首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Villosiclava virens (Vv) is an ascomycete fungal pathogen that causes false smut disease in rice. Recent reports have revealed some interesting aspects of the enigmatic pathogen to address the question of why it specifically infects rice flowers and converts a grain into a false smut ball. Comparative and functional genomics have suggested specific adaptation of Vv in the colonization of rice flowers. Anatomical studies have disclosed that Vv specifically infects rice stamen filaments before heading and intercepts seed formation. In addition, Vv can occupy the whole inner space of a spikelet embracing all floral organs and activate the rice grain‐filling network, presumably for nutrient acquisition to support the development of the false smut ball. This profile provides a general overview of the rice false smut pathogen, and summarizes advances in the Vv life cycle, genomics and genetics, and the molecular Vv–rice interaction. Current understandings of the Vv–rice pathosystem indicate that it is a unique and interesting system which can enrich the study of plant–pathogen interactions. Taxonomy: Ustilaginoidea virens is the anamorph form of the pathogen (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Incertae sedis; Order Incertae sedis; Family Incertae sedis; Genus Ustilaginoidea). The teleomorph form is Villosiclava virens (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Sordariomycetes; Order Hypocreales; Family Clavicipitaceae; Genus Villosiclava). Disease symptoms: The only visible symptom is the replacement of rice grains by ball‐shaped fungal mycelia, namely false smut balls. When maturing, the false smut ball is covered with powdery chlamydospores, and the colour changes to yellowish, yellowish orange, green, olive green and, finally, to greenish black. Sclerotia are often formed on the false smut balls in autumn. Identification and detection: Vv conidia are round to elliptical, measuring 3–5 μm in diameter. Chlamydospores are ornamented with prominent irregularly curved spines, which are 200–500 nm in length. The sclerotia are black, horseshoe‐shaped and irregular oblong or flat, ranging from 2 to 20 mm. Nested polymerase chain reaction (PCR) and quantitative PCR have been developed to specifically detect Vv presence in rice tissues and other biotic and abiotic samples in fields. Host range: Rice is the primary host for Vv. Natural infection by Vv has been found on several paddy field weeds, including Digitaria marginata, Panicum trypheron, Echinochloa crusgalli and Imperata cylindrica. However, the occurrence of infection in these potential alternative hosts is very rare. Life cycle: Vv infects rice spikelets at the late rice booting stage, and produces false smut balls covered with dark‐green chlamydospores. Occasionally, sclerotia form on the surface of false smut balls in late autumn when the temperature fluctuates greatly between day and night. Both chlamydospores and sclerotia may serve as primary infection sources. Rainfall at the rice booting stage is a major environmental factor resulting in epidemics of rice false smut disease. Disease control: The use of fungicides is the major approach for the control of Vv. Several fungicides, such as cuproxat SC, copper oxychloride, tebuconazole, propiconazole, difenoconazole and validamycin, are often applied. However, the employment of resistant rice cultivars and genes has been limited, because of the poor understanding of rice resistance to Vv. Useful websites: Villosiclava virens genome sequence: http://www.ncbi.nlm.nih.gov/Traces/wgs/?val=JHTR01#contigs  相似文献   

2.
3.
False smut has recently emerged as an important disease of rice in Arkansas. In 2011, 2012 and 2013, spore balls of a white smut similar to the spore balls of false smut were observed in rice fields in eastern Arkansas. As a white false smut was previously reported in China and Japan, we examined the morphology of chlamydospores and spore balls from some of the infected heads and used selected regions of the rDNA to determine the identity of the causal agent of the disease. We also tested the virulence of an isolate of the white smut to two rice cultivars commonly grown in Arkansas. Our results indicate that the morphology of the spore balls, chlamydospores and conidia is similar to those reported for Ustilaginoidea albicans. However, sequences of ribosomal DNA amplicons indicate a high degree of similarity with both U. virens and U. albicans. The isolate of the white smut was virulent to two rice cultivars, producing spore balls similar to those observed in the field and to those previously described for U. albicans.  相似文献   

4.
5.
Ustilaginoidea virens, which causes rice false smut (RFS), is one of the most detrimental rice fungal diseases and poses a severe threat to rice production and quality. Effectors in U. virens often act as a group of essential virulence factors that play crucial roles in the interaction between host and the pathogen. Thus, the functions of individual effectors in U. virens need to be further explored. Here, we found a small secreted hypersensitive response-inducing protein UVI_02019870 was highly conserved in fungi. Furthermore, we performed Y2H and BiFC assay to demonstrated UVI_02019870 interacted with OsCPL1, which was predicted as a chloroplast precursor to regulate chloroplast signaling pathways. Our data provide a theory for gaining an insight into the molecular mechanisms underlying the UVI_02019870 virulence function.  相似文献   

6.
周永力 《菌物学报》2004,23(1):102-108
为设计稻曲病菌(Ustilaginoidea virens)专化性PCR引物,测定了1991-2001年采集的多个水稻品种、不同水稻产区的菌株的ITS和5.8S rDNA区序列。U. virens的ITS1、ITS2和5.8S rDNA区域的长度为 624-625bp, 序列高度保守。在与麦角菌科其它种比较的基础上,设计了U. virens专化性嵌合引物。采用PCR方法可以灵敏地检测目标真菌,并且与传统的组织观察结果很好地吻合。这一结果为深入研究稻曲病的侵染规律和建立田间早期诊断技术提供了可能。  相似文献   

7.
Smut disease caused by Sporisorium scitamineum is one of the most destructive sugarcane diseases worldwide. The pathogen spreads primarily through infected sugarcane setts, and hence, the use of disease‐free planting materials is essential for preventing disease development in the field. In this study, a species‐specific loop‐mediated isothermal amplification (LAMP) assay was developed for rapid and accurate detection of S. scitamineum. Based on the differences in internal transcribed spacer (ITS) sequences of S. scitamineum, a set of four species‐specific primers, F3, B3, FIP and BIP, were designed by using a panel of fungal and bacterial species as controls. After optimization of the reaction conditions, the detection limit of LAMP assay was about 2 fg of the S. scitamineum genomic DNA in 25 µL reaction solution, 100‐fold lower than that of conventional polymerase chain reaction. The assay showed high specificity to discriminate all S. scitamineum isolates from nine other fungal and bacterial pathogens. The LAMP assay also detected smut infection from young sugarcane leaves with no visible smut‐disease symptoms. The findings from this study provide a simple, highly sensitive, rapid and reliable technique for early detection of S. scitamineum, which may be useful for sugarcane quarantine and production of smut‐free seedcanes. This is the first report of LAMP‐based assay for the detection of S. scitamineum in sugarcane.  相似文献   

8.
False smut disease of rice is posing an increasing concern for production, not only because of the hiking epidemic occurrence in rice production, but also because of the challenging specific pathogenesis of the disease. The aim of this work was to evaluate the potential of five fungal endophytes to reduce negative effects of rice false smut fungus (Ustilagonoidea virens) on rice plants, in both the laboratory and greenhouse. Though all the fungal isolates showed the ability to inhibit the growth of U. virens with varying degrees, isolate E337 showed significant antagonistic activity against the pathogenic fungi. The isolate E337 was identified as Antennariella placitae by molecular and morphological data analysis including 18S rDNA sequence analysis. This isolate showed a significant in vitro inhibition of mycelial growth of U. virens by dual culture method and it was subsequently tested for its in vivo biocontrol potential on false smut disease on rice plants. Greenhouse experiments confirmed that applications of conidia of A. placitae protected rice plants by improving rice yield and by decreasing the severity of false smut disease on susceptible rice plants. This is the first report where A. placitae has been identified as a biocontrol organism.  相似文献   

9.
The biotrophic fungal pathogen Ustilaginoidea virens causes rice false smut, a newly emerging plant disease that has become epidemic worldwide in recent years. The U. virens genome encodes many putative effector proteins that, based on the study of other pathosystems, could play an essential role in fungal virulence. However, few studies have been reported on virulence functions of individual U. virens effectors. Here, we report our identification and characterization of the secreted cysteine-rich protein SCRE1, which is an essential virulence effector in U. virens. When SCRE1 was heterologously expressed in Magnaporthe oryzae, the protein was secreted and translocated into plant cells during infection. SCRE1 suppresses the immunity-associated hypersensitive response in the nonhost plant Nicotiana benthamiana. Induced expression of SCRE1 in rice also inhibits pattern-triggered immunity and enhances disease susceptibility to rice bacterial and fungal pathogens. The immunosuppressive activity is localized to a small peptide region that contains an important ‘cysteine-proline-alanine-arginine-serine’ motif. Furthermore, the scre1 knockout mutant generated using the CRISPR/Cas9 system is attenuated in U. virens virulence to rice, which is greatly complemented by the full-length SCRE1 gene. Collectively, this study indicates that the effector SCRE1 is able to inhibit host immunity and is required for full virulence of U. virens.  相似文献   

10.
A simple procedure is reported for transformation of the rice false smut fungus Villosiclava virens (anamorph: Ustilaginoidea virens) using electroporation of intact conidial cells. The transformation vector pCB1004eGFP was constructed with a green fluorescent protein (eGFP) gene under a constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene of Cochliobolus heterostrophus. When a linearized vector was applied, eGFP-expressing transformants were successfully acquired. An inoculation test in rice plants showed that the eGFP-expressing transformants were able to form rice false smut balls.  相似文献   

11.
Cotton blight, caused by the oomycete Phytophthora boehmeriae, is a serious disease of cotton in China. In wet weather conditions, P. boehmeriae is usually the primary pathogen, followed by many saprophytic fungi and pathogens such as Pythium spp., Fusarium spp., Rhizoctonia and others. As P. boehmeriae grows much slower than other pathogens, it is difficult to isolate and identify. A rapid and accurate method for its specific identification is necessary for the detection of blight in infected cotton tissue. The internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) from three isolates of P. boehmeriae were amplified using the polymerase chain reaction (PCR) with the universal primers DC6 and ITS4. PCR products were cloned and sequenced. The sequences were aligned with those published of 50 other Phytophthora species, and a region specific to P. boehmeriae was used to construct the specific PCR primers PB1 and PB2. Over 106 isolates of 14 Phytophthora species and at least 20 other fungal species were used to check the specificity of the primers. PCR amplification with primers PB1 and PB2 resulted in the amplification of a product of approximately 750 bp only from isolates of P. boehmeriae. Using primers PB1 and PB2, detection sensitivity was approximately 10 fg DNA/μl. In inoculated plant material, P. boehmeriae could be detected in tissue 1 day after inoculation, prior to the appearance of symptoms. The PB primer‐based PCR assay provides an accurate and sensitive method for detecting P. boehmeriae in cotton tissue.  相似文献   

12.
13.
Internal transcribed spacer (ITS) sequences of the rDNA repeat unit of Heterobasidion annosum were used to design specific primers for the detection and quantification of this important forest pathogen by polymerase chain reaction (PCR). Specificity of detection was cross‐checked against a variety of other fungi (saprophytes, root pathogens, mycorrhizal fungi) which may occur in the same environment. As little as 1 pg fungal DNA (equiv. to 10–40 genomes) could be detected in 200 ng spruce root DNA (from 1 mg fresh spruce root). The Heterobasidion‐specific primers allowed simultaneous detection of Armillaria spp. in multiplex PCR. The method was successfully applied to increment cores of Norway spruce from the forest region Tharandter Wald (Saxonia, Germany), Oberbärenburg (East Ore Mountains, Saxonia) and Oberschleissheim (north of Munich, Bavaria).  相似文献   

14.
Aim: Development of a PCR‐RFLP assay that could reliably distinguish strains of Pythium myriotylum that are pathogenic to cocoyam from nonpathogens, as well as in planta detection of the pathogen. Methods and Results: Sequences of the internal transcribed spacer regions of nuclear ribosomal DNA (rDNA‐ITS) containing ITS1 and ITS2 of P. myriotylum isolates from cocoyam and other hosts were aligned and a restriction map was generated. rDNA‐ITS alignment report revealed a new single nucleotide polymorphism (SNP; thymine/cytosine) downstream to previously published SNP (guanine/adenine) between isolates of Pmyriotylum that are pathogenic to cocoyam and nonpathogenic strains. This new SNP is within the restriction site of the endonuclease AarI. Based on this SNP, a PCR‐RFLP assay was developed for specific detection of P. myriotylum. The PCR amplicons of all isolates of P. myriotylum that infect cocoyam were cleaved by AarI, resulting to two bands (600/400 bp); but those from other hosts showed a single band (1000 bp), confirming the presence and specificity of the AarI restriction site. Also, the assay was effective in in planta detection of the pathogen on infected cocoyam roots without prior isolation of a pure culture. Conclusion: A PCR‐RFLP method was developed that differentiates isolates of P. myriotylum that are pathogenic to cocoyam from nonpathogens as well as from other fungi commonly found in the cocoyam rhizosphere. Significance and Impact of the Study: Early and rapid detection of the pathogen could be of great importance in certifying planting materials as disease‐free, enhancing sustainable management practices and limiting economic losses.  相似文献   

15.
16.
Aims: To develop a multiplex real‐time PCR assay using TaqMan probes for the simultaneous detection and discrimination of potato powdery scab and common scab, two potato tuber diseases with similar symptoms, and the causal pathogens Spongospora subterranea and plant pathogenic Streptomyces spp. Methods and Results: Real‐time PCR primers and a probe for S. subterranea were designed based on the DNA sequence of the ribosomal RNA ITS2 region. Primers and a probe for pathogenic Streptomyces were designed based on the DNA sequence of the txtAB genes. The two sets of primer pairs and probes were used in a single real‐time PCR assay. The multiplex real‐time PCR assay was confirmed to be specific for S. subterranea and pathogenic Streptomyces. The assay detected DNA quantities of 100 fg for each of the two pathogens and linear responses and high correlation coefficients between the amount of DNA and Ct values for each pathogen were achieved. The presence of two sets of primer pairs and probes and of plant extracts did not alter the sensitivity and efficiency of multiplex PCR amplification. Using the PCR assay, we could discriminate between powdery scab and common scab tubers with similar symptoms. Common scab and powdery scab were detected in some tubers with no visible symptoms. Mixed infections of common scab and powdery scab on single tubers were also revealed. Conclusions: This multiplex real‐time PCR assay is a rapid, cost efficient, specific and sensitive tool for the simultaneous detection and discrimination of the two pathogens on infected potato tubers when visual symptoms are inconclusive or not present. Significance and Impact of the Study: Accurate and quick identification and discrimination of the cause of scab diseases on potatoes will provide critical information to potato growers and researchers for disease management. This is important because management strategies for common and powdery scab diseases are very different.  相似文献   

17.
A plant expression vector harboring four antifungal genes was delivered into the embryogenic calli of ‘9311’, an indica restorer line of Super Hybrid Rice, via modified biolistic particle bombardment. Southern blot analysis indicated that in the regenerated hygromycin-resistant plants, all the four antifungal genes, including RCH10, RAC22, β-Glu and B-RIP, were integrated into the genome of ‘9311’, co-transmitted altogether with the marker gene hpt in a Mendelian pattern. Some transgenic R1 and R2 progenies, with all transgenes displaying a normal expression level in the Northern blot analysis, showed high resistance to Magnaporthe grisea when tested in the typical blast nurseries located in Yanxi and Sanya respectively. Furthermore, transgenic F1 plants, resulting from a cross of R2 homozygous lines with high resistance to rice blast with the non-transgenic male sterile line Peiai 64S, showed not only high resistance to M. grisea but also enhanced resistance to rice false smut (a disease caused by Ustilaginoidea virens) and rice kernel smut (another disease caused by Tilletia barclayana).  相似文献   

18.
Scab disease significantly damages potato and other root crops. Streptomyces scabiei, S. acidiscabiei, and S. turgidiscabiei are the best-known causal agents of this disease. We have developed a novel genotyping method for these potato scab pathogens using multiplex PCR, whose benefits include rapid and easy detection of multiple species. We designed a species-specific primer set (6 primers, 3 pairs) for the 16S rRNA genes and 16S–23S ITS regions of these potato scab pathogens. The specificity of the primer set was confirmed by testing 18 strains containing potato scab pathogens, other Streptomyces species, and strains of other genera. The application of the developed method to potato field soil and potato tissue samples resulted in the clear detection and identification of pathogens. Since this method is applicable to a large number of environmental samples, it is expected to be useful for a high-throughput analysis of soil and plant tissues of scab disease.  相似文献   

19.
Aims: To detect the apple and pear pathogens Erwinia amylovora and Erwinia pyrifoliae as well as the related epiphytes Erwinia tasmaniensis and Erwinia billingiae, we created novel PCR primers and also applied them to a series of other plant‐associated bacteria as control. To facilitate fast diagnosis, we used matrix‐assisted laser desorption ionization–time‐of‐flight mass spectrometry (MALDI–TOF MS). Methods and Results: The PCR primers were deduced from the pstSglmS regions, which can include the gene for levansucrase, and also from regions encoding capsular polysaccharide synthesis. All primer combinations were specific for their associated Erwinia species to detect them with conventional PCR, also in mixed cultures from necrotic plant tissue. Other primers designed for quantitative PCR with SYBR Green or together with TaqMan probes were applied for real‐time detection to determine growth of Erw. amylovora, Erw. billingiae, Erw. pyrifoliae and Erw. tasmaniensis in apple blossoms. From whole‐cell protein extracts, profiles were generated using a Bruker microflex machine and Erwinia strains classified according to a score scheme. Conclusions: The designed PCR primers identified the Erwinia species unambiguously and can be applied to qualitative and quantitative tests. MALDI–TOF MS data were in agreement with the PCR assays. Significance and Impact of the Study: The applied diagnosis methods allow fast and precise monitoring of two pathogenic and two epiphytic Erwinia species. They are valuable for population studies with apple and pear flowers and with diseased plant material.  相似文献   

20.
Simple sequence repeats (SSRs) are preferred molecular markers because of their abundance, robustness, high reproducibility, high efficiency in detecting variation and suitability for high‐throughput analysis. In this study, an attempt was made to mine and analyse the SSRs from the genomes of two seed‐borne fungal pathogens, viz Ustilago maydis, which causes common smut of maize, and Tilletia horrida, the cause of rice kernel smut. After elimination of redundant sequences, 2,703 SSR loci of U. maydis were identified. Of the remaining SSRS, 44.5% accounted for di‐nucleotide repeats followed by 29.8% and 2.7% tri‐ and tetranucleotide repeats, respectively. Similarly, 2,638 SSR loci were identified in T. horrida, of which 20.2% were di‐nucleotide, 50.4% tri‐ and 20.5% tetra‐nucleotide repeats. A set of 65 SSRs designed from each fungus were validated, which yielded 23 polymorphic SSRs from Ustilago and 21 from Tilletia. These polymorphic SSR loci were also successfully cross‐amplified with the Ustilago segetum tritici and Tilletia indica. Principal coordinate analysis of SSR data clustered isolates according to their respective species. These newly developed and validated microsatellite markers may have immediate applications for detection of genetic variability and in population studies of bunt and smut of wheat and other related host plants. Moreover, this is first comprehensive report on molecular markers suitable for variability studies in wheat seed‐borne pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号