首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloacal swabs were collected from teal (Anas crecca, Anas cyanoptera, Anas discors), mottled duck (Anas fulvigula) and northern pintail (Anas acuta) in Brazoria County, Texas, USA, during February 2001, mottled ducks during August 2001, and blue-winged teal (A. discors) during February 2002. Prevalence of avian influenza virus (AIV) infections during each sampling period were 11, 0, and 15%, respectively. The hemagglutinin (H) subtypes H2 and H7 were detected in both years, while the H8 subtype was detected in 2001 and the H1 subtype was detected in 2002. Avian paramyxovirus type 1 (APMV-1) was isolated from 13% of mottled ducks sampled in August 2001 and 30.7% of teal in February 2002. The season of isolation of both viruses and the majority of the AIV subtypes detected in this study are not typical based on previous reports of these viruses from North American ducks.  相似文献   

2.
3.
Cloacal and tracheal swabs were collected from 1,409 hunter-killed ducks in Cameron Parish, Louisiana, during the 1986 and 1987 waterfowl seasons. Thirty avian paramyxoviruses (PMV's) were isolated from 605 blue-winged teal (Anas discors), 75 mottled ducks (A. fulvigula), 375 gadwalls (A. strepera), 334 green-winged teal (A. crecca), and 20 mallards (A. platyrhynchos). Prevalence of PMV decreased (P = 0.042) from September (4%) through November (2%) to December and January (1%). Juveniles had a higher prevalence of PMV (P less than 0.0001) than adults. An isolate from resident mottled ducks documents transmission of PMV's on the coastal wintering areas of Louisiana. The four serotypes isolated, PMV-1, PMV-4, PMV-6, and PMV-8, were typical of PMV's commonly associated with free-living waterfowl.  相似文献   

4.
Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards‐ a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate‐distance (9.6%) and long‐distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year‐round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories.  相似文献   

5.
The role of many wild waterbird species in the ecology and epidemiology of avian influenza viruses (AIV) remains unclear. We report the first isolation of AIV from American White Pelicans (Pelecanus erythrorhynchos; Pelecaniformes) in North America. Two H13N9 AIVs were isolated from hatchling birds in breeding colonies in Minnesota, USA, during 2007 and 2008. Based on molecular sequencing of the hemagglutinin and neuraminidase genes, the 2008 virus was genetically related to AIVs previously isolated from gulls and shorebirds in North America. The 2007 isolate was most related to AIVs from Eurasian gulls and North American ducks, reflecting both global movement of these viruses and reassortment between viruses associated with duck and gull reservoirs.  相似文献   

6.
Wild birds, including waterfowl such as ducks, are reservoir hosts of influenza A viruses. Despite the increased number of avian influenza virus (AIV) genome sequences available, our understanding of AIV genetic structure and transmission through space and time in waterfowl in North America is still limited. In particular, AIVs in ducks of the Atlantic flyway of North America have not been thoroughly investigated. To begin to address this gap, we analyzed 109 AIV genome sequences from ducks in the Atlantic flyway to determine their genetic structure and to document the extent of gene flow in the context of sequences from other locations and other avian and mammalian host groups. The analyses included 25 AIVs from ducks from Newfoundland, Canada, from 2008–2011 and 84 available reference duck AIVs from the Atlantic flyway from 2006–2011. A vast diversity of viral genes and genomes was identified in the 109 viruses. The genetic structure differed amongst the 8 viral segments with predominant single lineages found for the PB2, PB1 and M segments, increased diversity found for the PA, NP and NS segments (2, 3 and 3 lineages, respectively), and the highest diversity found for the HA and NA segments (12 and 9 lineages, respectively). Identification of inter-hemispheric transmissions was rare with only 2% of the genes of Eurasian origin. Virus transmission between ducks and other bird groups was investigated, with 57.3% of the genes having highly similar (≥99% nucleotide identity) genes detected in birds other than ducks. Transmission between North American flyways has been frequent and 75.8% of the genes were highly similar to genes found in other North American flyways. However, the duck AIV genes did display spatial distribution bias, which was demonstrated by the different population sizes of specific viral genes in one or two neighbouring flyways compared to more distant flyways.  相似文献   

7.
To evaluate the role of the F protein cleavage site in the replication and pathogenicity of avian paramyxoviruses (APMVs), we constructed a reverse genetics system for recovery of infectious recombinant APMV-4 from cloned cDNA. The recovered recombinant APMV-4 resembled the biological virus in growth characteristics in vitro and in pathogenicity in vivo. The F cleavage site sequence of APMV-4 (DIQPR↓F) contains a single basic amino acid, at the -1 position. Six mutant APMV-4 viruses were recovered in which the F protein cleavage site was mutated to contain increased numbers of basic amino acids or to mimic the naturally occurring cleavage sites of several paramyxoviruses, including neurovirulent and avirulent strains of NDV. The presence of a glutamine residue at the -3 position was found to be important for mutant virus recovery. In addition, cleavage sites containing the furin protease motif conferred increased replication and syncytium formation in vitro. However, analysis of viral pathogenicity in 9-day-old embryonated chicken eggs, 1-day-old and 2-week-old chickens, and 3-week-old ducks showed that none the F protein cleavage site mutations altered the replication, tropism, and pathogenicity of APMV-4, and no significant differences were observed among the parental and mutant APMV-4 viruses in vivo. Although parental and mutant viruses replicated somewhat better in ducks than in chickens, they all were highly restricted and avirulent in both species. These results suggested that the cleavage site sequence of the F protein is not a limiting determinant of APMV-4 pathogenicity in chickens and ducks.  相似文献   

8.
The role wild bird species play in the transmission and ecology of avian influenza virus (AIV) is well established; however, there are significant gaps in our understanding of the worldwide distribution of these viruses, specifically about the prevalence and/or significance of AIV in Central and South America. As part of an assessment of the ecology of AIV in Guatemala, we conducted active surveillance in wild birds on the Pacific and Atlantic coasts. Cloacal and tracheal swab samples taken from resident and migratory wild birds were collected from February 2007 to January 2010.1913 samples were collected and virus was detected by real time RT-PCR (rRT-PCR) in 28 swab samples from ducks (Anas discors). Virus isolation was attempted for these positive samples, and 15 isolates were obtained from the migratory duck species Blue-winged teal. The subtypes identified included H7N9, H11N2, H3N8, H5N3, H8N4, and H5N4. Phylogenetic analysis of the viral sequences revealed that AIV isolates are highly similar to viruses from the North American lineage suggesting that bird migration dictates the ecology of these viruses in the Guatemalan bird population.  相似文献   

9.
Twenty-eight Harlequin Ducks (Histrionicus histrionicus) and 26 Barrow's Goldeneyes (Bucephala islandica) were captured in Prince William Sound, Alaska, between 1 and 15 March 2005. Blood was collected for quantification of element concentrations, prevalence of antibodies to several viruses, and hemoparasite prevalence and identification. Although we found selenium concentrations that have been associated with selenosis in some birds (>or=2.0 ppm ww), our findings contribute to a growing literature describing relatively high selenium in apparently healthy birds in marine environments. Avian influenza virus antibodies were detected in the plasma of 28% of the ducks. No antibodies against adenovirus, reovirus, or paramyxovirus 1 were detected. Several hemo-parasite species were identified in 7% of ducks. Our findings are similar to those in other free-living marine waterfowl and do not indicate unusual concerns for the health of these species in this area in late winter.  相似文献   

10.
In order to investigate the potential role of arctic geese in the epidemiology, the spatial and temporal spread of selected avian diseases, in autumn 2002, a virological and serological survey designed as capture-mark-resighting study was conducted in one of the most important coastal resting sites for migratory waterfowl in Germany. Oropharyngeal, cloacal swabs and blood samples were collected from a total of 147 birds comprising of three different arctic geese species including White-fronted Goose (Anser albifrons), Tundra Bean Goose (Anser fabalis rossicus), Pink-footed Goose (Anser brachyrhynchus) as well as from 29 non-migratory Canada Geese (Branta canadensis). Altogether, six adeno-like viruses (ALV; 95% CI, 1.74?C9.92%) and two avian paramyxoviruses (APMV-4; 95% CI, 0.19?C5.53%) were isolated mainly from juvenile White-fronted Geese. In addition, four Canada Geese were infected with lentogenic APMV-1 (95% CI, 3.89?C31.66%) at the date of sampling. No avian influenza viruses, reo-like viruses could be isolated despite serological evidence. Likewise, no evidence of current or previous infection by West Nile virus was found. Of the 147 birds tagged in the following years, 137 birds were re-sighted between 2002 and 2008 accumulating to 1925 sightings. About 90% of all sightings were reported from the main wintering and resting sites in Germany and The Netherlands. Eight of the resighted geese were virus positive (ALV and APMV-4) at the time point of sampling in 2002.  相似文献   

11.
Achenbach JE  Bowen RA 《PloS one》2011,6(3):e17643
Waterfowl and shorebirds harbor and shed all hemagglutinin and neuraminidase subtypes of influenza A viruses and interact in nature with a broad range of other avian and mammalian species to which they might transmit such viruses. Estimating the efficiency and importance of such cross-species transmission using epidemiological approaches is difficult. We therefore addressed this question by studying transmission of low pathogenic H5 and H7 viruses from infected ducks to other common animals in a quasi-natural laboratory environment designed to mimic a common barnyard. Mallards (Anas platyrhynchos) recently infected with H5N2 or H7N3 viruses were introduced into a room housing other mallards plus chickens, blackbirds, rats and pigeons, and transmission was assessed by monitoring virus shedding (ducks) or seroconversion (other species) over the following 4 weeks. Additional animals of each species were directly inoculated with virus to characterize the effect of a known exposure. In both barnyard experiments, virus accumulated to high titers in the shared water pool. The H5N2 virus was transmitted from infected ducks to other ducks and chickens in the room either directly or through environmental contamination, but not to rats or blackbirds. Ducks infected with the H7N2 virus transmitted directly or indirectly to all other species present. Chickens and blackbirds directly inoculated with these viruses shed significant amounts of virus and seroconverted; rats and pigeons developed antiviral antibodies, but, except for one pigeon, failed to shed virus.  相似文献   

12.
ABSTRACT.   To assess population trends of Harlequin Ducks ( Histrionicus histrionicus ) in Rhode Island (U.S.A.), we analyzed Christmas Bird Counts and other historical surveys and also conducted surveys during the winter of 2005–2006. We estimated sex and age ratios, evaluated the effects of tidal regime and time of day on survey precision, and quantified habitat use. The population in Rhode Island experienced logistic growth from 1976 to 2004, with approximately 150 birds now wintering at three primary sites in the state. We estimated that the current ratio of males to females in the region was 1.6:1 (62% males) and that 13% of males were first-winter birds. Most Harlequin Ducks were observed in rocky habitats within 50 m of the shore or offshore islands. We detected the greatest numbers of birds, with the least amount of variation, during morning surveys at low tide, suggesting that this may be the most appropriate time for population monitoring. Increases in the Rhode Island population and male-biased sex ratios may indicate a local population recovery resulting from a hunting ban initiated in 1990. Although most Harlequin Ducks in eastern North America winter in Maine, the population in Rhode Island represents one of the largest in the southern part of their range.  相似文献   

13.
Our understanding of the global ecology of avian influenza A viruses (AIVs) is impeded by historically low levels of viral surveillance in Latin America. Through sampling and whole-genome sequencing of 31 AIVs from wild birds in Peru, we identified 10 HA subtypes (H1-H4, H6-H7, H10-H13) and 8 NA subtypes (N1-N3, N5-N9). The majority of Peruvian AIVs were closely related to AIVs found in North America. However, unusual reassortants, including a H13 virus containing a PA segment related to extremely divergent Argentinian viruses, suggest that substantial AIV diversity circulates undetected throughout South America.  相似文献   

14.
15.
近年来华东地区家鸭中禽流感病毒的亚型分布   总被引:3,自引:0,他引:3  
[目的]为了研究近年来华东地区家鸭中禽流感病毒的亚型分布情况.[方法]对2002-2006年分离自华东地区家鸭的180株禽流感病毒的HA亚型和其中88株禽流感病毒的NA亚型分别进行了测定.[结果]近年来华东地区家鸭中至少存在9种HA亚型和6种NA亚型组成的H1N1,H3N1,H3N2,H3N8,H4N6,H5N1,H5N2,H6N2,H6N8,H8N4,H9N2,H10N3,H11N2共13种亚型的禽流感病毒.[结论]华东地区家鸭中有多种亚型的禽流感病毒分布,应加强家鸭禽流感的监测和防制工作.  相似文献   

16.
Concerns about the spread of avian influenza viruses (AIVs) have led to cloacal swab sampling of hundreds of thousands of birds worldwide as part of AIV surveillance schemes, but the effects of cloacal swabbing have not been adequately evaluated. We tested for differences between swabbed, swabbed and bled, and non‐sampled wild ducks in terms of live re‐encounter and dead recoveries for Common Pochard Aythya ferina and Tufted Duck Aythya fuligula, and also determined re‐encounter and recovery rates for Mallard Anas platyrhynchos and Common Teal Anas crecca. No effects of sampling methods were detected, except in Teal. Re‐encounter rates were lower in sampled Teal than in controls, with annual re‐encounter probabilities being 25% and 35% lower in males and females, respectively. Teal possibly left or avoided sampling sites, or sought sites where they were less detectable after sampling. In general, no deleterious effects were found, suggesting that cloacal swabbing and blood sampling are suitable methods for conducting AIV surveillance in ducks.  相似文献   

17.
Waterbirds represent the major natural reservoir for low pathogenic (LP) avian influenza viruses (AIV). Among the wide diversity of subtypes that have been described, two of them (H5 and H7) may become highly pathogenic (HP) after their introduction into domestic bird populations and cause severe outbreaks, as is the case for HP H5N1 in South-Eastern Asia. Recent experimental studies demonstrated that HP H5N1 AIV infection in ducks does not necessarily have significant pathological effects. These results suggest that wild migratory ducks may asymptomatically carry HP AIV and potentially spread viruses over large geographical distances. In this study, we investigated the potential spreading distance of HP AIV by common teal (Anas crecca), mallard (A. platyrhynchos), and Eurasian pochard (Aythya ferina). Based on capture-mark-recapture method, we characterized their wintering movements from a western Mediterranean wetland (Camargue, South of France) and identified the potential distance and direction of virus dispersal. Such data may be crucial in determining higher-risk areas in the case of HP AIV infection detection in this major wintering quarter, and may serve as a valuable reference for virus outbreaks elsewhere.  相似文献   

18.
Surveillance for avian influenza viruses in wild birds was initiated in Canada in 2005. In 2006, in order to maximize detection of highly pathogenic avian influenza viruses, the sampling protocol used in Canada's Inter-agency Wild Bird Influenza Survey was changed. Instead of collecting a single cloacal swab, as previously done in 2005, cloacal and oropharyngeal swabs were combined in a single vial at collection. In order to compare the two sampling methods, duplicate samples were collected from 798 wild dabbling ducks (tribe Anatini) in Canada between 24 July and 7 September 2006. Low pathogenic avian influenza viruses were detected significantly more often (P<0.0001) in combined oropharyngeal and cloacal samples (261/798, 33%) than in cloacal swabs alone (205/798, 26%). Compared to traditional single cloacal samples, combined samples improved virus detection at minimal additional cost.  相似文献   

19.
Migratory waterfowl of the world are the natural reservoirs of influenza viruses of all known subtypes. However, it is unknown whether these waterfowl perpetuate highly pathogenic (HP) H5 and H7 avian influenza viruses. Here we report influenza virus surveillance from 2001 to 2006 in wild ducks in Alberta, Canada, and in shorebirds and gulls at Delaware Bay (New Jersey), United States, and examine the frequency of exchange of influenza viruses between the Eurasian and American virus clades, or superfamilies. Influenza viruses belonging to each of the subtypes H1 through H13 and N1 through N9 were detected in these waterfowl, but H14 and H15 were not found. Viruses of the HP Asian H5N1 subtypes were not detected, and serologic studies in adult mallard ducks provided no evidence of their circulation. The recently described H16 subtype of influenza viruses was detected in American shorebirds and gulls but not in ducks. We also found an unusual cluster of H7N3 influenza viruses in shorebirds and gulls that was able to replicate well in chickens and kill chicken embryos. Genetic analysis of 6,767 avian influenza gene segments and 248 complete avian influenza viruses supported the notion that the exchange of entire influenza viruses between the Eurasian and American clades does not occur frequently. Overall, the available evidence does not support the perpetuation of HP H5N1 influenza in migratory birds and suggests that the introduction of HP Asian H5N1 to the Americas by migratory birds is likely to be a rare event.  相似文献   

20.
Despite the existence of 10 avian paramyxovirus (APMV) serotypes, very little is known about the distribution, host species, and ecological factors affecting virus transmission. To better understand the relationship among these factors, we conducted APMV wild bird surveillance in regions of Ukraine suspected of being intercontinental (north to south and east to west) flyways. Surveillance for APMV was conducted in 6,735 wild birds representing 86 species and 8 different orders during 2006 to 2011 through different seasons. Twenty viruses were isolated and subsequently identified as APMV-1 (n = 9), APMV-4 (n = 4), APMV-6 (n = 3), and APMV-7 (n = 4). The highest isolation rate occurred during the autumn migration (0.61%), with viruses isolated from mallards, teals, dunlins, and a wigeon. The rate of isolation was lower during winter (December to March) (0.32%), with viruses isolated from ruddy shelducks, mallards, white-fronted geese, and a starling. During spring migration, nesting, and postnesting (April to August) no APMV strains were isolated out of 1,984 samples tested. Sequencing and phylogenetic analysis of four APMV-1 and two APMV-4 viruses showed that one APMV-1 virus belonging to class 1 was epidemiologically linked to viruses from China, three class II APMV-1 viruses were epidemiologically connected with viruses from Nigeria and Luxembourg, and one APMV-4 virus was related to goose viruses from Egypt. In summary, we have identified the wild bird species most likely to be infected with APMV, and our data support possible intercontinental transmission of APMVs by wild birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号