首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leader peptidase, typical of inner membrane proteins of Escherichia coli, does not have an amino-terminal leader sequence. This protein contains an internal signal peptide, residues 51-83, which is essential for assembly and remains as a membrane anchor domain. We have employed site-directed mutagenesis techniques to either delete residues within this domain or substitute a charged amino acid for one of these residues to determine the important properties of the internal signal. The deletion analysis showed that a very small apolar domain, residues 70-76, is essential for assembly, whereas residues that flank it are dispensable for its function. However, point mutations with charged amino acid residues within the polar sequence (residues 77-82) slow or abolish leader peptidase membrane assembly. Thus, a polar region, Arg-Ser-Phe-Ile-Tyr-Glu, is important for the signal peptide function of leader peptidase, unlike other signals identified thus far.  相似文献   

2.
Leader peptidase of Escherichia coli, a protein of 323 residues, has three hydrophobic domains. The first, residues 1-22, is the most apolar and is followed by a polar region (23-61) which faces the cytoplasm. The second hydrophobic domain (residues 62-76) spans the membrane. The third hydrophobic domain, which has a minimal apolar character, and the polar, carboxyl-terminal two-thirds of the protein are exposed to the periplasm. Deletion of either the amino terminus (residues 4-50) or the third hydrophobic region (residues 83-98) has almost no effect on the rate of leader peptidase membrane assembly, while the second hydrophobic domain is essential for insertion (Dalbey, R., and Wickner, W. (1987) Science 235, 783-787). To further define the roles of these domains, we have replaced the normal, cleaved leader sequence of pro-OmpA and M13 procoat with regions containing either the first or second apolar domain of leader peptidase. The second apolar domain supports the translocation of OmpA or coat protein across the plasma membrane, establishing its identity as an internal, uncleaved signal sequence. In addition to this sequence, we now find that leader peptidase needs either the amino-terminal domain or the third hydrophobic domain to permit its rapid membrane assembly. These results show that, although a signal sequence is necessary for rapid membrane assembly of leader peptidase, it is not sufficient.  相似文献   

3.
Leader peptidase, an integral transmembrane protein of Escherichia coli, is synthesized without a cleavable amino-terminal leader peptide. Of the five domains that participate in the membrane assembly of this protein, one is an internal "signal" region. We have used oligonucleotide-directed mutagenesis to examine the properties of the internal signal that are crucial for leader peptidase assembly. For this purpose, the net charge at the amino terminus of the internal signal was changed from +2 to +1 and -1 and, at the carboxyl terminus of the signal, from 0 to -1 or +1. These mutations had no effect on the membrane assembly of leader peptidase, suggesting that the charges have little role in the signal function. The apolar core of this signal was disrupted by substitution of basic amino acids for apolar residues. Substitution of an arginyl residue at position 70, or two arginyl residues at position 67 and 69, prevented membrane assembly. However, substitution of an arginyl residue at position 66 or either arginyl or lysyl residue at position 68 was without effect. Thus, while the apolar character of the internal signal is important, the precise position of a charged residue determines its effect on assembly.  相似文献   

4.
G Cao  A Kuhn    R E Dalbey 《The EMBO journal》1995,14(5):866-875
The role of the membrane electrochemical potential in the translocation of acidic and basic residues across the membrane was investigated with the M13 procoat protein, which has a short periplasmic loop, and leader peptidase, which has an extended periplasmically located N-terminal tail. For both proteins we find that the membrane potential promotes membrane transfer only when negatively charged residues are present within the translocated domain. When these residues are substituted by uncharged amino acids, the proteins insert into the membrane independently of the potential. In contrast, when a positively charged residue is present within the N-terminal tail of leader peptidase, the potential impedes translocation of the tail domain. However, an impediment was not observed in the case of the procoat protein, where positively charged residues in the central loop are translocated even in the presence of the membrane potential. Intriguingly, several of the negatively charged procoat proteins required the SecA and SecY proteins for optimal translocation. The studies reported here provide insights into the role of the potential in membrane protein assembly and suggest that electrophoresis can play an important role in controlling membrane topology.  相似文献   

5.
Leader peptidase, an integral membrane protein of Escherichia coli, is made without a cleavable leader sequence. It has 323 amino acid residues and spans the plasma membrane with a small amino-terminal domain exposed to the cytoplasm and a large, carboxyl-terminal domain exposed to the periplasm. We have investigated which regions of leader peptidase are necessary for its assembly across the membrane. Deletions were made in the carboxyl-terminal domain of leader peptidase, removing residues 141-222, 142-323, or 222-323. Protease accessibility was used to determine whether the polar, carboxyl-terminal domains of these truncated leader peptidases were translocated across the membrane. The removal of either residues 222-323 (the extreme carboxyl terminus) or residues 141-222 does not prevent leader peptidase membrane assembly. However, leader peptidase lacking both regions, i.e. amino acid residues 142-323, cannot translocate the remaining portion of its carboxyl terminus across the membrane. Our data suggest that the polar, periplasmic domain of leader peptidase contains information which is needed for membrane assembly.  相似文献   

6.
The 20-amino acid signal peptide of human pre (delta pro)apolipoprotein A-II contains the tripartite domain structure typical of eukaryotic prepeptides, i.e. a positively charged NH2-terminal (n) region, a hydrophobic core (h) region, and a COOH-terminal polar domain (c region). This signal sequence has multiple potential sites for cotranslational processing making it an attractive model for assessing the consequences of systematic structural alterations on the site selected for signal peptidase cleavage. We previously analyzed 40 mutant derivatives of this model preprotein using an in vitro translation/canine microsome processing assay. The results showed that the position of the boundary between the h and c regions and properties of the -1 residue are critical in defining the site of cotranslational cleavage. To investigate whether structural features in the NH2-terminal region of signal peptides play a role in cleavage specificity, we have now inserted various amino acids between the positively charged n region (NH2-Met-Lys) and the h region of a "parental" pre(delta pro)apoA-II mutant that has roughly equal cleavage between Gly18 decreases and Gly20 decreases. Movement of the n/h boundary toward the NH2 terminus results in a dramatic shift in cleavage to Gly18 decreases. Replacement of the Lys2 residue with hydrophilic, negatively charged residues preserves the original sites of cleavage. Replacement with a hydrophobic residue causes cleavage to shift "upstream." Simultaneous alteration of the position of n/h and h/c boundaries has an additive effect on the site of signal peptidase cleavage. None of these mutations produced a marked decrease in the efficiency of in vitro cotranslational translocation or cleavage. However, in sequence contexts having poor signal function, introduction of hydrophobic residues between the n and h regions markedly improved the efficiency of translocation/processing. We conclude that the position of the n/h boundary as well as positioning of the h/c boundary affects the site of cleavage chosen by signal peptidase.  相似文献   

7.
Type I signal peptidase (SPase I) catalyzes the cleavage of the amino-terminal signal sequences from preproteins destined for cell export. Preproteins contain a signal sequence with a positively charged n-region, a hydrophobic h-region, and a neutral but polar c-region. Despite having no distinct consensus sequence other than a commonly found c-region "Ala-X-Ala" motif preceding the cleavage site, signal sequences are recognized by SPase I with high fidelity. Remarkably, other potential Ala-X-Ala sites are not cleaved within the preprotein. One hypothesis is that the source of this fidelity is due to the anchoring of both the SPase I enzyme (by way of its transmembrane segment) and the preprotein substrate (by the h-region in the signal sequence) in the membrane. This limits the enzyme-substrate interactions such that cleavage occurs at only one site. In this work we have, for the first time, successfully isolated Bacillus subtilis type I signal peptidase (SipS) and a truncated version lacking the transmembrane domain (SipS-P2). With purified full-length as well as truncated constructs of both B. subtilis and Escherichia coli (Lep) SPase I, in vitro specificity studies indicate that the transmembrane domains of either enzyme are not important determinants of in vitro cleavage fidelity, since enzyme constructs lacking them reveal no alternate site processing of pro-OmpA nuclease A substrate. In addition, experiments with mutant pro-OmpA nuclease A substrate constructs indicate that the h-region of the signal peptide is also not critical for substrate specificity. In contrast, certain mutants in the c-region of the signal peptide result in alternate site cleavage by both Lep and SipS enzymes.  相似文献   

8.
9.
A Kuhn  H Y Zhu    R E Dalbey 《The EMBO journal》1990,9(8):2385-2389
The coat protein of bacteriophage M13 is inserted into the Escherichia coli plasma membrane as a precursor protein, termed procoat, with a typical leader peptide of 23 amino acid residues. Its membrane insertion requires the electrochemical potential but not the cellular components SecA and SecY. Since the electrochemical gradients result in the periplasmic side of the membrane being positively charged, the membrane potential could contribute to the transfer of the negatively charged central region of procoat across the membrane. Here we demonstrate that the central domain following the leader peptide can be translocated across the membrane even when the net charge of the region is changed from -3 to +3. This rules out an electrophoresis-like insertion mechanism for procoat. We also show that the sec independence of procoat insertion is linked to the presence of the second apolar domain. The deletion of most of the second apolar domain from a procoat fusion protein results in sec dependent membrane insertion of the hybrid protein. Moreover, like other proteins that require the sec genes, translocation of this sec dependent procoat protein is inhibited when positively charged residues are introduced after the leader peptide. Loop models involving one or two hydrophobic regions are presented that account for the differences in tolerance of positively charged residues.  相似文献   

10.
Leader peptidase of Escherichia coli spans the plasma membrane twice with its amino terminus on the periplasmic surface of the membrane and its large carboxyl-terminal domain protruding into the periplasm. To monitor the transfer of the amino terminus of leader peptidase to the periplasm, we have constructed a fusion protein between the 18-residue amino-terminal periplasmic domain of Pf3 bacteriophage coat protein and the beginning of leader peptidase. We find that neither the SecA or SecY proteins nor a transmembrane electrochemical potential is required for insertion of the amino terminus, while the transfer of the carboxyl-terminal domain of leader peptidase has these requirements. The first 35 residues of leader peptidase, which include the first hydrophobic domain and the carboxyl-terminal positively charged cluster, are sufficient to insert the amino terminus. When positively charged residues are introduced before the first transmembrane segment, translocation of the amino terminus is abolished. These studies in protein membrane topogenesis, showing that there are different requirements for amino and carboxyl termini insertion, indicate that multiple mechanisms exist even within the same protein.  相似文献   

11.
Leader peptidase   总被引:10,自引:1,他引:9  
The Escherichia coli leader peptidase has been vital for unravelling problems in membrane assembly and protein export. The role of this essential peptidase is to remove amino-terminal leader peptides from exported proteins after they have crossed the plasma membrane. Strikingly, almost all periplasmic proteins, many outer membrane proteins, and a few inner membrane proteins are made with cleavable leader peptides that are removed by this peptidase. This enzyme of 323 amino acid residues spans the membrane twice, with its large carboxyl-terminal domain protruding into the periplasm. Recent discoveries show that its membrane orientation is controlled by positively charged residues that border (on the cytosolic side) the transmembrane segments. Cleavable pre-proteins must have small residues at -1 and a small or aliphatic residue at -3 (with respect to the cleavage site). Leader peptidase does not require a histidine or cysteine amino acid for catalysis. Interestingly, serine 90 and aspartic acid 153 are essential for catalysis and are also conserved in a mitochondrial leader peptidase, which is 30.7% homologous with the bacterial enzyme over a 101-residue stretch.  相似文献   

12.
We examined the fine structure of the type I signal-anchor sequence of synaptotagmin II, which has a 60-residue N-terminal domain followed by a hydrophobic region (H-region), focusing on the hinge region between the N-terminal and the H-regions. It was found that the charged or highly polar residues support the translocation of the N-terminal domain through the endoplasmic reticulum membrane at specific positions in the hinge. The residue requirement correlated with the turn propensity scale for transmembranes. It is suggested that a certain conformation, likely helical hairpin, in the hinge is critical for N-terminal domain translocation.  相似文献   

13.
Uncleaved signal-anchor sequences of membrane proteins inserted into the endoplasmic reticulum initiate the translocation of either the amino-terminal or the carboxyl-terminal polypeptide segment across the bilayer. Which topology is acquired is not determined by the apolar segment of the signal but rather by the hydrophilic sequences flanking it. To study the role of charged residues in determining the membrane topology, the insertion of mutants of the asialoglycoprotein receptor H1, a single-spanning protein with a cytoplasmic amino terminus, was analyzed in transfected COS-7 cells. When the charged amino acids flanking the hydrophobic signal were mutated to residues of opposite charge, half the polypeptides inserted with the inverted orientation. When, in addition, the amino-terminal domain of the mutant protein was truncated, approximately 90% of the polypeptides acquired the inverted topology. The transmembrane orientation appears to be primarily determined by the charges flanking the signal sequence but is modulated by the domains to be translocated.  相似文献   

14.
Beaudoin F  Napier JA 《Planta》2002,215(2):293-303
A range of N- and C-terminal deletions of an oleosin from Helianthus annuus L. were used to study the endoplasmic reticulum (ER) targeting and membrane insertion of this protein both in vitro and in vivo in yeast ( Saccharomyces cerevisiae). Neither the N- nor the C-terminal hydrophilic domains are important for targeting and/or membrane insertion, with all the information required for these processes located within the central hydrophobic region of the protein. However, in vitro membrane-insertion experiments suggest that these domains are important for a correct topology of the oleosin within the ER membrane. The first half of the hydrophobic central domain, flanked by the positively charged N-terminal domain, is likely to function as a type-II signal-anchor (SAII) sequence. However, in the absence of the N-terminal 26 residues of this domain, the proline-knot region and the second half of this hydrophobic domain are sufficient to direct oleosin to the ER and to allow stable (but far less efficient) integration of the protein into the membrane. Taken together, these results indicate that oleosin contains more than one domain that is capable of interacting with the signal recognition particle to direct the protein to the ER membrane.  相似文献   

15.
G D Parks  R A Lamb 《Cell》1991,64(4):777-787
We have tested the role of different charged residues flanking the sides of the signal/anchor (S/A) domain of a eukaryotic type II (N(cyt)C(exo)) integral membrane protein in determining its topology. The removal of positively charged residues on the N-terminal side of the S/A yields proteins with an inverted topology, while the addition of positively charged residues to only the C-terminal side has very little effect on orientation. Expression of chimeric proteins composed of domains from a type II protein (HN) and the oppositely oriented membrane protein M2 indicates that the HN N-terminal domain is sufficient to confer a type II topology and that the M2 N-terminal ectodomain can direct a type II topology when modified by adding positively charged residues. These data suggest that eukaryotic membrane protein topology is governed by the presence or absence of an N-terminal signal for retention in the cytoplasm that is composed in part of positive charges.  相似文献   

16.
The capsid (C) protein of alphaviruses consists of two protein domains: a serine protease at the COOH terminus and an NH2-terminal domain which is thought to interact with RNA in the virus nucleocapsid (NC). The latter domain is very rich in positively charged amino acid residues. In this work, we have introduced large deletions into the corresponding region of a full-length cDNA clone of Semliki Forest virus, expressed the transcribed RNA in BHK-21 cells, and monitored the autoprotease activity of C, the formation of intracellular NCs, and the release of infectious virus. Our results show that if the gene region encoding the whole NH2-terminal domain is removed, the expressed C protein fragment cannot assemble into NCs and virus particles but it is still able to function as an autoprotease. Thus, these results underline the general importance of the NH2-terminal domain in the virus assembly process and furthermore show that the serine protease domain can function independently of the NH2 terminus. Surprisingly, analysis of additional C protein deletion variants showed that not all of the NH2-terminal domain is required for virus assembly, but large deletions involving up to one-third of its positively charged residues are still compatible with NC and virus formation. The fact that so much flexibility is allowed in the structure of the NH2-terminal domain of C suggests that most of this region is involved in nonspecific interactions with the encapsidated RNA, probably through its positively charged amino acid residues.  相似文献   

17.
We have investigated the features of single-span model membrane proteins based upon leader peptidase that determines whether the proteins insert by a YidC/Sec-independent, YidC-only, or YidC/Sec mechanism. We find that a protein with a highly hydrophobic transmembrane segment that inserts into the membrane by a YidC/Sec-independent mechanism becomes YidC-dependent if negatively charged residues are inserted into the translocated periplasmic domain or if the hydrophobicity of the transmembrane segment is reduced by substituting polar residues for nonpolar ones. This suggests that charged residues in the translocated domain and the hydrophobicity within the transmembrane segment are important determinants of the insertion pathway. Strikingly, the addition of a positively charged residue to either the translocated region or the transmembrane region can switch the insertion requirements such that insertion requires both YidC and SecYEG. To test conclusions from the model protein studies, we confirmed that a positively charged residue is a SecYEG determinant for the endogenous proteins ATP synthase subunits a and b and the TatC subunit of the Tat translocase. These findings provide deeper insights into how pathways are selected for the insertion of proteins into the Escherichia coli inner membrane.  相似文献   

18.
A total of 37 separate mutants containing single and multiple amino acid substitutions in the leader and amino-terminal conserved region of the Type IV pilin from Pseudomonas aeruginosa were generated by oligonucleotide-directed mutagenesis. The effect of these substitutions on the secretion, processing, and assembly of the pilin monomers into mature pili was examined. The majority of substitutions in the highly conserved amino-terminal region of the pilin monomer had no effect on piliation. Likewise, substitution of several of the residues within the six amino acid leader sequence did not affect secretion and leader cleavage (processing), including replacement of one or both of the positively charged lysine residues with uncharged or negatively charged amino acids. One characteristic of the Type IV pili is the presence of an amino-terminal phenylalanine after leader peptide cleavage which is N-methylated prior to assembly of pilin monomers into pili. Substitution of the amino-terminal phenylalanine with a number of other amino acids, including polar, hydrophobic, and charged residues, did not affect proper leader cleavage and subsequent assembly into pili. Amino-terminal sequencing showed that the majority of substitute residues were also methylated. Substitution of the glycine residue at the -1 position to the cleavage site resulted in the inability to cleave the prepilin monomers and blocked the subsequent assembly of monomers into pili. These results indicate that despite the high degree of conservation in the amino-terminal sequences of the Type IV pili, N-methylphenylalanine at the +1 position relative to the leader peptide cleavage site is not strictly required for pilin assembly. N-Methylation of the amino acids substituted for phenylalanine was shown to have taken place in four of the five mutants tested, but it remains unclear as to whether pilin assembly is dependent on this modification. Recognition and proper cleavage of the prepilin by the leader peptidase appears to be dependent only on the glycine residue at the -1 position. Cell fractionation experiments demonstrated that pilin isolated from mutants deficient in prepilin processing and/or assembly was found in both inner and outer membrane fractions, indistinguishable from the results seen with the wild type.  相似文献   

19.
An N-terminal deletion mutant of preproparathyroid hormone that contains a single basic amino acid, lysine, in the N-terminal domain of the signal peptide is translocated across the endoplasmic reticulum membrane similarly to intact preproparathyroid hormone. To examine the function of charged residues preceeding the hydrophobic core, the lysine was replaced by an uncharged (methionine) or negatively charged (glutamic acid) amino acid. The translocational activity of the mutant signal peptides was assayed in a reticulocyte lysate system containing chicken oviduct microsomal membranes. Altering the net charge of the N-terminal domain did not abolish signal sequence activity, although the efficiency of translocation was decreased for the mutant with a glutamic acid substitution. Posttranslational, ribosome independent, translocation was observed for all the mutants tested, with the same dependence on N-terminal charge but with much lower efficiency than cotranslational translocation. These studies show that the presence of basic amino acids in the N-terminal domain of a eukaryotic signal sequence is not required for its activity.  相似文献   

20.
The introduction of positive charges at the amino terminus of the mature domain of secretory proteins resulted in strong inhibition of their translocation across the cytoplasmic membrane of Escherichia coli, both in vitro and in vivo. The model secretory proteins used were OmpF-Lpp chimeric proteins possessing a cleavable or uncleavable signal peptide, beta-lactamase (Bla) and Bla-Lpp chimeric proteins. It is suggested that positively charged residues preceding the hydrophobic domain of the signal peptide have a positive effect, and ones following the hydrophobic domain, a negative effect on the translocation. These findings are discussed in relation to the orientation of membrane proteins, of which positive charges are predominant on the cytoplasmic surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号