首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thyroid gland of children is especially vulnerable to the carcinogenic action of ionizing radiation. To provide insights into various modifying influences on risk, seven major studies with organ doses to individual subjects were evaluated. Five cohort studies (atomic bomb survivors, children treated for tinea capitis, two studies of children irradiated for enlarged tonsils, and infants irradiated for an enlarged thymus gland) and two case-control studies (patients with cervical cancer and childhood cancer) were studied. The combined studies include almost 120,000 people (approximately 58,000 exposed to a wide range of doses and 61,000 nonexposed subjects), nearly 700 thyroid cancers and 3,000,000 person years of follow-up. For persons exposed to radiation before age 15 years, linearity best described the dose response, even down to 0.10 Gy. At the highest doses (>10 Gy), associated with cancer therapy, there appeared to be a decrease or leveling of risk. For childhood exposures, the pooled excess relative risk per Gy (ERR/Gy) was 7.7 (95% CI = 2.1, 28.7) and the excess absolute risk per 10(4) PY Gy (EAR/10(4) PY Gy) was 4.4 (95% CI = 1.9, 10.1). The attributable risk percent (AR%) at 1 Gy was 88%. However, these summary estimates were affected strongly by age at exposure even within this limited age range. The ERR was greater (P = 0.07) for females than males, but the findings from the individual studies were not consistent. The EAR was higher among women, reflecting their higher rate of naturally occurring thyroid cancer. The distribution of ERR over time followed neither a simple multiplicative nor an additive pattern in relation to background occurrence. Only two cases were seen within 5 years of exposure. The ERR began to decline about 30 years after exposure but was still elevated at 40 years. Risk also decreased significantly with increasing age at exposure, with little risk apparent after age 20 years. Based on limited data, there was a suggestion that spreading dose over time (from a few days to >1 year) may lower risk, possibly due to the opportunity for cellular repair mechanisms to operate. The thyroid gland in children has one of the highest risk coefficients of any organ and is the only tissue with convincing evidence for risk at about 0.10 Gy.  相似文献   

2.
3.
Among the Life Span Study (LSS) of Atomic-bomb survivors, recent estimates showed that unspecified bladder cancer had high radiation sensitivity with a notably high female-to-male excess relative risk (ERR) per radiation dose ratio and were the only sites for which the ERR did not decrease with attained age. These findings, however, did not consider lifestyle factors, which could potentially confound or modify the risk estimates. This study estimated the radiation risks of the most prevalent subtype of urinary tract cancer, urothelial carcinoma, while accounting for smoking, consumption of fruit, vegetables, alcohol and level of education (a surrogate for socioeconomic status). Eligible study subjects included 105,402 (males = 42,890) LSS members who were cancer-free in 1958 and had estimated radiation doses. Members were censored due to loss of follow-up, incident cancer of another type, death, or the end of calendar year 2001. Surveys (by mail or clinical interview) gathered lifestyle data periodically for 1963-1991. There were 63,827 participants in one or more survey. Five hundred seventy-three incident urothelial carcinoma cases occurred, of which 364 occurred after lifestyle information was available. Analyses were performed using Poisson regression methods. The excess relative risk per weighted gray unit (the gamma component plus 10 times the neutron component, Gy(w)) was 1.00 (95% CI: 0.43-1.78) but the risks were not dependent upon age at exposure or attained age. Lifestyle factors other than smoking were not associated with urothelial carcinoma risk. Neither the magnitude of the radiation ERR estimate (1.00 compared to 0.96), nor the female-to-male (F:M) ERR/Gy(w) ratio (3.2 compared to 3.4) were greatly changed after accounting for all lifestyle factors. A multiplicative model of gender-specific radiation and smoking effects was the most revealing though there was no evidence of significant departures from either the additive or multiplicative joint effect models. Among the LSS cohort members with doses greater than 0.005 Gy(w) (average dose 0.21 Gy(w)), the attributable fraction of urothelial carcinoma due to radiation was 7.1% in males and 19.7% in females. Among current smokers, the attributable fraction of urothelial carcinoma due to smoking was 61% in males and 52% in females. Relative risk estimates of smoking risk were approximately two for smokers compared to nonsmokers. After adjustment for lifestyle factors, gender-specific radiation risks and the F:M ERR/Gy(w), the ratios of excess urothelial carcinoma risk were similar to the estimates without adjusting for lifestyle factors. Smoking was the primary factor responsible for excess urothelial carcinoma in this cohort. These findings led us to conclude that the radiation risk estimates of urothelial carcinoma do not appear to be strongly confounded or modified by smoking, consumption of alcohol, fruits, or vegetables, or level of education.  相似文献   

4.
The aim of this study was to assess the risk of lung cancer death associated with cumulative lung doses from exposure to α-particle emitters, including radon gas, radon short-lived progeny, and long-lived radionuclides, and to external γ rays among French uranium miners. The French "post-55" sub-cohort included 3,377 uranium miners hired from 1956, followed up through the end of 1999, and contributing to 89,405 person-years. Lung doses were calculated with the ICRP Human Respiratory Tract Model (Publication 66) for 3,271 exposed miners. The mean "absorbed lung dose" due to α-particle radiation was 78 mGy, and that due to the contribution from other types of radiation (γ and β-particle radiation) was 56 mGy. Radon short-lived progeny accounted for 97% of the α-particle absorbed dose. Out of the 627 deaths, the cause of death was identified for 97.4%, and 66 cases were due to lung cancer. A significant excess relative risk (ERR) of lung cancer death was associated with the total absorbed lung dose (ERR/Gy = 2.94, 95% CI 0.80, 7.53) and the α-particle absorbed dose (4.48, 95% CI 1.27, 10.89). Assuming a value of 20 for the relative biological effectiveness (RBE) of α particles for lung cancer induction, the ERR/Gy-Eq for the total weighted lung dose was 0.22 (95% CI: 0.06, 0.53).  相似文献   

5.
Previous studies have indicated that thyroid cancer risk after a first childhood malignancy is curvilinear with radiation dose, increasing at low to moderate doses and decreasing at high doses. Understanding factors that modify the radiation dose response over the entire therapeutic dose range is challenging and requires large numbers of subjects. We quantified the long-term risk of thyroid cancer associated with radiation treatment among 12,547 5-year survivors of a childhood cancer (leukemia, Hodgkin lymphoma and non-Hodgkin lymphoma, central nervous system cancer, soft tissue sarcoma, kidney cancer, bone cancer, neuroblastoma) diagnosed between 1970 and 1986 in the Childhood Cancer Survivor Study using the most current cohort follow-up to 2005. There were 119 subsequent pathologically confirmed thyroid cancer cases, and individual radiation doses to the thyroid gland were estimated for the entire cohort. This cohort study builds on the previous case-control study in this population (69 thyroid cancer cases with follow-up to 2000) by allowing the evaluation of both relative and absolute risks. Poisson regression analyses were used to calculate standardized incidence ratios (SIR), excess relative risks (ERR) and excess absolute risks (EAR) of thyroid cancer associated with radiation dose. Other factors such as sex, type of first cancer, attained age, age at exposure to radiation, time since exposure to radiation, and chemotherapy (yes/no) were assessed for their effect on the linear and exponential quadratic terms describing the dose-response relationship. Similar to the previous analysis, thyroid cancer risk increased linearly with radiation dose up to approximately 20 Gy, where the relative risk peaked at 14.6-fold (95% CI, 6.8-31.5). At thyroid radiation doses >20 Gy, a downturn in the dose-response relationship was observed. The ERR model that best fit the data was linear-exponential quadratic. We found that age at exposure modified the ERR linear dose term (higher radiation risk with younger age) (P < 0.001) and that sex (higher radiation risk among females) (P = 0.008) and time since exposure (higher radiation risk with longer time) (P < 0.001) modified the EAR linear dose term. None of these factors modified the exponential quadratic (high dose) term. Sex, age at exposure and time since exposure were found to be significant modifiers of the radiation-related risk of thyroid cancer and as such are important factors to account for in clinical follow-up and thyroid cancer risk estimation among childhood cancer survivors.  相似文献   

6.
Results have been inconsistent between studies of lung cancer risk and ionizing radiation exposures among workers at the Portsmouth Naval Shipyard (PNS). The purpose of this nested case-control study was to evaluate the relationship between lung cancer risk and external ionizing radiation exposure while adjusting for potential confounders that included gender, radiation monitoring status, smoking habit surrogates (socioeconomic status and birth cohort), welding fumes and asbestos. By incidence density sampling, we age-matched 3,291 controls selected from a cohort of 37,853 civilian workers employed at PNS between 1952 and 1992 with 1,097 lung cancer deaths from among the same cohort. Analyses using conditional logistic regression were conducted in various model forms: log-linear (main), linear excess relative risk (ERR), and categorical. Lung cancer risk was positively associated with occupational dose (OR = 1.02 at 10 mSv; 95% CI 0.99- 1.04) but flattened after the inclusion of work-related medical X-ray doses (OR = 1.00; 95% CI 0.98-1.03) in multivariate analyses. Similar risk estimates were observed in the linear ERR model at 10 mSv of cumulative exposure with a 15-year lag.  相似文献   

7.
BackgroundIonizing radiation is a cause of cancer. This paper examines the effects of radiation dose and age at exposure on the incidence of brain cancer using data from the Life Span Study (LSS) of atomic bomb survivors.MethodsThe Radiation Effects Research Foundation website provides demographic details of the LSS population, estimated radiation doses at time of bomb in 1945, person years of follow-up and incident cancers from 1958 to 1998. We modelled brain cancer incidence using background-stratified Poisson regression, and compared the excess relative risk (ERR) per Gray (Gy) of brain dose with estimates from follow-up studies of children exposed to diagnostic CT scans.ResultsAfter exposure to atomic bomb radiation at 10 years of age the estimated ERR/Gy was 0.91 (90%CI 0.53, 1.40) compared with 0.07 (90%CI −0.27, 0.56) following exposure at age 40. Exposure at 10 years of age led to an estimated excess of 17 brain tumors per 100,000 person year (pyr) Gy by 60 years of age. These LSS estimates are substantially less than estimates based on follow-up of children exposed to CT scans.ConclusionEstimates of ERR/Gy for brain cancers in the LSS and haemangioma cohorts seem much smaller than estimates of risk for young persons in the early years after exposure to CT-scans. This could be due to reverse causation bias in the CT cohorts, diagnostic error, measurement error with radiation doses, loss of early follow-up in the LSS, or non-linearity of the dose-response curve.  相似文献   

8.
摘要 目的:探究照射体积和时间与食管癌患者外周血淋巴细胞绝对值的相关性。方法:本研究方案将纳入2019年1月~2019年12月蚌埠医学院第一附属医院放疗科收治的放疗或同步放化疗食管癌患者84例,其中单独放疗患者24例,同步放化疗患者60例,采用血液细胞分析仪测定患者放疗期间每周复查外周血白细胞(WBC)、中性粒细胞(N)、淋巴细胞(L)、血红蛋白(HB)及血小板(PLT)计数等指标。Pearson相关性分析照射时间、剂量及体积与外周血指标之间的相关性。结果:食管癌放疗患者,包括同步放化疗及单纯放疗亚组,在治疗1-6周,照射时间与外周血指标均无相关性(P>0.05)。但在放疗第5-6周,患者放疗剂量与WBC、N、L、HB呈负相关(P<0.05),同步放化疗亚组患者照射剂量与WBC、N、L、HB呈负相关(P<0.05)。在治疗1-4周,不同照射剂量下各梯度照射剂量对应照射体积与外周血指标均无相关性(P>0.05)。但在第5-6周时,患者不同梯度照射剂量下各照射体积与WBC、N呈负相关(P<0.05),同时在20Gy-60Gy照射剂量,尤其20Gy和30Gy照射剂量下照射体积与L呈负相关(P<0.05)。同步放化疗亚组患者不同照射剂量下各照射体积与WBC、N呈负相关(P<0.05),同时在20Gy-60Gy照射剂量下照射体积与L呈负相关(P<0.05),而且在60Gy照射剂量下照射体积与HB呈负相关(P<0.05)。结论:放疗患者特别是同步放化疗亚组患者照射体积、照射剂量与食管癌患者外周血淋巴细胞计数成负相关,基线淋巴细胞与食管癌患者外周血淋巴细胞计数成正相关,而照射时间与食管癌患者外周血淋巴细胞计数无相关性。  相似文献   

9.
While the risk of lung cancer associated separately with smoking and radiation exposure has been widely reported, it is not clear how smoking and radiation together contribute to the risk of specific lung cancer histological types. With individual smoking histories and radiation dose estimates, we characterized the joint effects of radiation and smoking on type-specific lung cancer rates among the Life Span Study cohort of Japanese atomic bomb survivors. Among 105,404 cohort subjects followed between 1958 and 1999, 1,803 first primary lung cancer incident cases were diagnosed and classified by histological type. Poisson regression methods were used to estimate excess relative risks under several interaction models. Adenocarcinoma (636 cases), squamous-cell carcinoma (330) and small-cell carcinoma (194) made up 90% of the cases with known histology. Both smoking and radiation exposure significantly increased the risk of each major lung cancer histological type. Smoking-associated excess relative risks were significantly larger for small-cell and squamous-cell carcinomas than for adenocarcinoma. The gender-averaged excess relative risks per 1 Gy of radiation (for never-smokers at age 70 after radiation exposure at age 30) were estimated as 1.49 (95% confidence interval 0.1-4.6) for small-cell carcinoma, 0.75 (0.3-1.3) for adenocarcinoma, and 0.27 (0-1.5) for squamous-cell carcinoma. Under a model allowing radiation effects to vary with levels of smoking, the nature of the joint effect of smoking and radiation showed a similar pattern for different histological types in which the radiation-associated excess relative risk tended to be larger for moderate smokers than for heavy smokers. However, in contrast to analyses of all lung cancers as a group, such complicated interactions did not describe the data significantly better than either simple additive or multiplicative interaction models for any of the type-specific analyses.  相似文献   

10.
This is the 14th report in a series of periodic general reports on mortality in the Life Span Study (LSS) cohort of atomic bomb survivors followed by the Radiation Effects Research Foundation to investigate the late health effects of the radiation from the atomic bombs. During the period 1950-2003, 58% of the 86,611 LSS cohort members with DS02 dose estimates have died. The 6 years of additional follow-up since the previous report provide substantially more information at longer periods after radiation exposure (17% more cancer deaths), especially among those under age 10 at exposure (58% more deaths). Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, and effect modification by gender, age at exposure, and attained age. The risk of all causes of death was positively associated with radiation dose. Importantly, for solid cancers the additive radiation risk (i.e., excess cancer cases per 10(4) person-years per Gy) continues to increase throughout life with a linear dose-response relationship. The sex-averaged excess relative risk per Gy was 0.42 [95% confidence interval (CI): 0.32, 0.53] for all solid cancer at age 70 years after exposure at age 30 based on a linear model. The risk increased by about 29% per decade decrease in age at exposure (95% CI: 17%, 41%). The estimated lowest dose range with a significant ERR for all solid cancer was 0 to 0.20 Gy, and a formal dose-threshold analysis indicated no threshold; i.e., zero dose was the best estimate of the threshold. The risk of cancer mortality increased significantly for most major sites, including stomach, lung, liver, colon, breast, gallbladder, esophagus, bladder and ovary, whereas rectum, pancreas, uterus, prostate and kidney parenchyma did not have significantly increased risks. An increased risk of non-neoplastic diseases including the circulatory, respiratory and digestive systems was observed, but whether these are causal relationships requires further investigation. There was no evidence of a radiation effect for infectious or external causes of death.  相似文献   

11.
A population-based case-control study was conducted to estimate the radiation-related risk of thyroid cancer in persons who were exposed in childhood to (131)I from the Chernobyl accident of April 26, 1986 and to investigate the impact of uncertainties in individual dose estimates. Included were all 66 confirmed cases of primary thyroid cancer diagnosed from April 26, 1986 through September 1998 in residents of Bryansk Oblast, Russia, who were 0-19 years old at the time of the accident, along with two individually matched controls for each case. Thyroid radiation doses, estimated using a semi-empirical model based on environmental contamination data and individual characteristics, ranged from 0.00014 Gy to 2.73 Gy and had large uncertainties (median geometric standard deviation 2.2). The estimated excess relative risk (ERR) associated with radiation exposure, 48.7/Gy, was significantly greater than 0 (P = 0.00013) but had an extremely wide 95% confidence interval (4.8 to 1151/Gy). Adjusting for dose uncertainty nearly tripled the ERR to 138/Gy, although this was likely an overestimate due to limitations in the modeling of dose uncertainties. The radiation-related excess risk observed in this study is quite large, especially if the uncertainty of dose estimation is taken into account, but is not inconsistent with estimates previously reported for risk after (131)I exposure or acute irradiation from external sources.  相似文献   

12.
Whole-body and thoracic ionizing radiation exposure are associated with increased cardiovascular disease (CVD) risk. In atomic bomb survivors, radiation dose is also associated with increased hypertension incidence, suggesting that radiation dose may be associated with chronic renal failure (CRF), thus explaining part of the mechanism for increased CVD. Multivariate Poisson regression was used to evaluate the association of radiation dose with various definitions of chronic kidney disease (CKD) mortality in the Life Span Study (LSS) of atomic bomb survivors. A secondary analysis was performed using a subsample for whom self-reported information on hypertension and diabetes, the two biggest risk factors for CRF, had been collected. We found a significant association between radiation dose and only our broadest definition of CRF among the full cohort. A quadratic dose excess relative risk model [ERR/Gy(2) = 0.091 (95% CI: 0.05, 0.198)] fit minimally better than a linear model. Within the subsample, association was also observed only with the broadest CRF definition [ERR/Gy(2) = 0.15 (95% CI: 0.02, 0.32)]. Adjustment for hypertension and diabetes improved model fit but did not substantially change the ERR/Gy(2) estimate, which was 0.17 (95% CI: 0.04, 0.35). We found a significant quadratic dose relationship between radiation dose and possible chronic renal disease mortality that is similar in shape to that observed between radiation and incidence of hypertension in this population. Our results suggest that renal dysfunction could be part of the mechanism causing increased CVD risk after whole-body irradiation, a hypothesis that deserves further study.  相似文献   

13.
We report the results of a study of chromosome translocations in 126 Russian subjects who participated in the cleanup activities at Chernobyl and another 53 subjects, from other places in Russia, who were not exposed at Chernobyl. In agreement with our earlier study, we find increased translocation frequencies among the exposed compared to Russian controls. We describe statistical methods for estimating the dose of ionizing radiation determined by scoring chromosome translocations found in circulating lymphocytes sampled several years after exposure. Two statistical models were fitted to the data. One model assumed that translocation frequencies followed an overdispersed Poisson distribution. The second model assumed that translocation frequencies followed a negative binomial distribution. In addition, the effects of radiation exposure were modeled as additive or as multiplicative to the effects of age and smoking history. We found that the negative binomial model fit the data better than the overdispersed Poisson model. We could not distinguish between the additive and the multiplicative model with our data. Individual dose estimates ranged from 0 (for 43 subjects) to 0.56 Gy (mean 0.14 Gy) under the multiplicative model and from 0 to 0.95 Gy (mean 0.15 Gy) under the additive model. Dose estimates were similar under the two models when the number of translocations was less than 4 per 100 cells. The additive model tended to estimate larger doses when the number of translocations was greater than 4 per 100 cells. We also describe a method for estimating upper 95% tolerance bounds for numbers of translocations in unexposed individuals. We found that inclusion of data on age and smoking history was important for dose estimation. Ignoring these factors could result in gross overestimation of exposures, particularly in older subjects who smoke.  相似文献   

14.
Lung cancer mortality in the period of 1948-2002 has been analysed for 6,293 male workers of the Mayak Production Association, for whose information on smoking, annual external doses and annual lung doses due to plutonium exposures was available. Individual likelihoods were maximized for the two-stage clonal expansion (TSCE) model of carcinogenesis and for an empirical risk model. Possible detrimental and protective bystander effects on mutation and malignant transformation rates were taken into account in the TSCE model. Criteria for non-nested models were used to evaluate the quality of fit. Data were found to be incompatible with the model including a detrimental bystander effect. The model with a protective bystander effect did not improve the quality of fit over models without a bystander effect. The preferred TSCE model was sub-multiplicative in the risks due to smoking and internal radiation, and more than additive. Smoking contributed 57% to the lung cancer deaths, the interaction of smoking and radiation 27%, radiation 10%, and others cause 6%. An assessment of the relative biological effectiveness of plutonium was consistent with the ICRP recommended value of 20. At age 60 years, the excess relative risk (ERR) per lung dose was 0.20 (95% CI: 0.13; 0.40) Sv(-1), while the excess absolute risk (EAR) per lung dose was 3.2 (2.0; 6.2) per 10(4) PY Sv. With increasing age attained the ERR decreased and the EAR increased. In contrast to the atomic bomb survivors, a significant elevated lung cancer risk was also found for age attained younger than 55 years. For cumulative lung doses below 5 Sv, the excess risk depended linearly on dose. The excess relative risk was significantly lower in the TSCE model for ages attained younger than 55 than that in the empirical model. This reflects a model uncertainty in the results, which is not expressed by the standard statistical uncertainty bands.  相似文献   

15.
A 15-Country collaborative cohort study was conducted to provide direct estimates of cancer risk following protracted low doses of ionizing radiation. Analyses included 407,391 nuclear industry workers monitored individually for external radiation and 5.2 million person-years of follow-up. A significant association was seen between radiation dose and all-cause mortality [excess relative risk (ERR) 0.42 per Sv, 90% CI 0.07, 0.79; 18,993 deaths]. This was mainly attributable to a dose-related increase in all cancer mortality (ERR/Sv 0.97, 90% CI 0.28, 1.77; 5233 deaths). Among 31 specific types of malignancies studied, a significant association was found for lung cancer (ERR/Sv 1.86, 90% CI 0.49, 3.63; 1457 deaths) and a borderline significant (P = 0.06) association for multiple myeloma (ERR/Sv 6.15, 90% CI <0, 20.6; 83 deaths) and ill-defined and secondary cancers (ERR/Sv 1.96, 90% CI -0.26, 5.90; 328 deaths). Stratification on duration of employment had a large effect on the ERR/Sv, reflecting a strong healthy worker survivor effect in these cohorts. This is the largest analytical epidemiological study of the effects of low-dose protracted exposures to ionizing radiation to date. Further studies will be important to better assess the role of tobacco and other occupational exposures in our risk estimates.  相似文献   

16.
Ionizing radiation is an established risk factor for brain tumors, yet quantitative information on the long-term risk of different types of brain tumors is sparse. Our aims were to assess the risk of radiation-induced malignant brain tumors and benign meningiomas after childhood exposure and to investigate the role of potential modifiers of that risk. The study population included 10,834 individuals who were treated for tinea capitis with X rays in the 1950s and two matched nonirradiated groups, comprising population and sibling comparison groups. The mean estimated radiation dose to the brain was 1.5 Gy. Survival analysis using Poisson regression was performed to estimate the excess relative and absolute risks (ERR, EAR) for brain tumors. After a median follow-up of 40 years, an ERR/Gy of 4.63 and 1.98 (95% CI = 2.43-9.12 and 0.73-4.69) and an EAR/Gy per 10(4) PY of 0.48 and 0.31 (95% CI = 0.28-0.73 and 0.12-0.53) were observed for benign meningiomas and malignant brain tumors, respectively. The risk of both types of tumors was positively associated with dose. The estimated ERR/Gy for malignant brain tumors decreased with increasing age at irradiation from 3.56 to 0.47 (P = 0.037), while no trend with age was seen for benign meningiomas. The ERR for both types of tumor remains elevated at 30-plus years after exposure.  相似文献   

17.
This is the second general report on radiation effects on the incidence of solid cancers (cancers other than malignancies of the blood or blood-forming organs) among members of the Life Span Study (LSS) cohort of Hiroshima and Nagasaki atomic bomb survivors. The analyses were based on 17,448 first primary cancers (including non-melanoma skin cancer) diagnosed from 1958 through 1998 among 105,427 cohort members with individual dose estimates who were alive and not known to have had cancer prior to 1958. Radiation-associated relative risks and excess rates were considered for all solid cancers as a group, for 19 specific cancer sites or groups of sites, and for five histology groups. Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, how these risks vary with gender, age at exposure, and attained age, and the evidence for inter-site variation in the levels and patterns of the excess risk. For all solid cancers as a group, it was estimated that about 850 (about 11%) of the cases among cohort members with colon doses in excess of 0.005 Gy were associated with atomic bomb radiation exposure. The data were consistent with a linear dose response over the 0- to 2-Gy range, while there was some flattening of the dose response at higher doses. Furthermore, there is a statistically significant dose response when analyses were limited to cohort members with doses of 0.15 Gy or less. The excess risks for all solid cancers as a group and many individual sites exhibit significant variation with gender, attained age, and age at exposure. It was estimated that, at age 70 after exposure at age 30, solid cancer rates increase by about 35% per Gy (90% CI 28%; 43%) for men and 58% per Gy (43%; 69%) for women. For all solid cancers as a group, the excess relative risk (ERR per Gy) decreases by about 17% per decade increase in age at exposure (90% CI 7%; 25%) after allowing for attained-age effects, while the ERR decreased in proportion to attained age to the power 1.65 (90% CI 2.1; 1.2) after allowing for age at exposure. Despite the decline in the ERR with attained age, excess absolute rates appeared to increase throughout the study period, providing further evidence that radiation-associated increases in cancer rates persist throughout life regardless of age at exposure. For all solid cancers as a group, women had somewhat higher excess absolute rates than men (F:M ratio 1.4; 90% CI 1.1; 1.8), but this difference disappears when the analysis was restricted to non-gender-specific cancers. Significant radiation-associated increases in risk were seen for most sites, including oral cavity, esophagus, stomach, colon, liver, lung, non-melanoma skin, breast, ovary, bladder, nervous system and thyroid. Although there was no indication of a statistically significant dose response for cancers of the pancreas, prostate and kidney, the excess relative risks for these sites were also consistent with that for all solid cancers as a group. Dose-response estimates for cancers of the rectum, gallbladder and uterus were not statistically significant, and there were suggestions that the risks for these sites may be lower than those for all solid cancers combined. However, there was emerging evidence from the present data that exposure as a child may increase risks of cancer of the body of the uterus. Elevated risks were seen for all of the five broadly classified histological groups considered, including squamous cell carcinoma, adenocarcinoma, other epithelial cancers, sarcomas and other non-epithelial cancers. Although the data were limited, there was a significant radiation-associated increase in the risk of cancer occurring in adolescence and young adulthood. In view of the persisting increase in solid cancer risks, the LSS should continue to provide important new information on radiation exposure and solid cancer risks for at least another 15 to 20 years.  相似文献   

18.
Little is known about long-term cancer risks following in utero radiation exposure. We evaluated the association between in utero radiation exposure and risk of solid cancer and leukemia mortality among 8,000 offspring, born from 1948-1988, of female workers at the Mayak Nuclear Facility in Ozyorsk, Russia. Mother's cumulative gamma radiation uterine dose during pregnancy served as a surrogate for fetal dose. We used Poisson regression methods to estimate relative risks (RRs) and 95% confidence intervals (CIs) of solid cancer and leukemia mortality associated with in utero radiation exposure and to quantify excess relative risks (ERRs) as a function of dose. Using currently available dosimetry information, 3,226 (40%) offspring were exposed in utero (mean dose = 54.5 mGy). Based on 75 deaths from solid cancers (28 exposed) and 12 (6 exposed) deaths from leukemia, in utero exposure status was not significantly associated with solid cancer: RR = 0.94, 95% CI 0.58 to 1.49; ERR/Gy = -0.1 (95% CI < -0.1 to 4.1), or leukemia mortality; RR = 1.65, 95% CI 0.52 to 5.27; ERR/Gy = -0.8 (95% CI < -0.8 to 46.9). These initial results provide no evidence that low-dose gamma in utero radiation exposure increases solid cancer or leukemia mortality risk, but the data are not inconsistent with such an increase. As the offspring cohort is relatively young, subsequent analyses based on larger case numbers are expected to provide more precise estimates of adult cancer mortality risk following in utero exposure to ionizing radiation.  相似文献   

19.
Dynamics of the mortality and the mortality radiation risks among male emergency workers of 1986-1987 years of entrance to the Chernobyl zone is analyzed. The average dose of external gamma-exposure for this cohort equals 128 mGy. The size of the cohort at the beginning of the follow-up in 1992 was 47820 persons. For the follow-up period 1992-2006 statistically significant radiation risks of death rates have been estimated: for the mortality from all causes, the excess relative risk per Gy (ERR/Gy) equals 0.42 with 95% confidence interval (95% CI) (0.14-0.72); for the mortality from solid cancers ERR/Gy = 0.74, 95% CI (0.03-1.76); and for the mortality from the circulatory system diseases ERR/Gy = 1.01, 95% CI (0.51-1.57). Based on these estimates the risk groups were ranked among all Russian emergency workers (160 thousand persons): the group of the potential radiation risk with doses more than 150 mGy (33488 persons) and the group of the high radiation risk with doses more than 240 mGy (6054 persons).  相似文献   

20.
The efficiency of the radiobiological and the clinical planning of the combination of the intraoperative radiation therapy (IORT) and the external beam radiation therapy (EBRT) was assessed according to the incidence of local recurrences and to the level of radiation-induced damages during 5 years for patients with malignant tumors of head and neck, lung and soft tissues. Criteria of radiobiological planning for performing IORT + EBRT using the modified model of TDF (time-dose-fractionation) for calculating a single IORT dose and total radiation doses was defined among 169 patients of the studied group. The control group included 115 patients who were treated with surgery followed by photon radiation therapy at the total dose of 40-45 Gy. The Clinical critetia for performing the combined treatment with IORT and EBRT were such like: locally-advanced tumors, multicentrical location of tumor sites and the necessity of the increasing of the total doses of the combination of IORT and EBRT. The Average rates of total doses of IORT and EBRT were 67 +/- 2.1 Gy for patients with cancer of nasal cavity and of accessory nasal sinus, 50 +/- 1.8 Gy for patients with oral cavity cancer, 60 +/- 0.7 Gy for patients with lung cancer and 75 +/- 2.0 Gy for patients with sarcomas of soft tissues. Radiation-induced damages for normal tissues such as mandible osteomyelitis, neuritis and pathological bone fracture occurred among 16.8% of patients from the studied group if the TDF factor was exceeded over 100 conventional units. The combined treatment with IORT and EBRT resulted the significant reduction of recurrence rate among 5-year as compared with the combined treatment fot the control group: 37.5 +/- 5.3% and 65 +/- 5.1% of patients with cancer of nasal cavity and accessory nasal sinus; 55.8 +/- 6.3% and 80 +/- 5.9% of patients with oral cavity cancer; 57.8 +/- 6.7% and 75 +/- 5.8% of patients with non-small cell lung cancer and 32.7 +/- 6.1% and 72 +/- 6.7% of patients with sarcomas of soft tissues, respectively. The use of criteria for radiobiological and clinical planning of the combined treatment with IORT and EBRT promotes the improvement of long-term treatment results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号