首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The Cuban species of Calisto are reviewed based on the morphology of adult and immature stages, as well as DNA sequences of six genes (COI, EF1α, wingless, GAPDH, RpS5, CAD). A new species, Calisto occultasp. n., is described from the northeastern Cuban mountains. Calisto smintheus Bates, 1935 and Calisto bruneri, Michener 1949 are revised and revalidated. A new status, the species level, is proposed for Calisto brochei, Torre 1973, Calisto muripetens, Bates 1939 and Calisto bradleyi, Munroe 1950. The immature stages of Calisto smintheus, Calisto brochei,and Calisto occulta are described for the first time, and those of Calisto herophile, Hübner 1823 are redescribed. Useful morphological characters for adults are the shape and conspicuousness of androconial patch, the number and relative size of white dots on underside of hindwing, the shape of aedeagus, the shape of digitiform projection of genitalia valve, the shape and relative size of tegumen and uncus, the relative size of female genitalia, the height of sterigmal ring dorsal crown of the latter, and the relative size of corpus bursae and ductus bursae. For the immature stages, the most important characters are the color pattern of head capsule, the number and width of longitudinal lines of body, in the larvae; and the color pattern and the absence or presence of dorsal ridges on the abdomen of pupae. The phylogenetic relationships between the Cuban Calisto species are quite robust and well-supported; however, conflict between mitochondrial and nuclear datasets was detected in Calisto brochei, Calisto muripetens and to a lesser degree in Calisto bradleyi.  相似文献   

2.
Nine of 10 genera and 119 of approximately 240 species of the Pinaceae occur in China, including 67 endemic species and two endemic genera. In this paper, the distributional maps of all the genera of the Pinaceae are presented (fig. 1-8). The horizontal and vertical distributions of species in each genus are discussed. The analysis of the distribution patterns of the genera indicates that some genera, such as Keteleeria, Tsuga, Pseudotsuga, Cathaya and Pseudolarix, are restricted to the area south of the Qinling Mountains and the Huaihe River, and the others, i. e. Picea, Abies, Larix and Pinus, extend northward to northeastern China. However, all of the genera except Keteleeria and Pinus are not found in very dry areas and tropical mountainous regions of China. The monotypic genera, Cathaya and Pseudolarix, are distributed in eastern and central China. The genus Keteleeria consists of 10 species, 7 of which are concentrated in southern Guizhou, northern Guangxi, southwestern Hunan and easternmost Yunnan. The distribution of the remaining 6 genera shows the maximum concentration in western Sichuan and northwestern Yunnan. (Figs. 2-8). Furthermore, more than third of species of the Pinaceae (37.8%) are also concentrated in western Sichuan and northwestern Yunnan. where a great variety of habitats and different topographic features occur. It is apparent that to conduct our systematic and evolutionary studies on this family in these region is especially needed. The relations between the areal size and the tolerance of species are discussed. The distributions of macrofossils and microfossils of the genera of the Pinaceae ia China are given, and it has been proved that areas of most genera of the family were considerably larger in the past. than at present.  相似文献   

3.
Numbers of species and genera,endemic genera,extant primitive genera,relationship and distribution patterns of presently living Chenopodiaceae(two subfamilies,12 tribes,and 118 genera)are analyzed and compared for eight distributional areas,namely central Asia,Europe,the Mediterranean region,Africa,North America,South America, Australia and East Asia. The Central Asia,where the number of genera and diversity of taxa are greater than in other areas,appears to be the center of distribution of extant Chenopodiaceae.North America and Australia are two secondary centers of distribution. Eurasia has 11 tribes out of the 12,a total of 70 genera of extant chenopodiaceous plants,and it contains the most primitive genera of every tribe. Archiatriplex of Atripliceae,Hablitzia of Hablitzeae,Corispermum of Corispermeae,Camphorosma of Camphorosmaea,Kalidium of Salicornieae,Polecnemum of Polycnemeae,Alexandra of Suaedeae,and Nanophyton of Salsoleae,are all found in Eurasia,The Beteae is an Eurasian endemic tribe,demonstrating the antiquity of the Chenopodiaceae flora of Eurasia.Hence,Eurasia is likely the place of origin of chenopodiaceous plants. The presence of chenopodiaceous plants is correlated with an arid climate.During the Cretaceous Period,most places of the continent of Eurasia were occupied by the ancient precursor to the Mediterranean,the Tethys Sea.At that time the area of the Tethys Sea had a dry and warm climate.Therefore,primitive Chenopodiaceae were likely present on the beaches of this ancient land.This arid climatic condition resulted in differentiation of the tribes Chenopodieae,Atripliceae,Comphorosmeae,Salicornieae,etc.,the main primitive tribes of the subfamily Cyclolobeae. Then following continental drift and the Laurasian and Gondwanan disintegration, the Chenopodiaceae were brought to every continent to propagate and develop, and experience the vicissitudes of climates, forming the main characteristics and distribution patterns of recent continental floras. The tribes Atripliceae, Chenopodieae, Camphorosmeae, and Salicornieae of recent Chenopodiaceae in Eurasia, North America, South America, southern Africa, and Australia all became strongly differentiated. However, Australia and South America, have no genera of Spirolobeae except for a few maritime Suaeda species. The Salsoleae and Suaedeae have not arrived in Australia and South America, which indicates that the subfamily Spirolobeae developed in Eurasia after Australia separated from the ancient South America-Africa continent, and South America had left Africa. The endemic tribe of North America, the tribe Sarcobateae, has a origin different from the tribes Salsoleae and Suaedeae of the subfamily Spirolobeae. Sarcobateae flowers diverged into unisexuality and absence of bractlets. Clearly they originated in North America after North America had left the Eurasian continent. North America and southern Africa have a few species of Salsola, but none of them have become very much differentiated or developed, so they must have arrived through overland migration across ancient continental connections. India has no southern African Chenopodiaceae floristic components except for a few maritime taxa, which shows that when the Indian subcontinent left Africa in the Triassic period, the Chenopodiaceae had not yet developed in Africa. Therefore, the early Cretaceous Period about 120 million years ago, when the ancient Gondwanan and Laurasian continents disintegrated, could have been the time of origin of Chenopodiaceae plants.The Chinese flora of Chenopodiaceae is a part of Chenopodiaceae flora of central Asia. Cornulaca alaschnica was discovered from Gansu, China, showing that the Chinese Chenopodiaceae flora certainly has contact with the Mediterranean Chenopodiaceae flora. The contact of southeastern China with the Australia Chenopodiaceae flora, however, is very weak.  相似文献   

4.
5.
Here we report the results of a comprehensive biogeochemical monitoring of Rostherne Mere in 1998, including changes in dissolved oxygen, organic carbon and nitrogen, nitrate/nitrite, ammonia, Al, Na, S, K, Mg, Ca, Si, Fe, Mn, orthophosphate, particulate N & P, suspended solids, temperature, pH, chlorophyll-a and zooplankton. The results demonstrated the major influence of primary producers on the overall geochemical cycling of N, P and Si, and suggested that the significance of zooplankton might have been previously underestimated. For major anions and cations, however, the influence of biota on lake water concentrations appeared to be negligible, reflecting the fact that these chemicals were present far in excess of plankton requirements. Thus changes in concentrations of Ca, K, Na, Mg and S were rather limited and must have reflected changes in hydrological and meteorological parameters. K, however, demonstrated a transitional pattern, reflecting some influence of biological uptake. During the stratification period, the slow processes of bacterial decomposition in the hypolimnion gradually released chemicals contained in the materials accumulated in the bottom layer, remarkably increasing the concentrations of dissolved compounds of those elements present in amounts comparable with the pool stored in the sedimenting detritus (e.g. orthophosphate P, ammonia N, Si and DOC). The decomposition also resulted in a drop in the redox potential, followed by partial denitrification and chemical release from the sediments. The hypolimnion of the Mere was confirmed to remain at the stage of Mn release, characterised by accumulation of DOC, orthophosphates, ammonia and initial stages of denitrification. High levels of P released from the sediments during the stratification period suggest that the lake’s recovery after sewage diversion might be further delayed.  相似文献   

6.
ABSTRACT. The hypostome ciliates have been generally classified into two classes, Phyllopharyngea and Nassophorea. The status of Nassophorea and its relationship with Phyllopharyngea is one of the most controversial issues in ciliate systematics. Here we focus on the phylogenetic interrelationships of Nassophorea and Phyllopharyngea based on small subunit ribosomal RNA gene sequences. The three nassophorean subgroups, synhymeniids, microthoracids, and nassulids, each emerged as monophyletic, with synhymeniids as a sister group of Phyllopharyngea, and microthoracids as a sister of the synhymeniids+Phyllopharyngea clade in all phylogenies. The exact placement of the nassulids, however, remains uncertain. Following a detailed analysis of phenotypic characters, we hypothesize that: (1) the Phyllopharyngea could have evolved from synhymeniids, with the further development of their subkinetal microtubules as one of the major events; and (2) the development of monokinetid structures, as well as the reduction and specialization of the cyrtos and cortex, might have occurred during the diversifications of the microthoracids, synhymeniids, and Phyllopharyngea from a common ancestor. Expanding the class Phyllopharyngea to include the synhymeniids as a subclass, and designating a new subclass Subkinetalia n. subcl. for the group comprising cyrtophorians, chonotrichians, rhynchodians, and suctorians, are proposed.  相似文献   

7.
Rosaceae. consisting of about 126 genera and 3200 species, is widely distributed in warm temperate and subtropical regions of the Northern Hemisphere, while more than half of the genera are Asiatic and more then 80% of the total number of Asiatic occur in China (Table 1). In this paper, the origin and evolution of Chinese genera is discussed mainly. The principal tendency of the whole family is also described from the point of view of evolution. First of all, the systematic position of Rosaceae in Angiospermae is reviewed. According to the records of paleobotany, rosaceous plants occurred first in the Tertiary, from the early period of Eocene (genera such as Spiraea and Prunus) to the late period of Miocene (e.g. Crataegus, Malus amd Rosa). They have quite a long history in geological data. Where has this big and old family originated and what steps does it stand in the long course of evolution of flowering plants? There are several opinions and explanations by different authors. In this paper, a general survey of the six prevailing classical systems (Table 2) is made to give a brief idea of the position of this family in the Angiospermae and of the relationships between the subfamilies and also the relationships between different genera in each subfamily. At the end of this paper, an attempt is made to analyse and sum up the major evolutionary tendency of the whole family. As generally condidered, Rosaceae originated from Magnoliales, and woody plants of the family still hold a dominant position. For instance, subfamily Spiraeoideae consists of only one herbaceous genus (i.e., Aruncus) and subfamily Rosoideae only a few herbaceous genera. All of these herbaceous genera are derived from the closely related woody genera of the same subfamily. In the course of evolution of Angiospermae, Rosaceae stands at the initial to the middle stages of development. All parts of plant body in this family are at the chang ing and developing stages, with carpels, fruits and inflorescences being the most active. The primitive types in this family, such as the members of subfamily Spiraeoideae, usually have 5 and free carpels, the number of which are either reduced to 2-1 or increased to 10-numerous. They have different levels of union and are either completely free from each other or coherent at base. The carpels usually occur on the upper part of the receptacle, because the shapes of receptacle are variable, sometimes disk-shaped, cupshaped, tube-shaped or even bottle-shaped. In the last case carpels grow inside the receptacle. Thus the position of carpels has changed from superior to inferior through halfsuperior. In accordance with the development of the carpels, various kinds of fruits are produced. The primitive types of fruit are follicles, with dry, dehiscent carpels opened along different sutures. The next step, the carpels have developed into an indehiscent, I-celled and l-seeded fruit, the so-caned achene. In different genera, the achenes have different coat types and appendages to facilitate dispersing the seeds. Some of the achenes grow upon the fleshy receptacle (like strawberry) and some of them inside the fleshy receptacle (like rose). Sometimes a few carpels are united with the receptacle and develop into a pome (like apple and pear). Another direction of the fruit development is the single carpel with fleshy exocarp and mesocarp, and a bony endocarp, then becoming a drupe (like peach and plum). In addition to fleshy receptacle of thickened fruit coats, they usually have showy colour, fragrant smell and also plenty of sugars, acids, vitamins, etc. which are edible and attract animals and human beings to assist the dispersion of seeds. In this family, there are various types of flower arrangements, both indefinite inflorescences including raceme, umbel, corymb and panicle, and the definite inflorescence, such as solitary flower, cyme and compound cyme. In the evolution course, they tend to change mostly from multiflowered compound inflorescence towards few-flowered simple inflorescence, and finally becoming a solitary flower: simultaneously with the decreasing of number of flowers on the inflorescence, the increasing of size of petals, which become very showy for attraction of insects so as to guarantee pollination and fertilization of the plants concerned. Another tendency, if the bisexual flowers change to unisexual, either monoecious- or dioecious-polygamous, then they form a dense spike which is beneficial to cross pollination. The abundance, diversity, and wide range of distribution of the species and genera of Rosaceae are considered mainly resulted from their highly developed reproductive organs.  相似文献   

8.
云南复叶耳蕨属的分类修订   总被引:7,自引:0,他引:7  
研究了云南产复叶耳蕨属植物,提出了新的分类处理。云南共有本属植物20种2变种,其中包括1新组,3个改级新组合,7个云南分布新记录,并清理出了54个云南及其他省区种类的新异名。  相似文献   

9.
草鱼鳃上寄生毛管虫一新种——变异毛管虫的研究   总被引:1,自引:1,他引:0  
吸管亚纲(Subclass suctoria)中,多数种类具有或长或短的炳,附着它物上营固着生活。寄生在鱼类体表、鳃丝内的毛管虫(Trichophrya)和簇管虫(Erastophrya)的种类中,至今未见报道有固着柄的代表。    相似文献   

10.
林有润 《植物研究》2002,22(3):341-365
棕榈科原省藤亚科因其子房壁及外果皮被倒生、螺旋状排列的鳞片所覆盖,而区别于其他亚科,因而独立分出成一新科--省藤科。作者讨论了棕榈科的祖先种可能在石炭纪时,自原始裸子植物开以顿目在分化、衍生出苏铁目祖先种的进化干上,于白垩纪时分化出的一个分支。在棕榈科的祖先种出现不久后,在其进化的分支上,于白垩纪后期又分化出一旁支,成为棕榈科的姊妹科--省藤科的祖先种。从两祖先种分别再分化、衍生出现今分布地球上该二科的属与种。两科、尤其前者是被子植物、尤其是单子叶植物中最原始的类群之一。作者还提出棕榈科象牙椰亚科与贝叶棕亚科是该科最原始或较原始的两类群;槟榔亚科和腊材榈亚科是较进化的两类群;而水椰亚科祖先种可能源于象牙椰亚科的祖先种,但又演化为该科最进化与特化的类群。省藤科省藤亚科略比鳞果榈亚科原始。作者讨论了两科为泛热带分布的科,指出两科的"现代分布区"在南北两半球热带地区,少数种还延伸分布到两半球暖亚热带、甚至达中亚热带地区,分布区边缘最北达日本中部、中国长江流域及黄河下游的南部,美国加利佛尼亚州与佛罗里达州和地中海北部;最南达智利中部和新西兰南部;而"现代分布中心"在热带与暖亚热带的亚洲,中、南美洲,大洋洲及非洲的东、南、西部;但分布区的"密集中心"则在热带亚洲、热带中及南美洲、南太平洋群岛及非洲东南部。作者还介绍了近50年我国南方引种驯化成功的两科植物近400种(见*图谱),其中少数为耐寒的种类,有的种已引种到长江流域或更北的地区。引种的大部分种都有其重要的经济用途,包括:1. 食用,如淀粉和树液可制"西米"或制糖,酿酒、醋或作饮料;果或种子榨油,供食用或工业用;某些种的嫩芽作蔬菜,甚至种子代咖啡饮用;2. 药用,有消炎、止血、活血、驱虫、抗癌等用;3. 建筑、工艺与日用品,包括不少种的树干供建普通房子、桥梁、小船;少数种可提制工业用蜡;许多种的纤维制高级缆绳和编织品;还制工艺品与日用品等;4. 代表热带景观的园林工程、绿化及美化环境的观赏树和人行道树及建造园林景观生态类型的树种等。  相似文献   

11.
Many recent developments in European marine and estuarine science have been against the demands of European Union legislation. The implementation of certain statutes, the role of scientists and the nature of the data required are discussed using examples from the UK, the Netherlands and Portugal. This includes the implementation of the EU Directives on Urban Waste-water Treatment, the control of Nitrates, the designation of Species and Habitats, the control of Dangerous Substances, the statutory requirement for Environmental Impact Assessments and the recently proposed Water Framework Directive. For these, the integration of physical, chemical and biological monitoring and investigation is discussed in relation to the science dictated by the legislative and administrative requirements. Each of these Directives requires the development of generic guidelines and protocols for implementation and the use of national enabling legislation. This indicates that, in several cases, the science should concentrate on monitoring and assessment in a well-structured and quality-controlled manner. The paper concludes by summarising developments based on similarities in the implementation of present and proposed Directives across Europe.  相似文献   

12.
The genus Dichocarpum was established by W. T. Wang and Hsiao in 1964, who divided the genus into 2 sections: Sect. Dichocarpum including 10 species distributed on the mainland of E. Asia, and Sect. Hutchinsonia including 9 species native to Japan. M. Tamura and L. A. Lauener made a revision of the genus in 1968, who divided the genus into 4 sections, three for the species of the mainland of E. Asia, including 3 series and 10 species, and the other for the species of Japan, including 2 subsections, 3 series and 9 species. In the present paper, the genus is divided into 2 sections and 6 series, including 15 species and 3 varieties, and a putative phylogeny of the genus is proposed. The genus may be close to the genus Asteropyrum, and these two genera are rather specialized in Thalictroides (Ranunculaceae), because they have three very similar characters: the petal with a long claw, the stephanocolpate pollen and the chromosome morphology. The genus has 2n=24, 35(36?), which indicates that its basic number is X=6, and the species on the mainland of E. Asia (Sect. Dichocarpum) may well be paleotetraploids, whereas those in Japan (sect. Hutchinsonia) are paleohexaploids. Most of the advanced species are distributed in Japan and the most primitive ones in China and the Himalayas, the distribution pattern seggests that the Japanese members of this genus might have immigrated from China in the Tertiary, and differentiated and evolved there. The putative phylogeny of the genus is shown in Fig. 2 (at series level)  相似文献   

13.
We distinguish two types of predations: the predation of matter-energy equals the food chain, and the informative predation is the capture of the information brought by the sexual partners. The cell or parent consumes energy and matter to grow, multiply and produce offspring. A fixed amount of resources is divided by the number of organisms, so individual growth and numerical multiplication are limited by depletion resources of the environment. Inversely, fertilization does not destroy information, but instead produces news. The information is multiplied by the number of partners and children, since each fertilization gives rise to a new genome following a combinatorial process that continues without exhaustion. The egg does not swallow the sperm to feed, but exchange good food for quality information. With the discovery of sex, that is, 1.5 Ga ago, life added soft predation to hard predation, i.e. information production within each species to matter-energy flow between species. Replicative and informative structures are subject to two competing biological constraints: replicative fidelity promotes proliferation, but limits adaptive evolution. On the contrary, the offspring of a couple obviously cannot be a copy of both partners, they are a new production, a re-production. Sexual recombination allows the exponential enrichment of the genetic diversity, thus promoting indefinite adaptive and evolutionary capacities. Evolutionary history illustrates this: the bacteria proliferate but have remained at the first purely nutritive stage in which most of the sensory functions, mobility, defense, and feeding have experienced almost no significant novelty in three billion years. Another world appeared with the sexual management of information. Sexual reproduction actually combines two functions: multiplicative by “vertical transfer” and informative by “horizontal transfer”. This distinction is very common: polypus – medusa alternations, parasite multiplication cycles, the lytochal and deuterotochal parthenogenesis of aphids, and the innumerable para- and pseudo-sexual strategies of plants opportunistically combine the two modes of asexual replication and sexual combination. However, for the majority of animals and multicellular plants that produce many gametes, numerical proliferation by descendants and informative diversity by sexuality are mutually implicated, for example in the seed. The true discovery of eukaryotes may not be the “true nucleus”, as their name implies, but an orderly informative function. The field of recombinations circumscribes a class of partners genetically compatible with each other, each simultaneously prey and predator of the DNA of the other. The mythical Maxwell demon capable of tracing entropy by sorting molecules according to their state does exist: each mate is the other's Maxwell's demon. While a sexless bacterium is simply divided into two cells, two sexual parents work together to produce a single offspring a time. Added to this are the burdens involved in meiosis and crossing-over, cellular diploidy, and mating. Sex produces an information gain that is paid for by a cost of energy-material, and this barter must be fair to survive. The domains of sexual intercourse are very diverse: uniparental reproduction, alternation of asexual proliferation and sexual information, self-fertilization, endogamy, exogamy, panmixis, diffuse or structured polymorphism, fertile or sterile hybridization, horizontal transfers. Each species is a recombination field between two domains, cloning and hybridization. Multiplicative descent and informative fertilization are organically distinct, but selectively associated: the information produced by the parents’ sexuality favors the predation of matter-energy and therefore the proliferation of offspring, and this proliferation in turn favors the sexed producers of information. The equation specific to each species is: enough energy to proliferate, enough information to diversify. Alternatively, two other reproductive modes obtain or transmit less information at lower cost: not enough recombinations = repetitive clonal proliferation, and too many recombinations = disordered hybridization. But these marginal modes have poor prospects, as the model of the species is successfully attractive. Better discriminate to better inform. In bacteria, the exchanged and incorporated DNA segments are directly identified by the parity of the complementary strands, which determines simultaneously the similarity, the offspring, and the pairing. In eukaryotes, on the contrary, somatic growth and germinal information are segregated. During speciation, adaptive information is compacted, delocalized, codified and published to inform the species about its own state: the prezygotic relationship governs viable mating. Under the effect of sexual selection, the runaway and the reinforcement of the characters related to courtship testifies to their identifying function, which explains the paradox of the singularity and luxuriance of the sexual hypertrophies. The speciation discretizes a balanced recombination field and validates the informative relations. The species is without degree. Mates of a species recognize each other quickly and well because the logic of coding disengages from the ecological game of adaptations. The system of mate recognition has a function of cohesion and its regularity allows the adaptations of the less regular being, it is neither elitist nor normative, it is subjected neither to a level of aptitudes, nor to sexual performances, but permissive; it protects the variability and polymorphism. Two mutually irreducible relationships triggered the debate between the taxonomists who support the phyletic definition of the species by the descendance, and the proponents of the definition by interfertility. Such a taxonomic disagreement is not insurmountable, but the issue is deeper than taxonomic concepts, because these concepts relate to two different modes of evolution. According to the phyletic model, each species is a lineage passively isolated by external circumstances; on the contrary, in the sexual model each species is actively produced by an internal process of adjustment between replicative costs and informative gains. Each species develops a solution of the equation that matches material-energy expenditures with informative gains. A species concept based on a lasting relationship between these two quantities or on the limits of certain values or their equilibrium is therefore legitimate. It is this equilibrium that all couples resolve, without our formulation being as clearly as biology desires and as physics demands. Energy expenditures and informative gains in sexuality are almost impossible to measure, yet observation and experience allow an approximate ranking of the energy/information ratio. For example, endogamy is more economical, but less diversifying than exogamy, polymorphism increases information, the reinforcement of sexual isolation limits the rate of unproductive fertilization, between neighboring species hybridization allows certain genetic contributions, etc. A closed species evolves naturally towards another just as closed. On the contrary, the artificial transfer of DNA opens the species. The natural boundaries that isolate the species are easily trespassed as energy costs and constraints of sexual recognition are easily controlled; and the perspectives of manipulations are visible, whereas natural selection never anticipates and thus works blindly. Informative, artificially directed predation stimulates the evolution of species.  相似文献   

14.
植物种群的生殖特性和资源配置策略是植物生活史研究的重要内容之一,对于理解和预测植被结构和全球变化过程中的适应策略至关重要。该文以青藏高原特有风毛菊属植物羌塘雪兔子(Saussurea wellbyi)为试验材料,分析6个海拔梯度18个居群的花期繁殖特征的变化,并用异速生长模型分析资源投入及资源分配的个体大小依赖关系。结果显示:(1)个体大小、繁殖器官生物量、营养器官生物量、管状小花数目、雄蕊重量、花药长度及花粉数与海拔高度呈负相关(P<0.05),管状小花重量、雌蕊重量、花丝长度及花柱长度与海拔高度呈正相关(P<0.01);(2)营养分配与海拔高度呈负相关(P<0.01),繁殖分配与海拔高度呈正相关(P<0.01);(3)管状小花的数量与重量(P<0.05)、雌蕊重量与雄蕊重量(P<0.01)、花丝长度与花药长度(P<0.01)、花丝长度与花粉数(P<0.01)之间均存在权衡关系;(4)资源投入及资源分配在不同海拔间与个体大小都呈显著正相关(P<0.05),且截距在海拔间差异极显著(P<0.01)。综合分析认为:羌塘雪兔子在不同海拔下的繁殖特征以及大小依赖的资源投入和资源分配模式是羌塘雪兔子与其所处的高山环境长期适应和进化的结果。  相似文献   

15.
“细菌-虫黄藻-珊瑚”是生态系统中一对经典的三角关系,其中包含着复杂的物质流、信息流和能量流,三者的平衡与稳定是维护珊瑚礁生态系统健康的重要保障。过去20年里针对共生体交互关系进行了大量研究,并取得了一些重要成果,明确了“细菌-虫黄藻-宿主”三者之间的物质代谢、营养交换以及与环境的交互关系。然而,基于共生系统的复杂性,一些现象背后的机制仍然未被充分揭示,尤其是共生体之间的通讯交流。信号分子介导的相互作用是珊瑚共生体稳态维持和高效运转的内在驱动力。本文以珊瑚共生体系中化学信号为重点,尝试梳理最新的研究进展,包括细菌与细菌、细菌与珊瑚、细菌与虫黄藻以及虫黄藻与珊瑚之间的通讯方式,重点关注了群体感应信号(QS)、二甲基巯基丙酸盐(DMSP)、糖类信号、脂类信号以及非编码RNA。选择性例举了QS信号介导的微生物协作和竞争、DMSP调节下的细菌和宿主的相互作用,以及环境胁迫下珊瑚和虫黄藻对非编码RNA的响应过程,强调了它们在共生体中的作用模式和生态意义。并对今后的研究重点和可能方向进行了提炼,包括研究维度的扩充、新技术-新方法的应用以及生态模型的构建等,旨在提升对三角关系互作方式的认识,增进对珊瑚共生体的理解,探索基于通讯语言的操纵方式为珊瑚礁生态系统的恢复和保护提供新思路。  相似文献   

16.
性状(Trait)或功能性状(Functional trait)是植物、动物和微生物等对外界环境长期适应和进化后所呈现出来的可量度的特征,也是人们认识自然、利用或改造自然的重要途径和技术手段。近几十年来,科学家对植物、动物和微生物功能性状的研究取得了令人瞩目的成就,尤其在物种水平的植物叶片和根性状的研究领域;然而,自然生态系统是复杂的,植物、动物和微生物自身的多种性状间及其不同生物间性状的相互作用是广泛存在的,因此需要跨学科、系统性、集成式地调查和研究。以中国东部南北样带(NSTEC)森林生态系统为对象开展了植物、微生物和土壤性状的综合测定;基于其核心的研究结论并适当整合NSTEC前期的相关研究成果,希望能给性状研究提供新的调查模式和分析思路。沿NSTEC从热带雨林到寒温带针叶林3700km样带选取了9个地带性森林生态系统,在群落结构调查基础上对群落内所有植物种类(总计1177物种)开展了系统性的性状测定(叶-枝-干-根多元素含量,叶片形态性状-气孔性状-解剖性状-叶绿素含量-多元素含量-非结构性碳水化合物、细根形态性状-解剖性状-多元素含量等),测定了土壤微生物群落结构、酶活性、土壤有机质结构与组成、土壤碳氮周转及其温度敏感性等参数。基于上述数据,不仅按传统途径系统性地探讨了植物、微生物和土壤多种性状的纬度变异规律与影响因素;还从不同角度探讨了"如何科学地将器官水平测定性状推导至天然森林群落水平"科学难题,并从多个性状角度建立了自然森林生态系统中性状与功能的定量关系。在此基础上提出"性状网络"和"生态系统性状"概念,以其更好地用于揭示自然界复杂的森林生态系统,为验证和发展生态学理论、探讨多种性状间协同(权衡)的生态系统生产力优化机制提供重要的数据支撑。希望通过解决性状尺度拓展的技术难题,未来将传统性状研究拓展至群落或生态系统水平,并与高速发展的宏观观测手段(遥感观测、通量观测、模型模拟)有机结合,使性状研究更好地服务于区域乃至全球性的生态环境问题。  相似文献   

17.
Mono- and sesquiterpenoids from wood of P. quadrifolia and that of the southwestern form of P. monophylla were analysed by GLC. Concurrently the number of needles per fascicle, the number of resin canals, and the number of abaxial and adaxial stomatal rows towards the tip, in the middle, and towards the base of the needles were determined. The data covered 90 trees from 8 pure populations from southernmost California and northern Baja California and 21 trees from a mixed stand in Baja California.α-Pinene, mycene, α-amorphene, γ-muurolene, germacrene D, and to a very minor extent camphene, β-pinene, limonene, β-phellandrene and β-ylangene percentages could be used for species identification. The number of needles per fascicle, the number of resin canals, and the number of abaxial stomatal rows afforded appreciably sharper identification, however. Statistical treatment of chemical and morphological data from pure stands did not give evidence for introgression of the two species. A definite intermediacy, rather limited in extent, could be demonstrated for the mixed stand, however.  相似文献   

18.
Epigenetics studies factors related to the organism and environment that modulate inheritance from generation to generation. Molecular epigenetics examines non-coding DNA (ncdDNA) vs. coding DNA (cdDNA), and pertains to every domain of physiology, including immune and brain function. Molecular cartography, including genomics, proteomics, and interactomics, seeks to recognize and to identify the multi-faceted and intricate array of interacting genes and gene products that characterize the function and specialization of each individual cell in the context of cell-cell interaction, tissue, and organ function. Molecular cartography, epigenetics, and chromatin assembly, repair and remodeling (CARR), which, together with the RNA interfering signaling complex (RISC), is responsible for much of the control and regulation of gene expression, intersect.We describe current and ongoing studies aimed to apply these overlapping areas of research, CARR and RISC, to a novel understanding of the immuno-neuropathology of HIV-1 infection, as an example. Taken together, the arguments presented here lead to a novel working hypothesis of molecular immune epigenetics as it pertains to HIV/AIDS, and the immunopathology of HIV-1-infected CD4+ cells. Specifically, we discuss these views in the context of the structure-function relationship of chromatin, the cdDNA/ncdDNA ratio, and possible nucleotide divergence in the untranslated regions (UTRs) of mature mRNA intronic and intergenic DNA sequences, and putative catastrophic consequences for immune surveillance and the preservation of health in HIV/AIDS. Here, we discuss the immunopathology of HIV Infection, with emphasis on CARR in cellular, humoral and molecular immune epigenetics.  相似文献   

19.
有瓣蝇类分类、系统发育及演化   总被引:1,自引:0,他引:1  
闫利平  裴文娅  张东 《昆虫学报》2021,64(6):757-768
有瓣蝇类(Calyptratae)隶属于昆虫纲(Insecta)四大超适应辐射类群之一的双翅目(Diptera),占双翅目已知物种多样性的近20%。有瓣蝇类分布广泛,生物学习性极为多样,在维系生态系统稳定中发挥着重要作用,是媒介、法医、传粉和天敌昆虫学研究领域的热点类群,也是探究双翅目系统演化及其成功适应辐射的关键类群。为了还原有瓣蝇类的演化历史,许多著名昆虫学者先后对该类昆虫开展过不同层面的研究。有瓣蝇类的单系性得到了普遍支持,并被分为3个总科——虱蝇总科(Hippoboscoidea)、蝇总科(Muscoidea)和狂蝇总科(Oestroidea),其中单系的狂蝇总科与多系的蝇总科聚为一支,再与虱蝇总科成为姐妹群。在科级阶元水平,蝠蝇科(Streblidae)(虱蝇总科)、花蝇科(Anthomyiidae)(蝇总科)、丽蝇科(Calliphoridae)(狂蝇总科)、邻寄蝇科(Rhinophoridae)(狂蝇总科)等类群的单系性仍有待验证,且新的科仍在不断被建立[如粉蝇科(Polleniidae)、乌鲁鲁蝇科(Ulurumyiidae)],因此,有瓣蝇类科级系统发育关系仍不十分明晰。已有研究对虱蝇总科虱蝇科(Hippoboscidae)、蝠蝇科、蛛蝇科(Nycteribiidae),蝇总科蝇科(Muscidae)、粪蝇科(Scathophagidae),狂蝇总科麻蝇科(Sarcophagidae)、狂蝇科(Oestridae)胃蝇亚科(Gasterophilinae)的演化历史进行研究,明确了起源与扩散、寄主转移、取食策略等关键生物学习性的演化历史。但由于部分关键类群生活史信息的缺失,以及尚未有效解决的系统发育关系,有瓣蝇类演化历史仍有许多待解之谜。本文综述了有瓣蝇类分类、系统发育及演化研究进展,是在系统学研究进入系统发育基因组学时代后对该类群相关研究进展的首次全面总结。  相似文献   

20.
B. A. Manny  D. Kenaga 《Hydrobiologia》1991,219(1):269-279
Despite extensive urbanization of its watershed, the Detroit River still supports diverse fish and wildlife populations. Conflicting uses of the river for waste disposal, water withdrawals, shipping, recreation, and fishing require innovative management. Chemicals added by man to the Detroit River have adversely affected the health and habitats of the river's plants and animals. In 1985, as part of an Upper Great Lakes Connecting Channels Study sponsored by Environment Canada and the U.S. Environmental Protection Agency, researchers exposed healthy bacteria, plankton, benthic macroinvertebrates, fish, and birds to Detroit River sediments and sediment porewater. Negative impacts included genetic mutations in bacteria; death of macroinvertebrates; accumulation of contaminants in insects, clams, fishes, and ducks; and tumor formation in fish. Field surveys showed areas of the river bottom that were otherwise suitable for habitation by a variety of plants and animals were contaminated with chlorinated hydrocarbons and heavy metals and occupied only by pollution-tolerant worms. Destruction of shoreline wetlands and disposal of sewage and toxic substances in the Detroit River have reduced habitat and conflict with basic biological processes, including the sustained production of fish and wildlife. Current regulations do not adequately control pollution loadings. However, remedial actions are being formulated by the U.S. and Canada to restore degraded benthic habitats and eliminate discharges of toxic contaminants into the Detroit River.Contribution 738 of the National Fisheries Research Center-Great Lakes, 1451 Green Road, Ann Arbor, MI 48105, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号