low-grade inflammation, we measured circulating inflammatory mediators after intravenous administration of Escherichia coli endotoxin (LPS) bolus injection (0.1 ng/kg of body weight) in young healthy male subjects. The subjects were divided into three groups receiving either (1) LPS alone, (2) EPO alone (15,000 IE of rHuEPO) or (3) EPO and LPS. Endotoxin administration alone induced a 3-, 12- and 5-fold increase in plasma concentrations of TNF-α, IL-6 and IL-10, respectively, 3 h after LPS challenge. When EPO was given prior to a bolus injection with endotoxin, the levels of TNF-α and IL-6 were enhanced by 5- and 40-fold, respectively, whereas the endotoxin-induced increase in IL-10 response was not influenced by EPO. In contrast to our hypothesis, we find that EPO augments the acute inflammatory effect.  相似文献   

18.
19.
In addition to regulating blood pressure, Angiotensin II (Ang II) exerts powerful pro-inflammatory effects in hypertension through stimulation of its AT1 receptors, most clearly demonstrated in peripheral arteries and in the cerebral vasculature. Administration of Ang II receptor blockers (ARBs) decreases hypertension-related vascular inflammation in peripheral organs. In rodent models of genetic hypertension, ARBs reverse the inflammation in the cerebral microcirculation. We hypothesized that ARBs could be effective in inflammatory conditions beyond hypertension. Our more recent studies, summarized here, indicate that this is indeed the case. We used the model of systemic administration of the bacterial endotoxin lipopolysaccharide (LPS). LPS produces a robust initial inflammatory reaction, the innate immune response, in peripheral organs and in the brain. Pretreatment with the ARB candesartan significantly diminishes the response to LPS, including reduction of pro-inflammatory cytokine release to the general circulation and decreased production and release of the pro-inflammatory adrenal hormone aldosterone. In addition, the ARB very significantly decreased the LPS-induced gene expression of pro-inflammatory cytokines and microglia activation in the brain. Our results demonstrate that AT1 receptor activity is essential for the unrestricted development of full-scale innate immune response in the periphery and in the brain. ARBs, due to their immune response-limiting properties, may be considered as therapeutically useful in a number of inflammatory diseases of the peripheral organs and the brain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号