首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

2.
Hypobaric hypoxia induces oxidative stress in rat brain   总被引:7,自引:0,他引:7  
High altitude exposure results in decreased partial pressure of oxygen and an increased formation of reactive oxygen and nitrogen species (RONS), which causes oxidative damage to lipids, proteins and DNA. Exposure to high altitude appears to decrease the activity and effectiveness of antioxidant enzyme system. The antioxidant system is very less in brain tissue and is very much susceptible to hypoxic stress. The aim of the present study was to investigate the time dependent and region specific changes in cortex, hippocampus and striatum on oxidative stress markers on chronic exposure to hypobaric hypoxia. The rats were exposed to simulated high altitude equivalent to 6100 m in animal decompression chamber for 3 and 7 days. Results indicate an increase in oxidative stress as seen by increase in free radical production, nitric oxide level, lipid peroxidation and lactate dehydrogenase levels. The magnitude of increase in oxidative stress was more in 7 days exposure group as compared to 3 days exposure group. The antioxidant defence system such as reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and reduced/oxidized glutathione (GSH/GSSG) levels were significantly decreased in all the three regions. The observation suggests that the hippocampus is more susceptible to hypoxia than the cortex and striatum. It may be concluded that hypoxia differentially affects the antioxidant status in the cortex, hippocampus and striatum.  相似文献   

3.
In a previous study we demonstrated that acute footshock stress increased glutathione peroxidase activity in the prefrontal cortex and striatum of adult male rats. Adolescents may respond differently to stress as life stressors may be greater than at other ages. The present study examined the effects of the acute footshock stress on superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities and thiobarbituric acid reactive substances (TBARS) levels in adolescent male and female rat brains. We demonstrated that acute footshock stress increased SOD activity in the prefrontal cortex, and increased GPx activity in the hippocampus in female rats. In males, acute footshock stress increased GPx activity in the prefrontal cortex and hippocampus. Footshock stress did not change TBARS levels. These results indicate a strong role of gender in the response of adolescent subjects to various aspects of stress.  相似文献   

4.
5.
Juvenile female and male (young) and 16-mo-old male (old) rats inhaled manganese in the form of manganese sulfate (MnSO4) at 0, 0.01, 0.1, and 0.5 mg Mn/m3 or manganese phosphate at 0.1 mg Mn/m3 in exposures of 6h/d, 5d/wk for 13 wk. We assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Although most brain regions in the three groups of animals were unaffected by manganese exposure in terms of GS protein levels, there was significantly increased protein (p<0.05) in the hippocampus and decreased protein in the hypothalamus of young male rats exposed to manganese phosphate as well as in the aged rats exposed to 0.1 mg/m3 MnSO4. Conversely, GS protein was elevated in the olfactory bulb of females exposed to the high dose of MnSO4. Statistically significant decreases (p<0.05) in MT and GS mRNA as a result, of manganese exposure were observed in the cerebellum, olfactory bulb, and hippocampus in the young male rats, in the hypothalamus in the young female rats, and in the hippocampus in the senescent males. Total GSH levels significantly (p<0.05) decreased in the olfactory bulb of manganese exposed young male rats and increased in the olfactory bulb of female rats exposed to manganese. Both the aged and young female rats had significantly decreased (p<0.05) GSH in the striatum resulting from manganese inhalation. The old male rats also had depleted GSH levels in the cerebellum and hypothalamus as a result, of the 0.1-mg/m3 manganese phosphate exposure. These results demonstrate that age and sex are variables that must be considered whenassessing the neurotoxicity of manganese.  相似文献   

6.
Neonatal female and male rats were exposed to airborne manganese sulfate (MnSO4) during gestation and postnatal d 1–18. Three weeks post-exposure, rats were killed and we assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Overall, there was a statistically significant effect of manganese exposure on decreasing brain GS protein levels (p=0.0061), although only the highest dose of manganese (1 mg Mn/m3) caused a significant increase in GS messenger RNA (mRNA) in both the hypothalamus and olfactory bulb of male rats and a significant decrease in GS mRNA in the striatum of female rats. This highest dose of manganese had no effect on MT mRNA in either males or females; however, the lowest dose (0.05 mg Mn/m3) decreased MT mRNA in the hippocampus, hypothalamus, and striatum in males. The median dose (0.5 mg Mn/m3) led to decreased MT mRNA in the hippocampus and hypothalamus of the males and olfactory bulb of the females. Overall, manganese exposure did not affect total GSH levels, a finding that is contrary to those in our previous studies. Only the cerebellum of manganese-exposed young male rats showed a significant reduction (p<0.05) in total GSH levels compared to control levels. These data reveal that alterations in biomarkers of oxidative stress resulting from in utero and neonatal exposures of airborne managanese remain despite 3 wk of recovery; however, it is important to note that the doses of manganese utilized represent levels that are 100-fold to a 1000-fold higher than the inhalation reference concentration set by the US Environmental Protection Agency.  相似文献   

7.
This study evaluated the effects of chronic stress and lithium treatments on oxidative stress parameters in hippocampus, hypothalamus, and frontal cortex. Adult male Wistar rats were divided into two groups: control and submitted to chronic variate stress, and subdivided into treated or not with LiCl. After 40 days, rats were killed, and lipoperoxidation, production free radicals, total antioxidant reactivity (TAR) levels, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were evaluated. The results showed that stress increased lipoperoxidation and that lithium decreased free radicals production in hippocampus; both treatments increased TAR. In hypothalamus, lithium increased TAR and no effect was observed in the frontal cortex. Stress increased SOD activity in hippocampus; while lithium increased GPx in hippocampus and SOD in hypothalamus. We concluded that lithium presented antioxidant properties, but is not able to prevent oxidative damage induced by chronic variate stress.  相似文献   

8.
Abstract— The levels of hydroxyl radicals and oxidized GSH have been examined as indices of oxidative stress in young (3 months), middle-aged (15 months), and old (20–24 months) gerbil brain hippocampus, cortex, and striaturn. The hydroxyl radical stress was estimated by measuring the salicylate hydroxyl radical trapping products 2,5-and 2,3-dihydroxybenzoic acid. The stress was significantly higher in all three brain regions in middle-aged and old gerbils versus young animals (66.0%). Regional comparisons showed that the stress was significantly higher in cortex than in either the hippocampus or striatum of the middle-aged and old gerbils (32.0%). The ratio of oxidized to total GSH also increased progressively in middle-aged and old animals in all three brain regions (p < 0.05, 41.1%), further indicating a general age-related increase in oxidative stress. Parallel to this age-related increase in oxidative stress, a significant, albeit slight (8%), decrease in neuronal number in hippocampal CA1 region was observed in both the middle-aged and old animals. Possible differences in antioxidant levels were also examined. Total GSH levels were similar across age groups (variance <12%). However, the regional comparison showed that it was highest in striatum in all age groups. The levels of a-tocopherol (vitamin E) were significantly higher in the middle-aged and old animals in all three regions (70.4%). Vitamin E was highest in the hippocampus and the differences between the hippocampus and the cortex and striatum increased with age. Although of a lesser magnitude, significant increases in hippocampal total ascorbic acid level were also noted with age (p < 0.05, 10%). Ascorbic acid was the most regionally specific of the three antioxidants examined, with hippocampus > cortex > striatum for all age groups. The difference in ascorbic acid level between hippocampus and cortex also increased with age (64.4%). The results suggest that the general age-related, regionally specific increases in oxidative stress stimulate the accumulation of antioxidants. It is interesting that the hippocampus, which is selectively vulnerable to various insults such as ischemia, epilepsy, and insulin-induced hypoglycemia, exhibits the greatest age-related increase in vitamin E and ascorbic acid, perhaps reflective of a greater impact of the progressive increase in baseline oxidative stress.  相似文献   

9.
Dietary cholesterol and aging are major risk factors to accelerate oxidation process for developing hypercholesterolemia. The major aim of this study is to elucidate the effects of rice protein on cholesterol level and oxidative stress in adult rats fed with and without cholesterol. After 2 weeks of feeding, hepatic and plasma contents of cholesterol, reduced glutathione (GSH), oxidized glutathione (GSSG), malondialdehyde (MDA) and protein carbonyl (PCO) were measured. In liver, total antioxidative capacity (T-AOC), activities of antioxidant enzymes (total superoxide dismutase, T-SOD; catalase, CAT), glutathione metabolizing enzyme activities and gene expression levels (γ-glutamylcysteine synthetase, γ-GCS; glutathione reductase, GR; glutathione peroxidase, GPx) were determined. Under cholesterol-free/enriched dietary condition, T-AOC, activities of T-SOD and CAT, glutathione metabolism related enzymes' activities and mRNA levels (γ-GCS, GR and GPx) were effectively stimulated by rice proteins as compared to caseins. Compared with caseins, rice proteins significantly increased hepatic and plasma GSH contents, whereas hepatic and plasma accumulations of MDA, PCO and GSSG were significantly reduced by rice protein-feedings. As a result, the marked reductions of cholesterol in the plasma and in the liver were observed in adult rats fed rice proteins with and without cholesterol. The present study demonstrates that the hypocholesterolemic effect of rice protein is attributable to inducing antioxidative response and depressing oxidative damage in adult rats fed cholesterol-free/enriched diets. Results suggest that the antioxidant capability involved in the hypocholesterolemic action exerted by rice protein is independent of dietary cholesterol during adult period.  相似文献   

10.
We studied the role of oxidative stress and the effect of vinpocetine (1.5, 3 or 6 mg/kg) and piracetam (150 or 300 mg/kg) in acute demyelination of the rat brain following intracerebral injection of ethidium bromide (10 μl of 0.1%). Results: ethidium bromide caused (1) increased malondialdehyde (MDA) in cortex, hippocampus and striatum; (2) decreased total antioxidant capacity (TAC) in cortex, hippocampus and striatum; (3) decreased reduced glutathione (GSH) in cortex and hippocampus (4); increased serum nitric oxide and (5) increased striatal (but not cortical or hippocampal) acetylcholinesterase (AChE) activity. MDA decreased in striatum and cortex by the lower doses of vinpocetine or piracetam but increased in cortex and hippocampus and in cortex, hypothalamus and striatum by the higher dose of vinpocetine or piracetam, respectively along with decreased TAC. GSH increased by the higher dose of piracetam and by vinpocetine which also decreased serum nitric oxide. Vinpocetine and piracetam displayed variable effects on regional AChE activity.  相似文献   

11.
1. Glutaric acidemia type I (GA I) is a neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase, which leads to tissue accumulation of predominantly glutaric acid (GA) and also 3-hydroxyglutaric acid to a lesser amount. Affected patients usually present progressive cortical atrophy and acute striatal degeneration attributed to the toxic accumulating metabolites. 2. In the present study, we determined a number of oxidative stress parameters, namely chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total antioxidant reactivity (TAR), glutathione (GSH) levels, and the activities of catalase and glutathione peroxidase (GPx), in various tissues from rats chronically exposed to GA or to saline (controls). High GA concentrations, similar to those found in glutaric aciduria type I, were induced in the brain by three daily subcutaneous injections of saline-buffered GA (5 μmol/g body weight) to Wistar rats of 5–22 days of life. The parameters were assessed 12 h after the last GA administration in different brain structures, skeletal muscle, heart, liver, erythrocytes, and plasma. The lipid peroxidation parameters chemiluminescence and/or TBA-RS measurements were found significantly increased in midbrain, liver, and erythrocytes of GA-injected rats. The activity of GPx was significantly reduced in midbrain and markedly increased in liver. TAR measurement was significantly reduced in midbrain and liver. Furthermore, GSH levels were reduced in liver and heart. We also investigated the acute in vivo effect of GA administration on the same oxidative stress parameters in cerebral structures and erythrocytes from 22-day-old rats. We found that TBA-RS values were significantly increased in erythrocytes, TAR levels were markedly decreased in midbrain and cerebellum, and GPx activity mildly reduced in the midbrain. 3. These data showing an imbalance between antioxidant defences and oxidative damage, particularly in midbrain, liver, and erythrocytes from GA-injected rats, indicate that oxidative stress might be involved in GA toxicity and that the midbrain, where the striatum is located, is the brain structure more susceptible to GA chronic and acute exposition.  相似文献   

12.
Attention-deficit/hyperactivity disorder (ADHD) is a highly heterogeneous disorder characterized by impairing levels of hyperactivity, impulsivity and inattention. Oxidative and inflammatory parameters have been recognized among its multiple predisposing pathways, and clinical studies indicate that ADHD patients have increased oxidative stress. In this study, we aimed to evaluate oxidative (DCFH oxidation, glutathione levels, glutathione peroxidase, catalase and superoxide dismutase activities) and inflammatory (TNF-α, IL-1β and IL-10) parameters in the most widely accepted animal model of ADHD, the spontaneously hypertensive rats (SHR). Prefrontal cortex, cortex (remaining regions), striatum and hippocampus of adult male SHR and Wistar Kyoto rats were studied. SHR presented increased reactive oxygen species (ROS) production in the cortex, striatum and hippocampus. In SHR, glutathione peroxidase activity was decreased in the prefrontal cortex and hippocampus. TNF-α levels were reduced in the prefrontal cortex, cortex (remaining regions), hippocampus and striatum of SHR. Besides, IL-1β and IL-10 levels were decreased in the cortex of the ADHD model. Results indicate that SHR presented an oxidative profile that is characterized by an increase in ROS production without an effective antioxidant counterbalance. In addition, this strain showed a decrease in cytokine levels, mainly TNF-α, indicating a basal deficit. These results may present a new approach to the cognitive disturbances seen in the SHR.  相似文献   

13.
The objective of this study was to determine the effect of age and chronic intracerebral administration of nerve growth factor (NGF) on the activity of the presynaptic cholinergic neuronal markers hemicholinium-sensitive high-affinity choline uptake (HACU) and choline acetyltransferase (ChAT) in the brain of Fisher 344 male rats. In 24-month-old rats, a substantial decrease in ChAT activity (30%) was measured in striatum, and decreases in HACU were found in frontal cortex (28%) and hippocampus (23%) compared with 4-month-old controls. Cholinergic neurons in brain of both young adult and aged rats responded to administration of exogenous NGF by increased expression of both phenotypes. In 4-month-old animals, NGF treatment at 1.2 micron/day resulted in increased activities of both ChAT and HACU in striatum (175 and 170%, respectively), frontal cortex (133 and 125%), and hippocampus (137 and 125%) compared with untreated and vehicle-treated 4-month-old animals; vehicle treatment had no effect on the activity of either marker. In 24-month-old animals treated with NGF for 2 weeks, ChAT activity was increased in striatum (179%), frontal cortex (134%), and hippocampus (119%) compared with 24-month-old control animals. Synaptosomal HACU in 24-month-old rats was increased in striatum (151%) and frontal cortex (128%) after 2 weeks of NGF treatment, but hippocampal HACU was not significantly different from control values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Paraquat (PQ), a widely used herbicide is a well-known free radical producing agent. The mechanistic pathways of PQ neurotoxicity were examined by assessing oxidative/nitrosative stress markers. Focus was on the role of glutathione (GSH) cycle and to examine whether the pre-treatment with enzyme glutathione reductase (GR) could protect the vulnerable brain regions (VBRs) against harmful oxidative effect of PQ. The study was conducted on Wistar rats, randomly divided in five groups: intact-control group, (n=8) and four experimental groups (n=24). All tested compounds were administered intrastriatally (i.s.) in one single dose. The following parameters of oxidative status were measured in the striatum, hippocampus and cortex, at 30min, 24h and 7days post treatment: superoxide anion radical (O(2)(-)), nitrate (NO(3)(-)), malondialdehyde (MDA), superoxide dismutase (SOD), total GSH (tGSH) and its oxidized, disulfide form (GSSG) and glutathione peroxidase (GPx). Results obtained from the intact and the sham operated groups were not statistically different, confirming that invasive i.s. route of administration would not influence the reliability of results. Also, similar pattern of changes were observed between ipsi- and contra- lateral side of examined VBRs, indicating rapid spatial spreading of oxidative stress. Mortality of the animals (10%), within 24h, along with symptoms of Parkinsonism, after awakening from anesthesia for 2-3h, were observed in the PQ group, only. Increased levels of O(2)(-), NO(3)(-) and MDA, increased ratio of GSSG/GSH and considerably high activity of GPx were measured at 30min after the treatment. Cytotoxic effect of PQ was documented by drastic drop of all measured parameters and extremely high peak of the ratio GSSG/GSH at 24th hrs after the PQ i.s. injection. In the GR+PQ group, markedly low activity of GPx and low content of NO(3)(-) (in striatum and cortex) were measured during whole experiment, while increase value was observed only for O(2)(-), at 7th days. We concluded that oxidative/nitrosative stress and excitotoxicity are the most important events since the early stage of PQ induced neurotoxicity. Based on the ratio GSSG/GSH, the oxidation of GSH to GSSG is probably dominant way of GHS depletion and main reason for reduced antioxidative defense against PQ harmful oxidative effect. The GR pre-treatment resulted in the absence of Parkinson's disease-like symptoms and mortality of the rats. Additionally, oxidative/nitrosative stress did not developed, as well as almost diminished metabolism of the VBRs at 24th hours (as has been documented in the PQ group) did not occurred in the GR+PQ, suggesting a neuroprotective role for the GR in PQ induced neurotoxicity.  相似文献   

15.
谷胱甘肽(GSH)/谷胱甘肽过氧化物酶(GPx)系统在不同微生物细胞抵抗氧胁迫中的生理功能不尽相同。该系统在真核模式微生物酿酒酵母中是必需存在的,在维持胞内氧化还原平衡和抵抗氧胁迫中发挥主要作用。然而,在原核微生物中,该系统只是条件性的,即部分胞内存在谷胱甘肽还原酶和GPx的原核微生物,如流感嗜血杆菌和乳酸乳球菌,可通过从胞外吸收GSH,形成条件性的依赖于GSH的GPx系统,参与抵抗氧胁迫。  相似文献   

16.
Chronic oxidative stress plays an important role in depression. The aim of present study was to examine the stress-induced changes in serum corticosterone (CORT) levels, cytosolic protein carbonyl groups, malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO) and total superoxide dismutase (SOD) activity in the prefrontal cortex versus hippocampus of male Wistar rats exposed to acute (2 h of immobilization or cold), chronic (21d of social isolation) stress, and their combination (chronic + acute stress). The subcellular distribution of nuclear factor-κB (NF-κB) and cytosolic cyclooxygenase 2 (COX-2) protein expressions were also examined. Depressive- and anxiety-like behaviors were assessed via the forced swim, sucrose preference, and marble burying tests in chronically isolated rats. Although both acute stressors resulted in elevated CORT, increased MDA in the prefrontal cortex and NF-κB activation accompanied by increased NO in the hippocampus were detected only following acute cold stress. Chronic isolation resulted in no change in CORT levels, but disabled appropriate response to novel acute stress and led to depressive- and anxiety-like behaviors. Increased oxidative/nitrosative stress markers, likely by NF-κB nuclear translocation and concomitant COX-2 upregulation, associated with decreased SOD activity and GSH levels, suggested the existence of oxidative stress in the prefrontal cortex. In contrast, hippocampus was less susceptible to oxidative damage showing only increase in protein carbonyl groups and depleted GSH. Taken together, the prefrontal cortex seems to be more sensitive to oxidative stress than the hippocampus following chronic isolation stress, which may be relevant for further research related to stress-induced depressive-like behavior.  相似文献   

17.
It is well known that chronic exposure to lead (Pb(+2)) alters a variety of behavioral tasks in rats and mice. Here, we investigated the effect of flaxseed oil (1,000?mg/kg) on lead acetate (20?mg/kg)-induced brain oxidative stress and neurotoxicity in rats. The levels of Pb(+2), lipid peroxidation, nitric oxide (NO), and reduced glutathione (GSH) and the activity of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male albino rats. The level of Pb(+2) was markedly elevated in brain and blood of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in GSH, CAT, SOD, GR, GST, and GPx activities. These findings were associated with DNA fragmentation. In addition, lead acetate induced brain injury as indicated by histopathological changes of the brain. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. These findings suggest to the conclusion that flaxseed oil significantly decreased the adverse harmful effects of lead acetate exposure on the brain as well as Pb(+2)-induced oxidative stress.  相似文献   

18.
Old rats (28 months), when compared with young adults (9 months), did not show differences in activities of superoxide dismutase (SOD) or selenium-dependent and -independent glutathione peroxidases (GPx), or in levels of GSH, GSSG, GSSG/GSH and endogenous peroxidation in liver and brain. Rates of stimulated peroxidation in vitro were decreased in the livers of old rats. Old animals showed decreased levels of hepatic catalase and glutathione reductase. Nevertheless, when enzyme activities were referred to cytochrome oxidase activity these decreases disappeared, and GPx and SOD (brain) were even increased in old rats.  相似文献   

19.
Although the involvement of oxidative mechanisms in the cytotoxicity of excitatory amino acids has been well documented, it is not known whether the intrastriatal injection of quinolinic acid (QA) induces changes in glutathione (GSH) metabolism. In this work, the activities of the enzymes GSH reductase (GRD), GSH peroxidase (GPX), and GSH S-transferase (GST), as well as the GSH content, were studied in the striatum, hippocampus, and frontal cortex of rats 1 and 6 weeks following the intrastriatal injection of QA (225 nmol). One group of animals remained untreated. This lesion resulted in a 20% decrease in striatal GRD activity at both the 1- and 6-week postlesion times, whereas GST exhibited a 30% activity increase in the lesioned striatum observable only 6 weeks after the lesion. GPX activity remained unchanged. In addition, the QA injection elicited a 30% fall in GSH level at the 1-week postlesion time. GSH related enzyme activities and GSH content from other areas outside the lesioned striatum were not affected. GST activation could represent a beneficial compensatory response to neutralize some of the oxidant agents generated by the lesion. However, this effect together with the reduction in GRD activity could be the cause or a contributing factor to the observed QA-induced deficit in GSH availability and, consequently, further disrupt the oxidant homeostasis of the injured striatal tissue. Therefore, these results provide evidence that the in vivo excitotoxic injury to the brain might affect oxidant/antioxidant equilibrium by eliciting changes in glutathione metabolism.  相似文献   

20.
Recent studies revealed that alpha-ketoglutarate (A-KG) alone or with sodium thiosulfate (STS) provide significant protection against acute and sub-acute cyanide poisoning in rodents. This study addresses the protective effect of A-KG and/or STS in sub-chronic (90 days) cyanide poisoning. Wistar rats were divided into seven groups (n = 10): Control animals, potassium cyanide (KCN) A-KG, STS, KCN + A-KG, KCN + STS and KCN + A-KG + STS. Spontaneous motor activity and motor coordination were recorded every 15th day. Lipid peroxidation (LPO), reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) in blood, brain, liver and kidney, and glutamate, aspartate and dopamine in discrete regions of brain were measured following 90 days exposure. Cyanide significantly decreased motor coordination, accompanied by increase in LPO (blood, brain and liver) and dopamine (corpus striatum and cerebral cortex) levels, and depletion in GSH (blood, brain and liver), GPx (brain and liver), SOD (brain and liver), and CAT (blood and brain) levels. Although treatment of A-KG and STS alone significantly blunted the toxicity of KCN, concomitant use of both afforded the maximum protection. This study shows a promising role of A-KG and STS as treatment regime for long term cyanide exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号