首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The CNS renin-angiotensin system   总被引:4,自引:0,他引:4  
The renin-angiotensin system (RAS) is one of the best-studied enzyme-neuropeptide systems in the brain and can serve as a model for the action of peptides on neuronal function in general. It is now well established that the brain has its own intrinsic RAS with all its components present in the central nervous system. The RAS generates a family of bioactive angiotensin peptides with variable biological and neurobiological activities. These include angiotensin-(1–8) [Ang II], angiotensin-(3–8) [Ang IV], and angiotensin-(1–7) [Ang-(1–7)]. These neuroactive forms of angiotensin act through specific receptors. Only Ang II acts through two different high-specific receptors, termed AT1 and AT2. Neuronal AT1 receptors mediate the stimulatory actions of Ang II on blood pressure, water and salt intake, and the secretion of vasopressin. In contrast, neuronal AT2 receptors have been implicated in the stimulation of apoptosis and as being antagonistic to AT1 receptors. Among the many potential effects mediated by stimulation of AT2 are neuronal regeneration after injury and the inhibition of pathological growth. Ang-(1–7) mediates its antihypertensive effects by stimulating the synthesis and release of vasodilator prostaglandins and nitric oxide and by potentiating the hypotensive effects of bradykinin. New data concerning the roles of Ang IV and Ang-(1–7) in cognition also support the existence of complex site-specific interactions between multiple angiotensins and multiple receptors in the mediation of important central functions of the RAS. Thus, the RAS of the brain is involved not only in the regulation of blood pressure, but also in the modulation of multiple additional functions in the brain, including processes of sensory information, learning, and memory, and the regulation of emotional responses.  相似文献   

2.
In C9 rat liver cells bradykinin and kallidin increased (approximately 2-fold) the intracellular concentration of calcium, but the B1 agonist, des-Arg9-bradykinin did not. The effect of bradykinin was inhibited by the B2 antagonists, Hoe 140 and N-alpha-adamantaneacetyl-D-Arg-[Hyp3, Thi5,8, D-Phe7]-bradykinin, but not by the B1 antagonist, des-Arg9-[Leu8]-bradykinin. The action of bradykinin was diminished, but not abolished, in medium without calcium. The peptide was able to increase intracellular calcium concentration in cells treated with thapsigargin. Bradykinin action was not observed in cells previously stimulated with this local mediator: however, under the same conditions, angiotensin II induced a clear increase in intracellular calcium concentration. Our data indicate that activation of bradykinin B2 receptors increase intracellular calcium concentrations by inducing both gating of the cation and intracellular mobilization in C9 liver cells. In addition, homologous desensitization was observed.  相似文献   

3.
The pharmacological properties of bradykinin receptors were characterized in rat cultured vascular smooth muscle cells (VSMCs) using [3H]-bradykinin as a ligand. Analysis of binding isotherms gave an apparent equilibrium dissociation constant (K(D)) of 1.2 +/- 0.2 nM and a maximum receptor density (Bmax) of 47.3 +/- 4.4 fmol/mg protein. The specific binding of [3H]-bradykinin to VSMCs was inhibited by the B2 receptor-selective agonists (bradykinin and kallidin) and antagonists ([D-Arg0, Hyp3, Thi5, D-Tic7, Oic8]-bradykinin (Hoe 140) and [D-Arg0, Hyp3, Thi(5,8), D-Phe7]-bradykinin) with an order of potency as kallidin = bradykinin = Hoe 140 > [D-Arg0, Hyp3, Thi(5,8), D-Phe7]-bradykinin, but not by a B1 receptor-selective agonist (des-Arg9-bradykinin) and antagonist ([Leu8, des-Arg9]-bradykinin). Stimulation of VSMCs by bradykinin produced a concentration-dependent inositol phosphate (IP) accumulation, and initial transient peak of [Ca2+]i with half-maximal responses (pEC50) were 7.53 and 7.69, respectively. B2 receptor-selective antagonists (Hoe 140 and [D-Arg0, Hyp3, Thi(5,8), D-Phe7]-bradykinin) significantly antagonized the bradykinin-induced responses with pK(B) values of 8.3-8.7 and 7.2-7.9, respectively. Pretreatment of VSMCs with pertussis toxin (100 ng/ml, 24 h) did not alter the bradykinin-induced inositol phosphate accumulation and [Ca2+]i changes in VSMCs. Removal of external Ca2+ led to a significant attenuation of responses induced by bradykinin. Influx of external Ca2+ was required for the bradykinin-induced responses, since Ca2+-channel blockers, nifedipine, verapamil, and Ni2+, partially inhibited the bradykinin-induced IP accumulation and Ca2+ mobilization. These results demonstrate that bradykinin stimulates phosphoinositide hydrolysis and Ca2+ mobilization via a pertussis toxin-insensitive G-protein in rat VSMCs. Bradykinin B2 receptors may be predominantly mediating IP accumulation and subsequently induction of Ca2+ mobilization may function as the transducing mechanism for bradykinin-stimulated contraction of vascular smooth muscle.  相似文献   

4.
We have recently described, in the mouse aorta, the vasodilator effect of angiotensin-(1-7) (Ang-(1-7)) was mediated by activation of the Mas Ang-(1-7) receptor and that A-779 and D-Pro7-Ang-(1-7) act as Mas receptor antagonists. In this work we show pharmacological evidence for the existence of a different Ang-(1-7) receptor subtype mediating the vasodilator effect of Ang-(1-7) in the aorta from Sprague-Dawley (SD) rats. Ang-(1-7) induced an endothelium-dependent vasodilator effect in aortic rings from SD rats which was inhibited by removal of the endothelium and by L-NAME (100 microM) but not by indomethacin (10 microM). The Ang-(1-7) receptor antagonist D-Pro7-Ang-(1-7) (0.1 microM) abolished the vasodilator effect of the peptide. However, the other specific Ang-(1-7) receptor antagonist, A-779 in concentrations up to 10 microM, did not affect vasodilation induced by Ang-(1-7). The Ang II AT1 and AT2 receptors antagonists CV11974 (0.01 microM) and PD123319 (1 microM), respectively, the bradykinin B2 receptor antagonist HOE 140 (1 microM) and the inhibitor of ACE captopril (10 microM) did not change the effect of Ang-(1-7). Our results show that in the aorta of SD rats, the vasodilator effect of Ang-(1-7) is dependent on endothelium-derived nitric oxide. This effect is mediated by the activation of Ang-(1-7) receptors sensitive to D-Pro7-Ang-(1-7), but not to A-779, which suggests the existence of a different Ang-(1-7) receptor subtype.  相似文献   

5.
Although the use of angiotensin converting enzyme inhibitors (ACE-Is) in clinical practice brought the great chance to recognize the RAS role in the physiology and pathology, there are still many questions which we cannot answer. This article reviews actually known pathways of angiotensin II (Ang II) and other peptides of renin-angiotensin system (RAS) production and their physiological significance. The various carboxy- and aminopeptidases generate a range of peptides, like Ang II, Ang III, Ang IV, Ang-(1-7) and Ang-(1-9) possessing their own and known biological activity. In this issue especially the alternative pathways of Ang II synthesis involving enzymes other than angiotensin-converting enzyme (ACE) are discussed. We present many evidences for the significance of a new pathway of Ang II production. It has been clearly shown that Ang I may be converted to Ang-(1-9) by angiotensin-converting enzyme-related carboxypeptidase (ACE-2) and then into Ang II in some tissues, but the enzymes responsible for this process are unknown till now. Although there are many data proving the existence of alternative pathways of Ang II production, we can still block only ACE and angiotensin receptor 1 (AT(1)) in clinical practice. It seems that a lot needs to be done before we can wildly complexively control RAS and treat more effectively cardiovascular disorders such as hypertension or heart failure.  相似文献   

6.
Angiotensin-(1-7) (Ang-(1-7)), a bioactive peptide in the renin-angiotensin system, has counterregulatory actions to angiotensin II (Ang II). However, the mechanism by which Ang-(1-7) enhances vasodepressor responses to bradykinin (BK) is not well understood. In the present study, the effects of Ang-(1-7) on responses to BK, BK analogs, angiotensin I (Ang I), and Ang II were investigated in the anesthetized rat. The infusion of Ang-(1-7) (55 pmol/min i.v.) enhanced decreases in systemic arterial pressure in response to i.v. injections of BK and the BK analogs [Hyp3, Tyr(Me)8]-bradykinin (HT-BK) and [Phe8psi (CH2-NH) Arg9]-bradykinin (PA-BK) without altering pressor responses to Ang I or II, or depressor responses to acetylcholine and sodium nitroprusside. The angiotensin-converting enzyme (ACE) inhibitor enalaprilat enhanced responses to BK and the BK analog HT-BK without altering responses to PA-BK and inhibited responses to Ang I. The potentiating effects of Ang-(1-7) and enalaprilat on responses to BK were not attenuated by the Ang-(1-7) receptor antagonist A-779. Ang-(1-7)- and ACE inhibitor-potentiated responses to BK were attenuated by the BK B2 receptor antagonist Hoe 140. The cyclooxygenase inhibitor sodium meclofenamate had no significant effect on responses to BK or Ang-(1-7)-potentiated BK responses. These results suggest that Ang-(1-7) potentiates responses to BK by a selective B2 receptor mechanism that is independent of an effect on Ang-(1-7) receptors, ACE, or cyclooxygenase product formation. These data suggest that ACE inhibitor-potentiated responses to BK are not mediated by an A-779-sensitive mechanism and are consistent with the hypothesis that enalaprilat-induced BK potentiation is due to decreased BK inactivation.  相似文献   

7.
Since it has been suggested that angiotensin (Ang) (1-7) functions as an antihypertensive peptide, we studied its effect on the Ang II-enhanced norepinephrine (NE) release evoked by K+ in hypothalami isolated from aortic coarcted hypertensive (CH) rats. The endogenous NE stores were labeled by incubation of the tissues with 3H-NE during 30 min, and after 90 min of washing, they were incubated in Krebs solution containing 25 mM KCl in the absence or presence of the peptides. Ang-(1-7) not only diminished the K+-evoked NE release from hypothalami of CH rats, but also blocked the Ang II-enhanced NE release induced by K+. Ang-(1-7) blocking action on the Ang II response was prevented by [D-Ala7]Ang-(1-7), an Ang-(1-7) specific antagonist, by PD 123319, an AT2-receptor antagonist, and by Hoe 140, a B2 receptor antagonist. Ang-(1-7) inhibitory effect on the Ang II facilitatory effect on K+-stimulated NE release disappeared in the presence of Nomega-nitro-L-arginine methylester and was restored by L-arginine. Our present results suggest that Ang-(1-7) may contribute to blood pressure regulation by blocking Ang II actions on NE release at the central level. This inhibitory effect is a nitric oxide-mediated mechanism involving AT2 receptors and/or Ang-(1-7) specific receptors and local bradykinin generation.  相似文献   

8.
It is well established that bradykinin can stimulate mucosal electrolyte transport. However, the receptor type which mediates this effect has not been fully characterized. Recent studies have suggested that bradykinin and related kinins may act at two types of receptors designated as B1 and B2. We have determined the effect of bradykinin on electrolyte secretion across guinea pig ileal mucosa and longitudinal muscle in vitro in the presence and absence of D-Phe7-bradykinin (B2 antagonist) and des-Arg9-(Leu8)-bradykinin (B1 antagonist). The B2 antagonist (less than 100 microM) did not affect resting muscle tension or basal electrolyte transport but at 6-30 microM it caused a parallel rightward shift in the concentration-response curves to bradykinin in the mucosa (Ki = 4 microM) and muscle (Ki = 6 microM). Changes in electrolyte transport and muscle contractility evoked by bethanechol and substance P were not affected by the B2 antagonist (30 microM) in either the muscle or the mucosa. Moreover, changes in electrolyte transport and muscle contractility produced by bradykinin were not altered by the B1 antagonist (30 microM). Finally, the B1 agonist des-Arg9-bradykinin (10 nM-1 microM) was not active in either preparation. These data suggest that under normal conditions, ileal secretion and smooth muscle contractility in the guinea pig are regulated by B2-type bradykinin receptors.  相似文献   

9.
Xue H  Zhou L  Yuan P  Wang Z  Ni J  Yao T  Wang J  Huang Y  Yu C  Lu L 《Regulatory peptides》2012,177(1-3):12-20
In the updated concept of renin-angiotensin system (RAS), it contains the angiotensin converting enzyme (ACE)-angiotensin (Ang) II-angtiogensin type 1 receptor (AT1) axis and the angiotensin-converting enzyme-related carboxypeptidase (ACE2)-Ang-(1-7)-Mas axis. The former axis has been well demonstrated performing the vasoconstrictive, proliferative and pro-inflammatory functions by activation of AT1 receptors, while the later new identified axis is considered counterbalancing the effects of the former. The present study is aimed at observing the interaction between Ang-(1-7) and Ang II on cultured rat renal mesangial cells (MCs). RT-PCR, Western blot and immunofluorescent staining and confocal microscopy results showed that both AT1 and Mas receptor were co-distributed in rat renal MCs. Ang-(1-7) showed similar effects on Ang II in cultured MCs that stimulated phosphorylated extracellular signal-regulated kinase (ERK)1/2 phosphorylation and transforms growth factor-β1 synthesis, and cell proliferation and extracellular matrix synthesis. Co-treatment of the cell with Ang-(1-7) and Ang II, Ang-(1-7) counteracted AngII-induced effects in a concentration dependent manner, but failed to alter the changes induced by endothelin-1. The stimulating effect of Ang II was mediated by AT1 receptor while all the effects of Ang-(1-7) were blocked by Mas receptor antagonist A-779, but not by AT1 receptor antagonist losartan or AT2 receptor antagonist PD123319. These results suggest that Ang-(1-7) and Ang II specifically interact with each other on rat renal MCs via activation of their specific receptors, Mas and AT1 receptor respectively.  相似文献   

10.
11.
The octapeptide hormone, angiotensin II (Ang II), exerts its major physiological effects by activating AT(1) receptors. In vivo Ang II is degraded to bioactive peptides, including Ang III (angiotensin-(2-8)) and Ang IV (angiotensin-(3-8)). These peptides stimulate inositol phosphate generation in human AT(1) receptor expressing CHO-K1 cells, but the potency of Ang IV is very low. Substitution of Asn(111) with glycine, which is known to cause constitutive receptor activation by disrupting its interaction with the seventh transmembrane helix (TM VII), selectively increased the potency of Ang IV (900-fold) and angiotensin-(4-8), and leads to partial agonism of angiotensin-(5-8). Consistent with the need for the interaction between Arg(2) of Ang II and Ang III with Asp(281), substitution of this residue with alanine (D281A) decreased the peptide's potency without affecting that of Ang IV. All effects of the D281A mutation were superseded by the N111G mutation. The increased affinity of Ang IV to the N111G mutant was also demonstrated by binding studies. A model is proposed in which the Arg(2)-Asp(281) interaction causes a conformational change in TM VII of the receptor, which, similar to the N111G mutation, eliminates the constraining intramolecular interaction between Asn(111) and TM VII. The receptor adopts a more relaxed conformation, allowing the binding of the C-terminal five residues of Ang II that switches this "preactivated" receptor into the fully active conformation.  相似文献   

12.
Kininase I-type carboxypeptidases convert native kinin agonists for B(2) receptors into B(1) receptor agonists by specifically removing the COOH-terminal Arg residue. The membrane localization of carboxypeptidase M (CPM) and carboxypeptidase D (CPD) make them ideally situated to regulate kinin activity. Nitric oxide (NO) release from human lung microvascular endothelial cells (HLMVEC) was measured directly in real time with a porphyrinic microsensor. Bradykinin (1-100 nM) elicited a transient (5 min) peak of generation of NO that was blocked by the B(2) antagonist HOE 140, whereas B(1) agonist des-Arg(10)-kallidin caused a small linear increase in NO over 20 min. Treatment of HLMVEC with 5 ng/ml interleukin-1beta and 200 U/ml interferon-gamma for 16 h upregulated B(1) receptors as shown by an approximately fourfold increase in prolonged (>20 min) output of NO in response to des-Arg(10)-kallidin, which was blocked by the B(1) antagonist des-Arg(10)-Leu(9)-kallidin. B(2) receptor agonists bradykinin or kallidin also generated prolonged NO production in treated HLMVEC, which was significantly reduced by either a B(1) antagonist or carboxypeptidase inhibitor, and completely abolished with a combination of B(1) and B(2) receptor antagonists. Furthermore, CPM and CPD activities were increased about twofold in membrane fractions of HLMVEC treated with interleukin-1beta and interferon-gamma compared with control cells. Immunostaining localized CPD primarily in a perinuclear/Golgi region, whereas CPM was on the cell membrane. These data show that cellular kininase I-type carboxypeptidases can enhance kinin signaling and NO production by converting B(2) agonists to B(1) agonists, especially in inflammatory conditions.  相似文献   

13.
Understanding the physiological role of the plasma kallikrein-kinin system (KKS) has been hampered by not knowing how the proteins of this proteolytic system, when assembled in the intravascular compartment, become activated under physiological conditions. Recent studies indicate that the enzyme prolylcarboxypeptidase, an ANG II inactivating enzyme, is a prekallikrein activator. The ability of prolylcarboxypeptidase to act in the KKS and the renin-angiotensin system (RAS) indicates a novel interaction between these two systems. This interaction, along with the roles of angiotensin converting enzyme, cross talk between bradykinin and angiotensin-(1-7) action, and the opposite effects of activation of the ANG II receptors 1 and 2 support a hypothesis that the plasma KKS counterbalances the RAS. This review examines the interaction and cross talk between these two protein systems. This analysis suggests that there is a multilayered interaction between these two systems that are important for a wide array of physiological functions.  相似文献   

14.
Four hybridoma cell lines have been established that secrete monoclonal antibodies to nonapeptide bradykinin. Bradykinin coupled to ovalbumin, using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as coupling agent, was used to immunize BALB/c mice. Spleen cells from the immunized animals were fused to P3-X63-AG8-653 mouse myeloma cells. The resultant hybrid cells were screened by enzyme-linked immunoassay for production of antibodies to bradykinin. Hybrids from four positive wells were subcloned by limiting dilution and expanded as ascites tumor into pristane-primed mice. All the four hybrids secreted monoclonal antibodies of IgG1 (k) isotype. Unlabeled peptides bradykinin, lysyl-bradykinin (kallidin) and methionyl-lysyl-bradykinin competed with the radiolabeled [Tyr1]kallidin for monoclonal antibody binding sites. These antibodies recognized preferentially either NH2- or COOH-terminals of the nonapeptide bradykinin and can distinguish between des-Arg1-bradykinin and des-Arg9-bradykinin. Bradykinin fragments smaller than eight residues were not recognized by these antibodies. Monoclonal antibodies BK-D6A5, BK-B6C9 and BK-A3D9 neutralized the smooth muscle contractile activity of bradykinin. An enzyme-linked immunoassay developed using these monoclonal antibodies showed the effective range of bradykinin determination between 5 and 150 ng.  相似文献   

15.
Bradykinin,angiotensin-(1-7), and ACE inhibitors: how do they interact?   总被引:9,自引:0,他引:9  
The beneficial effect of ACE inhibitors in hypertension and heart failure may relate, at least in part, to their capacity to interfere with bradykinin metabolism. In addition, recent studies have provided evidence for bradykinin-potentiating effects of ACE inhibitors that are independent of bradykinin hydrolysis, i.e. ACE-bradykinin type 2 (B(2)) receptor 'cross-talk', resulting in B(2) receptor upregulation and/or more efficient activation of signal transduction pathways, as well as direct activation of bradykinin type 1 receptors by ACE inhibitors. This review critically reviews the current evidence for hydrolysis-independent bradykinin potentiation by ACE inhibitors, evaluating not only the many studies that have been performed with ACE-resistant bradykinin analogues, but also paying attention to angiotensin-(1-7), a metabolite of both angiotensin I and II, that could act as an endogenous ACE inhibitor. The levels of angiotensin-(1-7) are increased during ACE inhibition, and most studies suggest that its hypotensive effects are mediated in a bradykinin-dependent manner.  相似文献   

16.
We previously showed that patients with temporal lobe epilepsy (TLE) present an increased expression of angiotensin II (AngII) AT1 and AT2 receptors in the hippocampus, supporting the idea of an upregulation of renin-angiotensin system (RAS) in this disease. This study aimed to verify the relationship between the RAS and TLE during epileptogenesis. Levels of the peptides angiotensin I (AngI), angiotensin II (AngII) and angiotensin 1-7 (Ang 1-7), were detected by HPLC assay. Angiotensin AT1 and AT2 receptors, Mas mRNA receptors and angiotensin converting enzyme (ACE), tonin and neutral endopeptidase (NEP) mRNA were also quantified at the hippocampus of Wistar rats by real time PCR, during acute (n=10), silent (n=10) and chronic (n=10) phases of pilocarpine-induced epilepsy. We observed an increased peptide level of Ang1-7 into acute and silent phases, decreasing importantly (p≤0.05) in the chronic phase, suggesting that AngI may be converted into Ang 1-7 by NEP, which is present in high levels in these periods. Our results also showed increased peptide level of AngII in the chronic phase of this model. In contraposition, the ACE expression is reduced in all periods. These data suggest that angiotensinogen or AngI may be cleaved to AngII by tonin, which showed increased expression in all phases. We found changes in AT1, AT2 and Mas mRNA receptors levels suggesting that Ang1-7 could act at Mas receptor during the silent period. Herein, we demonstrated for the first time, changes in angiotensin-related peptides, their receptors as well as the releasing enzymes in the hippocampus of rats during pilocarpine-induced epilepsy.  相似文献   

17.
Bovine aortic and cerebral microvascular endothelial cells and cultured segments of canine common carotid artery possess functional receptors for the nonapeptide bradykinin which mediate a rapid increase in the formation of [3H]inositol 1-phosphate, [3H]inositol 1,4-bisphosphate, and [3H]inositol 1,4,5-trisphosphate from cell membranes containing isotopically labeled myo-inositol. Bradykinin stimulated the formation of [3H]inositol phosphates from cells in culture or tissues at threshold concentrations of 0.1 nM and 1 nM, and with a half-maximal effective concentration of 0.6-1.0 nM and 30 nM, respectively. In cultured cells, the formation of [3H]inositol trisphosphate and [3H]inositol bisphosphate preceded the formation of [3H]inositol monophosphate. Similarly, [3H]inositol phosphate formation was not inhibited by addition of calcium channel blockers, a calcium chelator, or an intracellular calcium antagonist. Calcium ionophore A23187 did not promote [3H]inositol phosphate accumulation. The receptor selectivity of the bradykinin response in cultured cells was most compatible with a type-2 mediated response. Kallidin stimulated with the same potency as bradykinin but was more potent than methionyl-lysyl-bradykinin or des-Arg9-bradykinin. The B1 receptor antagonists des-Arg9-[Leu8]-bradykinin and des-Arg10-[Leu9]-kallidin were without effect. The rapidity of the inositol phosphate response as well as the close correspondence between the bradykinin type-2 receptor mediated hydrolysis of polyphosphoinositides and changes in prostacyclin synthesis, vessel dilation, and permeability suggests that breakdown products of inositol lipids serve as second messengers mediating the effects of bradykinin on the vascular endothelium.  相似文献   

18.
Bradykinin receptors in isolated rat duodenum   总被引:1,自引:0,他引:1  
O Altinkurt  Y Oztürk 《Peptides》1990,11(1):39-44
Pharmacological properties of the bradykinin receptors in the isolated rat duodenum were investigated by examining the relaxant and contractile responses to bradykinin and [des-Arg9]-bradykinin, an agonist of B1 receptors. A specific desensitization and de novo formation for B1 receptors were observed. Changes in medium pH caused a decrease in the responses to bradykinin and [des-Arg9]-bradykinin of rat duodenum. Urea incubation in test tube inhibited the responses to bradykinin and [des-Arg9]-bradykinin of rat duodenum, while urea in bathing medium was ineffective. These findings strongly suggested that (a) ionic bonds are important in the interaction between bradykinin and its receptors, and (b) B2 receptors in rat duodenum are different from those in guinea pig ileum.  相似文献   

19.
Min L  Sim MK  Xu XG 《Regulatory peptides》2000,95(1-3):93-97
Des-aspartate-angiotensin I, a pharmacologically active nine-amino acid angiotensin peptide, and losartan, an AT(1) angiotensin receptor antagonist, but not angiotensin-(1-7), another active angiotensin peptide, completely attenuated the angiotensin II-induced incorporation of [3H]phenylalanine in cultured rat cardiomyocytes. The attenuation by des-aspartate-angiotensin I but not that of losartan was inhibited by indomethacin. The data support an earlier suggestion that the nonapeptide attenuates cardiac hypertrophy in rats via an indomethacin-sensitive angiotensin AT(1) receptor subtype. In rat aortic smooth muscle cells, both des-aspartate-angiotensin I and angiotensin-(1-7) had no effect on the angiotensin II-induced [3H]phenylalanine incorporation. However, the two peptides significantly attenuated the angiotensin II-induced [3H]thymidine incorporation in the smooth muscle cells. The attenuation by angiotensin-(1-7) but not by des-aspartate-angiotensin I was inhibited by (D-Ala(7))-angiotensin-(1-7), a specific angiotensin-(1-7) antagonist. Des-aspartate-angiotensin I also attenuated FCS-stimulated [3H]thymidine incorporation. This attenuation was inhibited by the peptide angiotensin receptor antagonist, (Sar(1), Ile(8))-angiotensin II, but not by losartan. These data indicate that des-aspartate-angiotensin I and angiotensin-(1-7) do not participate in the process of protein synthesis in vascular smooth muscle cells and that the nonapeptide and heptapeptide act on different non-AT(1) receptors to mediate their anti-hyperplasic action. Although the exact mechanisms of action remain to be elucidated, the findings indicate that des-aspartate-angiotensin I acts as an agonist on angiotensin AT(1) and non-AT(1) receptor subtypes and induces responses that oppose the actions of angiotensin II.  相似文献   

20.
Various kinins (dissolved in 50 microliters) were applied to the nasal mucosa of healthy human volunteers to test the algesic and proinflammatory effects of these peptides in an intact human tissue. [des-Arg9]-bradykinin (0.5 mumol) was found to be inactive, while bradykinin (0.05-0.5 mumol) and especially kallidin (0.005-0.5 mumol) induced: (a) a mild painful sensation described as burning and pricking (latency 30 s, duration 3-5 min), (b) perception of pulsatility and obstruction in the nasal cavity (onset 1 min, duration 6-8 min). Substance P (0.5 mumol) and neurokinin A (0.5 mumol) produced slight obstruction and weak pulsatile sensation but not pain. Capsaicin (0.05 nmol) produced pain and secretion of fluid, but not pulsatile sensation. The effects of kallidin were not affected by repeated (to induce desensitization) applications of capsaicin (0.5 mumol). Likewise, ipratropium bromide (80 mg in 100 microliters) did not affect responses to kallidin. In an intact human tissue, kallidin produces various effects, including an algesic response, that are apparently independent from activation of B1 receptors and from desensitization of capsaicin-sensitive primary afferents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号