首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The highly compact nature of the pufferfish (Fugu rubripes) genome renders it a useful tool not only for annotating coding regions within vertebrate genomes, but also for the identification of sequences important to gene regulation. Indeed, owing to this compaction it will be feasible in many instances to initiate analyses using entire intergenic regions when mapping gene promoters; a strategy that is very rarely feasible with the expanded genomes of other species. Stemming from our interest in studying promoters expressed in chondrocytes, we selected for study the intergenic region upstream of Fugu 3'-phosphoadenosine 5'-phosphosulfate synthase 2, fPapss2, a gene required for the normal development of cartilage extracellular matrix. Functional characterization of the entire fPapss2 5' intergenic region was carried out by monitoring expression of the enhanced green fluorescent protein (EGFP) gene reporter in the developing cartilage of transgenic Xenopus laevis. By evaluating a series of 5' intergenic region deletions we defined a minimal fPapss2 sequence of approximately 300 bp that was essential for EGFP expression in tadpole cartilage. This functional analysis of an entire Fugu intergenic region, combined with the efficiency of Xenopus transgenesis, serves as a model for the rapid characterization of evolutionarily-conserved regulatory regions of other pufferfish genes.  相似文献   

2.
We compared levels of sequence divergence between fourfold synonymous coding sites and noncoding sites from the intergenic and intronic regions of the Plasmodium falciparum and Plasmodium reichenowi genomes. We observed significant differences in the level of divergence between these classes of silent sites. Fourfold synonymous coding sites exhibited the highest level of sequence divergence, followed by introns, and then intergenic sequences. This pattern of relative divergence rates has been observed in primate genomes but was unexpected in Plasmodium due to a paucity of variation at silent sites in P. falciparum and the corollary hypothesis that silent sites in this genome may be subject to atypical selective constraints. Exclusion of hypermutable CpG dinucleotides reduces the divergence level of synonymous coding sites to that of intergenic sites but does not diminish the significantly higher divergence level of introns relative to intergenic sites. A greater than expected incidence of CpG dinucleotides in intergenic regions less than 500 bp from genes may indicate selective maintenance of regulatory motifs containing CpGs. Divergence rates of different classes of silent sites in these Plasmodium genomes are determined by a combination of mutational and selective pressures.  相似文献   

3.
4.
Recent work has suggested that there are many more selectively constrained, functional noncoding than coding sites in mammalian genomes. However, little is known about how selective constraint varies amongst different classes of noncoding DNA. We estimated the magnitude of selective constraint on a large dataset of mouse-rat gene orthologs and their surrounding noncoding DNA. Our analysis indicates that there are more than three times as many selectively constrained, nonrepetitive sites within noncoding DNA as in coding DNA in murids. The majority of these constrained noncoding sites appear to be located within intergenic regions, at distances greater than 5 kilobases from known genes. Our study also shows that in murids, intron length and mean intronic selective constraint are negatively correlated with intron ordinal number. Our results therefore suggest that functional intronic sites tend to accumulate toward the 5' end of murid genes. Our analysis also reveals that mean number of selectively constrained noncoding sites varies substantially with the function of the adjacent gene. We find that, among others, developmental and neuronal genes are associated with the greatest numbers of putatively functional noncoding sites compared with genes involved in electron transport and a variety of metabolic processes. Combining our estimates of the total number of constrained coding and noncoding bases we calculate that over twice as many deleterious mutations have occurred in intergenic regions as in known genic sequence and that the total genomic deleterious point mutation rate is 0.91 per diploid genome, per generation. This estimated rate is over twice as large as a previous estimate in murids.  相似文献   

5.
6.
Purifying and directional selection in overlapping prokaryotic genes   总被引:4,自引:0,他引:4  
In overlapping genes, the same DNA sequence codes for two proteins using different reading frames. Analysis of overlapping genes can help in understanding the mode of evolution of a coding region from noncoding DNA. We identified 71 pairs of convergent genes, with overlapping 3' ends longer than 15 nucleotides, that are conserved in at least two prokaryotic genomes. Among the overlap regions, we observed a statistically significant bias towards the 123:132 phase (i.e. the second codon base in one gene facing the degenerate third position in the second gene). This phase ensures the least mutual constraint on nonconservative amino acid replacements in both overlapping coding sequences. The excess of this phase is compatible with directional (positive) selection acting on the overlapping coding regions. This could be a general evolutionary mode for genes emerging from noncoding sequences, in which the protein sequence has not been subject to selection.  相似文献   

7.
Comparative genomics is a powerful tool for gaining insight into genomic function and evolution. However, in plants, sequence data that would enable detailed comparisons of both coding and noncoding regions have been limited in availability. Here we report the generation and analysis of sequences for an unduplicated conserved syntenic segment (CSS) in the genomes of five members of the agriculturally important plant family Solanaceae. This CSS includes a 105-kb region of tomato chromosome 2 and orthologous regions of the potato, eggplant, pepper, and petunia genomes. With a total neutral divergence of 0.73-0.78 substitutions/site, these sequences are similar enough that most noncoding regions can be aligned, yet divergent enough to be informative about evolutionary dynamics and selective pressures. The CSS contains 17 distinct genes with generally conserved order and orientation, but with numerous small-scale differences between species. Our analysis indicates that the last common ancestor of these species lived approximately 27-36 million years ago, that more than one-third of short genomic segments (5-15 bp) are under selection, and that more than two-thirds of selected bases fall in noncoding regions. In addition, we identify genes under positive selection and analyze hundreds of conserved noncoding elements. This analysis provides a window into 30 million years of plant evolution in the absence of polyploidization.  相似文献   

8.
9.
Sequence organization of the mitochondrial genome of yeast--a review   总被引:3,自引:0,他引:3  
M de Zamaroczy  G Bernardi 《Gene》1985,37(1-3):1-17
We have compiled the available primary structural data for the mitochondrial genome of Saccharomyces cerevisiae and have estimated the size of the remaining gaps, which represent 12-13% of the genome. The lengths of sequenced regions and of gaps lead to a new assessment of genome sizes; these range (in round figures) from 85 000 bp for the long genomes, to 78 000 bp for the short genomes, to 74 000 bp for the supershort genome of Saccharomyces carlsbergensis. These values are 8-11% higher than those previously estimated from restriction fragments. Interstrain differences concern not only facultative intervening sequences (introns) and mini-inserts, but also insertions/deletions in intergenic sequences. The primary structure appears to be extremely conserved in genes and ori sequences, and highly conserved in intergenic sequences. Since coding sequences represent at most 33-35% of the genome, at least two thirds of the genome are formed by noncoding and yet highly conserved sequences. The G + C level of genes or exon is 25%, and that of intronic open reading frames (ORFs) 22%; increasingly lower values are shown by intronic closed reading frames (CRFs), 20%, ori sequences, 19%, intergenic ORFs, 17.5% and intergenic sequences, 15%.  相似文献   

10.
Simplified DNA sequence acquisition has provided many new data sets that are useful for phylogenetic reconstruction, including single- and multiple-copy nuclear and organellar genes. Although transcribed regions receive much attention, nontranscribed regions have recently been added to the repertoire of sequences suitable for phylogenetic studies, especially for closely related taxa. We evaluated the efficacy of a small portion of the histone repeat for phylogenetic reconstruction among Drosophila species. Histone repeats in invertebrates offer distinct advantages similar to those of widely used ribosomal repeats. First, the units are tandemly repeated and undergo concerted evolution. Second, histone repeats include both highly conserved coding and variable intergenic regions. This composition facilitates application of "universal" primers spanning potentially informative sites. We examined a small region of the histone repeat, including the intergenic spacer segments of coding regions from the divergently transcribed H2A and H2B histone genes. The spacer (about 230 bp) exists as a mosaic with highly conserved functional motifs interspersed with rapidly diverging regions; the former aid in alignment of the spacer. There are no ambiguities in alignment of coding regions. Coding and noncoding regions were analyzed together and separately for phylogenetic information. Parsimony, distance, and maximum-likelihood methods successfully retrieve the corroborated phylogeny for the taxa examined. This study demonstrates the resolving power of a small histone region which may now be added to the growing collection of phylogenetically useful DNA sequences.  相似文献   

11.
12.
It has been hypothesized that a large fraction of 24% noncoding DNA in R. prowazekii consists of degraded genes. This hypothesis has been based on the relatively high G+C content of noncoding DNA. However, a comparison with other genomes also having a low overall G+C content shows that this argument would also apply to other bacteria. To test this hypothesis, we study the coding potential in sets of genes, pseudogenes, and intergenic regions. We find that the correlation function and the χ2-measure are clearly indicative of the coding function of genes and pseudogenes. However, both coding potentials make almost no indication of a preexisting reading frame in the remaining 23% of noncoding DNA. We simulate the degradation of genes due to single-nucleotide substitutions and insertions/deletions and quantify the number of mutations required to remove indications of the reading frame. We discuss a reduced selection pressure as another possible origin of this comparatively large fraction of noncoding sequences. Received: 27 December 1999 / Accepted: 5 July 2000  相似文献   

13.
Simple sequence repeats (SSRs) are omnipresent in prokaryotes and eukaryotes, and are found anywhere in the genome in both protein encoding and noncoding regions. In present study the whole genome sequences of seven chromosomes (Shigella flexneri 2a str301 and 2457T, Shigella sonnei, Escherichia coli k12, Mycobacterium tuberculosis, Mycobacterium leprae and Staphylococcus saprophyticus) have downloaded from the GenBank database for identifying abundance, distribution and composition of SSRs and also to determine difference between the tandem repeats in real genome and randomness genome (using sequence shuffling tool) of the organisms included in this study. The data obtained in the present study show that: (i) tandem repeats are widely distributed throughout the genomes; (ii) SSRs are differentially distributed among coding and noncoding regions in investigated Shigella genomes; (iii) total frequency of SSRs in noncoding regions are higher than coding regions; (iv) in all investigated chromosomes ratio of Trinucleotide SSRs in real genomes are much higher than randomness genomes and Di nucleotide SSRs are lower; (v) Ratio of total and mononucleotide SSRs in real genome is higher than randomness genomes in E. coli K12, S. flexneri str 301 and S. saprophyticus, while it is lower in S. flexneri str 2457T, S.sonnei and M. tuberculosis and it is approximately same in M. leprae; (vi) frequency of codon repetitions are vary considerably depending on the type of encoded amino acids.  相似文献   

14.
真核生物DNA非编码区的组分分析   总被引:4,自引:0,他引:4  
在全基因组水平上,用直方图、混沌表示灰度图、距离差异度和信息熵差异度四种方法,研究了拟南芥、线虫、果蝇的DNA内含子、基因间隔区DNA、外显子三种区域的核苷酸短序列组分及组分复杂度.结果表明:a.不同基因组之间,不管基因数目多少,用4种方法得到的外显子部分其组分复杂度都比较接近,而非编码区部分的组分复杂度却很大.这一点定量地说明了物种之间的复杂程度,主要不体现在编码区部分,而体现在非编码区部分.b.同一基因组中,内含子的核苷酸短序列组分复杂度都是相似的,外显子和intergenic DNA部分的组分复杂度也是相似的.c.内含子和intergenic DNA在转录、剪切、二级结构等方面有很大的不同,但它们在核苷酸短序列组分上的差异却很小,说明内含子和intergenic DNA在转录、剪切、二级结构上的不同并不通过核苷酸短序列组分来进行限制.  相似文献   

15.
Recent studies have shown that the human genome has a haplotype block structure such that it can be decomposed into large blocks with high linkage disequilibrium (LD) and relatively limited haplotype diversity, separated by short regions of low LD. One of the practical implications of this observation is that only a small fraction of all the single-nucleotide polymorphisms (SNPs) (referred as "tag SNPs") can be chosen for mapping genes responsible for human complex diseases, which can significantly reduce genotyping effort, without much loss of power. Algorithms have been developed to partition haplotypes into blocks with the minimum number of tag SNPs for an entire chromosome. In practice, investigators may have limited resources, and only a certain number of SNPs can be genotyped. In the present article, we first formulate this problem as finding a block partition with a fixed number of tag SNPs that can cover the maximal percentage of the whole genome, and we then develop two dynamic programming algorithms to solve this problem. The algorithms are sufficiently flexible to permit knowledge of functional polymorphisms to be considered. We apply the algorithms to a data set of SNPs on human chromosome 21, combining the information of coding and noncoding regions. We study the density of SNPs in intergenic regions, introns, and exons, and we find that the SNP density in intergenic regions is similar to that in introns and is higher than that in exons, results that are consistent with previous studies. We also calculate the distribution of block break points in intergenic regions, genes, exons, and coding regions and do not find any significant differences.  相似文献   

16.
Despite the agricultural importance of both potato and tomato, very little is known about their chloroplast genomes. Analysis of the complete sequences of tomato, potato, tobacco, and Atropa chloroplast genomes reveals significant insertions and deletions within certain coding regions or regulatory sequences (e.g., deletion of repeated sequences within 16S rRNA, ycf2 or ribosomal binding sites in ycf2). RNA, photosynthesis, and atp synthase genes are the least divergent and the most divergent genes are clpP, cemA, ccsA, and matK. Repeat analyses identified 33–45 direct and inverted repeats ≥30 bp with a sequence identity of at least 90%; all but five of the repeats shared by all four Solanaceae genomes are located in the same genes or intergenic regions, suggesting a functional role. A comprehensive genome-wide analysis of all coding sequences and intergenic spacer regions was done for the first time in chloroplast genomes. Only four spacer regions are fully conserved (100% sequence identity) among all genomes; deletions or insertions within some intergenic spacer regions result in less than 25% sequence identity, underscoring the importance of choosing appropriate intergenic spacers for plastid transformation and providing valuable new information for phylogenetic utility of the chloroplast intergenic spacer regions. Comparison of coding sequences with expressed sequence tags showed considerable amount of variation, resulting in amino acid changes; none of the C-to-U conversions observed in potato and tomato were conserved in tobacco and Atropa. It is possible that there has been a loss of conserved editing sites in potato and tomato.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

17.
Mitochondrial genomes have recently become widely used in animal phylogeny, mainly to infer the relationships between vertebrates and other bilaterians. However, only 11 of 723 complete mitochondrial genomes available in the public databases are of early metazoans, including cnidarians (Anthozoa, mainly Scleractinia) and sponges. Although some cnidarians (Medusozoa) are known to possess atypical linear mitochondrial DNA, the anthozoan mitochondrial genome is circular and its organization is similar to that of other metazoans. Because the phylogenetic relationships among Anthozoa as well as their relation to other early metazoans still need to be clarified, we tested whether sequencing the complete mitochondrial genome of Savalia savaglia, an anthozoan belonging to the order Zoantharia (=Zoanthidea), could be useful to infer such relationships. Compared to other anthozoans, S. savaglia’s genome is unusually long (20,766 bp) due to the presence of several noncoding intergenic regions (3691 bp). The genome contains all 13 protein coding genes commonly found in metazoans, but like other Anthozoa it lacks most of the tRNAs. Phylogenetic analyses of S. savaglia mitochondrial sequences show Zoantharia branching closely to other Hexacorallia, either as a sister group to Actiniaria or as a sister group to Actiniaria and Scleractinia. The close relationships suggested between Zoantharia and Actiniaria are reinforced by strong similarities in their gene order and the presence of similar introns in the COI and ND5 genes. Our study suggests that mitochondrial genomes can be a source of potentially valuable information on the phylogeny of Hexacorallia and may provide new insights into the evolution of early metazoans. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Axel Meyer]  相似文献   

18.
The extent that both positive and negative selection vary across different portions of plant genomes remains poorly understood. Here, we sequence whole genomes of 13 Capsella grandiflora individuals and quantify the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we show that selection is strong in coding regions, but weak in most noncoding regions, with the exception of 5′ and 3′ untranslated regions (UTRs). However, estimates of selection on noncoding regions conserved across the Brassicaceae family show strong signals of selection. Additionally, we see reductions in neutral diversity around functional substitutions in both coding and conserved noncoding regions, indicating recent selective sweeps at these sites. Finally, using expression data from leaf tissue we show that genes that are more highly expressed experience stronger negative selection but comparable levels of positive selection to lowly expressed genes. Overall, we observe widespread positive and negative selection in coding and regulatory regions, but our results also suggest that both positive and negative selection on plant noncoding sequence are considerably rarer than in animal genomes.  相似文献   

19.
Partial and complete genome duplications occurred during evolution and resulted in the creation of new genes and gene families. We identified a novel and intricate human gene family located primarily in regions of segmental duplications on human chromosome 1. We named it NBPF, for neuroblastoma breakpoint family, because one of its members is disrupted by a chromosomal translocation in a neuroblastoma patient. The NBPF genes have a repetitive structure with high intragenic and intergenic sequence similarity in both coding and noncoding regions. These similarities might expose these genomic regions to illegitimate recombination, resulting in structural variation in the NBPF genes. The encoded proteins contain a highly conserved domain of unknown function, which we have named the NBPF repeat. In silico analysis combined with the isolation of multiple full-length cDNA clones showed that several members of this gene family are abundantly expressed in a large variety of tissues and cell lines. Strikingly, no discernable orthologues could be identified in the completed genomes of fruit fly, nematode, mouse, or rat, but sequences with low homology could be isolated from the draft canine and bovine genomes. Interestingly, this gene family shows primate-specific duplications that result in species-specific arrays of NBPF homologous sequences. Overall, this novel NBPF family reflects the continuous evolution of primate genomes that resulted in large physiological differences, and its potential role in this process is discussed.  相似文献   

20.
The compositional properties of human genes   总被引:8,自引:0,他引:8  
Summary The present work represents the first attempt to study in greater detail previously proposed compositional correlations in genomes, based on a body of additional data relating to gene localizations as well as to extended flanking sequences extracted from gene banks. We have investigated the correlations that exist between (1) the GC levels of exons of human genes, and (2) the GC levels of either intergenic sequences or introns associated with the genes under consideration. In both cases, linear relationships with slopes close to unity were found. The similarity of the linear relationships indicates similar GC levels in intergenic sequences and introns located in the same isochores. Moreover, both intergenic sequences and introns showed GC levels 5–10% lower than the corresponding exons. The above findings considerably strengthen the previously drawn conclusion that coding and noncoding sequences (both inter- and intragenic) from the same isochores of the human genome are compositionally correlated. In addition, we find linear correlations between the GC levels of codon positions and of the intergenic sequences or introns associated with the corresponding genes, as well as among the GC levels of codon positions of genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号