首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eukaryotic translation initiation factors (eIFs) play a central role in potyviral infection. Accordingly, mutations in the gene encoding eIF4E have been identified as a source of recessive resistance in several plant species. In common bean, Phaseolus vulgaris , four recessive genes, bc-1 , bc-2 , bc-3 and bc-u , have been proposed to control resistance to the potyviruses Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus . In order to identify molecular entities for these genes, we cloned and sequenced P. vulgaris homologues of genes encoding the eIF proteins eIF4E, eIF(iso)4E and nCBP. Bean genotypes reported to carry bc-3 resistance were found specifically to carry non-silent mutations at codons 53, 65, 76 and 111 in eIF4E . This set of mutations closely resembled a pattern of eIF4E mutations determining potyvirus resistance in other plant species. The segregation of BCMV resistance and eIF4E genotype was subsequently analysed in an F2 population derived from the P. vulgaris all-susceptible genotype and a genotype carrying bc-3 . F2 plants homozygous for the eIF4E mutant allele were found to display at least the same level of resistance to BCMV as the parental resistant genotype. At 6 weeks after inoculation, all F2 plants found to be BCMV negative by enzyme-linked immunosorbent assay were found to be homozygous for the mutant eIF4E allele. In F3 plants homozygous for the mutated allele, virus resistance was subsequently found to be stably maintained. In conclusion, allelic eIF4E appears to be associated with a major component of potyvirus resistance present in bc-3 genotypes of bean.  相似文献   

2.
The common bean (Phaseolus vulgaris) is a high protein crop and the main legume in the cropping system of western Kenya. Despite its importance, common bean yields are low (<1.0 t/ha) and declining. Bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV) are the most common and most destructive viruses and can cause a yield loss as high as 100%. In Kenya, a limited number of cultivars and exotic genotypes with resistance to BCMV and BCMNV strains have been reported. This study sought to determine the distribution and screen popular cultivars for resistance to the viruses. In October 2016 and May 2017, two diagnostic surveys for bean common mosaic disease (BCMD) were conducted in seven counties of western Kenya namely Bungoma, Busia, Homa Bay, Nandi, Vihiga, Kakamega and Siaya. Leaf samples showing virus-like symptoms were collected and analysed by ELISA. Sixteen popularly grown bean cultivars together with cowpea (Vigna unguiculata), soybean (Glycine max), green grams (Vigna radiata) and groundnut (Arachis hypogaea) were planted in a greenhouse in a completely randomized block design with three replicates. The plants were inoculated with BCMNV isolate at 3-leaf stage. Data were taken weekly for 3 weeks on type of symptoms expressed and number of plants infected. In total, 270 bean farms were visited. Symptoms of mosaic, downward curling, local lesions, stunting or a combination of these were observed during both surveys. Mean virus incidence was higher in the short rain season (50.2%) than in the long rain season (35.6%). The mean BCMD severity on a scale of 0–3 was highest (2.3) in Kakamega County and lowest (0.5) in Siaya. On variety resistance tests to BCMNV isolate, 10 bean cultivars were susceptible, four tolerant and two resistant. BCMNV is widely distributed across counties probably because of use of uncertified seeds by farmers and inoculum pressure from seed and aphid vector. For improved yields of common bean, farmers should be advised to plant certified seeds for all legumes in the cropping system.  相似文献   

3.
Summary Resistance to watermelon mosaic virus-2 in Phaseolus vulgaris L. is conferred by two distinct dominant alleles at independent loci. Based on segregation data one locus is designated Wmv, the other, Hsw. The dominant allele Wmv from cv. Great Northern 1140 prevents systemic spread of the virus but viral replication occurs in inoculated tissue. In contrast, Hsw confers both local and systemic resistance to WMV-2 below 30C. At higher temperatures, plants that carry this allele in the absence of modifying or epistatic factors develop systemic veinal necrosis upon inoculation with the virus that results in rapid death. Patho-type specificity has not been demonstrated for either allele; both factors confer resistance to every isolate tested. A temperature-sensitive shift in epistasis is apparent between dominant alleles at these loci. Because Hsw is very tightly linked if not identical to the following genes for hypersensitivity to potyviruses I, (bean common mosaic virus), Bcm, (blackeye cowpea mosaic virus), Cam, (cowpea aphid-borne mosaic virus) and Hss (soybean mosaic virus), parental, reciprocal dihybrid F1 populations, and selected F3 families were inoculated with each of these viruses and held at 35 C. F1 populations developed vascular necrosis completely or primarily limited to inoculated tissue, while F3 families from WMV-2-susceptible segregates were uniformly susceptible to these viruses. The relationship between Hsw, Wmv and other genes for potyvirus resistance suggest patterns in the evolution of resistance and viral pathogenicity. Characterization of the resistance spectrum associated with each factor provides an additional criterion to distinguish genes for plant virus resistance.  相似文献   

4.
5.
The I locus of Phaseolus vulgaris is genetically and phenotypically well described, conferring incompletely dominant, temperature‐dependent resistance against viruses currently assigned to at least four Potyvirus species. Despite the fact that the resistance allele at this locus, the I gene, has been incorporated into nearly all bean germplasm worldwide, little is known regarding its resistance mechanism. In the present study, P. vulgaris lines nearly isogenic for I were challenged with Bean common mosaic virus (BCMV; genus Potyvirus) in order to investigate at the cellular level the temperature‐dependent resistance reaction. Immunolocalisation and confocal laser scanning microscopy were employed to visualise the virus and to identify patterns of BCMV accumulation in resistant, susceptible and heterozygous genotypes. Virus was detected in all three genotypes regardless of temperature, supporting previous findings that BCMV accumulates in protoplasts containing the I allele. Genotype‐specific and temperature‐specific patterns of virus accumulation suggested a resistance mechanism that depends on host recognition of viral replication and/or local movement.  相似文献   

6.
The I locus of the common bean, Phaseolus vulgaris, controls the development of four different phenotypes in response to inoculation with Bean common mosaic virus, Bean common mosaic necrosis virus, several other related potyviruses, and one comovirus. We have generated a high-resolution linkage map around this locus and have aligned it with a physical map constructed with BAC clones. These clones were obtained from a library of the cultivar "Sprite," which carries the dominant allele at the I locus. We have identified a large cluster of TIR-NBS-LRR sequences associated within this locus, which extends over a distance >425 kb. Bean cultivars from the Andean or Mesoamerican gene pool that contain the dominant allele share the same haplotypes as revealed by gel blot hybridizations with a TIR probe. In contrast, beans with a recessive allele display simpler and variable haplotypes. A survey of wild accessions from Argentina to Mexico showed that this multigene family has expanded significantly during evolution and domestication. RNA gel blot analysis indicated that the TIR family of genes plays a role in the response to inoculations with BCMV or BCMNV.  相似文献   

7.
In host-range studies, bean common mosaic virus strains (BCMV-NL1, -NL3 and -NY 15) usually induced distinct systemic symptoms in susceptible bean cultivars and latent infection in several Vigna genotypes (except NY15 which gave mosaic symptoms in the latter), while blackeye cowpea mosaic virus (B1CMV-W) caused distinct systemic symptoms in several Vigna genotypes and only weak systemic symptoms in a few bean genotypes only. Biologically, B1CMV-W was closest to BCMV-NY15 and less close to -NL1. When using antisera to the three BCMV strains and five strains of B1CMV (including a strain originally considered cowpea aphid-borne mosaic virus CAMV-Mor) in SDS-immunodiffusion and ELISA, BCMV-NL1 and -NY15 were found to be closely related to each other and to BICMV-Fla, -NR and -W, and less closely to BICMV-Ind and -Mor. Serological relationships of BCMV-NL1 and -NY15 to BCMV- NL3 were more distant, which is in line with the biological distinction of NL3 in causing temperature-independent necrosis in bean cultivars with the necrosis gene I. PAGE analysis of coat proteins revealed that the three strains of BCMV and B1 CMV-W have similar but non-identical molecular masses. Although molecular hybridisation may further elucidate quantitative relationships between potyvir-uses, variation within and among the potyviruses may continue to pose problems in their classification and identification.  相似文献   

8.
绿豆尖镰孢枯萎病抗性鉴定方法   总被引:1,自引:0,他引:1  
绿豆是我国的主要食用豆类之一。由尖镰孢引起的绿豆枯萎病是一种严重的土传病害,病原菌从根部侵入,引起植株矮化,叶片黄化、枯萎,根茎部维管束变褐,严重时导致植株死亡。防治枯萎病最经济、有效的方法是培育利用抗病品种。本研究在控制条件下以具有不同抗性表型绿豆品种为材料,分别对接种方法、植株生育期、接种体浓度、接种体处理时间及接种后植株培养温度等影响绿豆抗性表型的因素进行比较研究,以期建立一个快速、准确和高效的绿豆枯萎病抗性鉴定方法,为抗病资源的筛选和抗病育种提供技术支持。结果表明,绿豆枯萎病苗期抗性鉴定最适宜的接种方法为剪根浸根法,最适宜接种体浓度为105~106孢子/m L,接种最佳植株生育期为2叶期,最短有效接种体浸根时间为2 min,最适宜发病温度为25℃,接种后14 d调查病情。  相似文献   

9.
Soybean mosaic virus (SMV), a potyvirus, is the most prevalent and destructive viral pathogen in soybean-planting regions of China. Moreover, other potyviruses, including bean common mosaic virus (BCMV) and watermelon mosaic virus (WMV), also threaten soybean farming. The eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in controlling resistance/susceptibility to potyviruses in plants. In the present study, much higher SMV-induced eIF4E1 expression levels were detected in a susceptible soybean cultivar when compared with a resistant cultivar, suggesting the involvement of eIF4E1 in the response to SMV by the susceptible cultivar. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that soybean eIF4E1 interacted with SMV VPg in the nucleus and with SMV NIa-Pro/NIb in the cytoplasm, revealing the involvement of VPg, NIa-Pro, and NIb in SMV infection and multiplication. Furthermore, transgenic soybeans silenced for eIF4E were produced using an RNA interference approach. Through monitoring for viral symptoms and viral titers, robust and broad-spectrum resistance was confirmed against five SMV strains (SC3/7/15/18 and SMV-R), BCMV, and WMV in the transgenic plants. Our findings represent fresh insights for investigating the mechanism underlying eIF4E-mediated resistance in soybean and also suggest an effective alternative for breeding soybean with broad-spectrum viral resistance.  相似文献   

10.
Late blight, caused by the notorious pathogen Phytophthora infestans, is a devastating disease of potato (Solanum tuberosum) and tomato (Solanum lycopersicum), and during the 1840s caused the Irish potato famine and over one million fatalities. Currently, grown potato cultivars lack adequate blight tolerance. Earlier cultivars bred for resistance used disease resistance genes that confer immunity only to some strains of the pathogen harboring corresponding avirulence gene. Specific resistance gene-mediated immunity and chemical controls are rapidly overcome in the field when new pathogen races arise through mutation, recombination, or migration from elsewhere. A mitogen-activated protein kinase (MAPK) cascade plays a pivotal role in plant innate immunity. Here we show that the transgenic potato plants that carry a constitutively active form of MAPK kinase driven by a pathogen-inducible promoter of potato showed high resistance to early blight pathogen Alternaria solani as well as P. infestans. The pathogen attack provoked defense-related MAPK activation followed by induction of NADPH oxidase gene expression, which is implicated in reactive oxygen species production, and resulted in hypersensitive response-like phenotype. We propose that enhancing disease resistance through altered regulation of plant defense mechanisms should be more durable and publicly acceptable than engineering overexpression of antimicrobial proteins.  相似文献   

11.
Elicitation of hypersensitive cell death and induction of plant disease resistance by Pseudomonas syringae pv. tomato (Pst) is dependent on activity of the Pst Hrp secretion system and the gene-for-gene interaction between the tomato resistance gene Pto and the bacterial avirulence gene avrPto. AvrPto was expressed transiently in resistant or susceptible plant lines via a potato virus X (PVX) vector. We found that while PVX is normally virulent on tomato, a PVX derivative expressing avrPto was only capable of infecting plants lacking a functional Pto resistance pathway. Mutations in either the Pto or Prf genes allowed systemic spread of the recombinant virus. These results indicate that recognition of AvrPto by Pto in resistant plant lines triggers a plant defense response that can confer resistance to a viral as well as a bacterial pathogen.  相似文献   

12.
Yang  Xiangdong  Niu  Lu  Zhang  Wei  He  Hongli  Yang  Jing  Xing  Guojie  Guo  Dongquan  Zhao  Qianqian  Zhong  Xiaofang  Li  Haiyun  Li  Qiyun  Dong  Yingshan 《Transgenic research》2019,28(1):129-140

Viruses constitute a major constraint to soybean production worldwide and are responsible for significant yield losses every year. Although varying degrees of resistance to specific viral strains has been identified in some soybean genetic sources, the high rate of mutation in viral genomes and mixed infections of different viruses or strains under field conditions usually hinder the effective control of viral diseases. In the present study, we generated transgenic soybean lines constitutively expressing the double-strand RNA specific ribonuclease gene PAC1 from Schizosaccharomyces pombe to evaluate their resistance responses to multiple soybean-infecting virus strains and isolates. Resistance evaluation over three consecutive years showed that the transgenic lines displayed significantly lower levels of disease severity in field conditions when challenged with soybean mosaic virus (SMV) SC3, a prevalent SMV strain in soybean-growing regions of China, compared to the non-transformed (NT) plants. After inoculation with four additional SMV strains (SC7, SC15, SC18, and SMV-R), and three isolates of bean common mosaic virus (BCMV), watermelon mosaic virus (WMV), and bean pod mottle virus (BPMV), the transgenic plants exhibited less severe symptoms and enhanced resistance to virus infections relative to NT plants. Consistent with these results, the accumulation of each virus isolate was significantly inhibited in transgenic plants as confirmed by quantitative real-time PCR and double antibody sandwich enzyme-linked immunosorbent assays. Collectively, our results showed that overexpression of PAC1 can increase multiple virus resistance in transgenic soybean, and thus provide an efficient control strategy against RNA viruses such as SMV, BCMV, WMV, and BPMV.

  相似文献   

13.
Generally, under normal conditions plants are resistant to many of the incompatible pathogens (viral, fungal and bacterial), and this is named “non-host resistance phenomenon”. To understand this phenomenon, different types of food crops (faba bean, squash, barley and wheat) were inoculated with compatible and incompatible pathogens. Strong resistance symptoms were observed in the non-host/incompatible pathogen combinations as compared with host/compatible pathogen combinations, which showed severe infection (susceptibility). Reactive oxygen species (ROS) mostly hydrogen peroxide and superoxide were significantly increased early 24 and 48 h after inoculation (hai) in the non-host plants comparing to the host. Antioxidant enzymes activity (catalase, polyphenol oxidase and peroxidase) were not increased at the same early time 24, 48 hai in the non-host resistant and host resistant plants, however, it increased later at 72 and 168 hai. Electrolyte leakage decreased significantly in non-host resistant and host resistant/pathogen combinations. Catalase and peroxidase genes were significantly expressed in non-host resistant and in host resistant plants as compared to the host susceptible one, which did not show expression using RT-PCR technique. Furthermore, Yr5, Yr18 and Yr26 resistant genes were identified positively using PCR in all treatments either host susceptible or non-host resistant plants in which prove that no clear role of these resistant genes in resistance. Early accumulation of ROS could have a dual roles, first role is preventing the growth or killing the pathogens early in the non-host, second, stimulating the gene appearance of related genes in addition the activition of antioxidant enzymes later on which thereby, neutralize the harmful effect of ROS and consequently suppressing disease symptoms. The new finding from this study supporting the plant breeders with new source of resistance to develop new resistant cultivars and/or stop the breakdown of resistance in resistant cultivars.  相似文献   

14.
Brassinolide (BL), considered to be the most important brassinosteroid (BR) and playing pivotal roles in the hormonal regulation of plant growth and development, was found to induce disease resistance in plants. To study the potentialities of BL activity on stress responding systems, we analyzed its ability to induce disease resistance in tobacco and rice plants. Wild-type tobacco treated with BL exhibited enhanced resistance to the viral pathogen tobacco mosaic virus (TMV), the bacterial pathogen Pseudomonas syringae pv. tabaci (Pst), and the fungal pathogen Oidium sp. The measurement of salicylic acid (SA) in wild-type plants treated with BL and the pathogen infection assays using NahG transgenic plants indicate that BL-induced resistance does not require SA biosynthesis. BL treatment did not induce either acidic or basic pathogenesis-related (PR) gene expression, suggesting that BL-induced resistance is distinct from systemic acquired resistance (SAR) and wound-inducible disease resistance. Analysis using brassinazole 2001, a specific inhibitor for BR biosynthesis, and the measurement of BRs in TMV-infected tobacco leaves indicate that steroid hormone-mediated disease resistance (BDR) plays part in defense response in tobacco. Simultaneous activation of SAR and BDR by SAR inducers and BL, respectively, exhibited additive protective effects against TMV and Pst, indicating that there is no cross-talk between SAR- and BDR-signaling pathway downstream of BL. In addition to the enhanced resistance to a broad range of diseases in tobacco, BL induced resistance in rice to rice blast and bacterial blight diseases caused by Magnaporthe grisea and Xanthomonas oryzae pv. oryzae, respectively. Our data suggest that BDR functions in the innate immunity system of higher plants including dicotyledonous and monocotyledonous species.  相似文献   

15.
Despite long-standing plant breeding investments and early successes in genetic engineering, plant viral pathogens still cause major losses in agriculture worldwide. Early transgenic approaches involved the expression of pathogen-derived sequences that provided limited protection against relatively narrow ranges of viral pathotypes. In contrast, this study demonstrates that the ectopic expression of pvr1 , a recessive gene from Capsicum chinense , results in dominant broad-spectrum potyvirus resistance in transgenic tomato plants ( Solanum lycopersicum ). The pvr1 locus in pepper encodes the eukaryotic translation initiation factor eIF4E. Naturally occurring point mutations at this locus result in monogenic recessive broad-spectrum potyvirus resistance that has been globally deployed via plant breeding programmes for more than 50 years. Transgenic tomato progenies that over-expressed the Capsicum pvr1 allele showed dominant resistance to several tobacco etch virus strains and other potyviruses, including pepper mottle virus, a range of protection similar to that observed in pepper homozygous for the pvr1 allele.  相似文献   

16.
Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.  相似文献   

17.
Fusarium oxysporum (Fo) is best known as a host-specific vascular pathogen causing major crop losses. Most Fo strains, however, are root endophytes potentially conferring endophyte-mediated resistance (EMR). EMR is a mechanistically poorly understood root-specific induced resistance response induced by endophytic or nonhost pathogenic Fo strains. Like other types of induced immunity, such as systemic acquired resistance or induced systemic resistance, EMR has been proposed to rely on the activation of the pattern-triggered immunity (PTI) system of the plant. PTI is activated upon recognition of conserved microbe-associated molecular patterns (MAMPs) of invading microbes. Here, we investigated the role of PTI in controlling host colonization by Fo endophytes and their ability to induce EMR to the tomato pathogen Fo f. sp. lycopersici (Fol). Transgenic tomato and Arabidopsis plants expressing the Fo effector gene Avr2 are hypersusceptible to bacterial and fungal infection. Here we show that these plants are PTI-compromised and are nonresponsive to bacterial- (flg22) and fungal- (chitosan) MAMPs. We challenged the PTI-compromised tomato mutants with the EMR-conferring Fo endophyte Fo47, the nonhost pathogen Fom (a melon pathogen), and with Fol. Compared to wild-type plants, Avr2-tomato plants became hypercolonized by Fo47 and Fom. Surprisingly, however, EMR towards Fol, induced by either Fo47 or Fom, was unaffected in these plants. These data show that EMR-based disease resistance is independent from the conventional defence pathways triggered by PTI, but that PTI is involved in restricting host colonization by nonpathogenic Fo isolates.  相似文献   

18.
Resistance to common bacterial blight in common bean is a complex trait that is quantitatively inherited. Combining QTL is the current strategy for improving resistance, but interactions among different QTL are unknown. We examined the interaction between two independent QTL present in dry bean breeding line XAN 159. The QTL were studied in a near isogenic population consisting of 120 BC(6):F(2) plants. Each BC(6):F(2) plant was evaluated for disease reaction at several time points after pathogen inoculation and the dominant SCAR markers linked with QTL on linkage groups B6 (BC420 ~ QTL) and B8 (SU91 ~ QTL) were interpreted as codominant markers using real time PCR assays. This enabled assignment of BC(6):F(2) plants to all nine possible genotypes. Reaction to CBB in BC(6):F(2) plants was characterized by an epistatic interaction between BC420 and SU91 such that: 1) the expression of BC420 was epistatically suppressed by a homozygous recessive su91//su91 genotype; 2) SU91//SU91 and SU91//su91 genotypes conditioned an intermediate disease reaction when homozygous recessive for bc420//bc420; and 3) the highest level of disease resistance was conferred by genotypes with at least a single resistance allele at both QTL (BC420//-; SU91//-). Segregation for resistance among BC(6):F(3) plants derived from BC(6):F(2) plants that were heterozygous for both QTL did not deviate significantly from expected ratios of 9 resistant: 3 moderately resistant: 4 susceptible. This is consistent with a recessive epistatic model of inheritance between two loci. These results indicate breeders will realize greatest gains in resistance to CBB by selecting breeding materials that are fixed for both QTL. This is a first report of a qualitative digenic model of inheritance discerning an interaction between two QTL conditioning disease resistance in plants.  相似文献   

19.
A Molina  M D Hunt    J A Ryals 《The Plant cell》1998,10(11):1903-1914
Fungicide action is generally assumed to be dependent on an antibiotic effect on a target pathogen, although a role for plant defense mechanisms as mediators of fungicide action has not been excluded. Here, we demonstrate that in Arabidopsis, the innate plant defense mechanism contributes to the effectiveness of fungicides. In NahG and nim1 (for noninducible immunity) Arabidopsis plants, which normally exhibit increased susceptibility to pathogens, the fungicides metalaxyl, fosetyl, and Cu(OH)2 are much less active and fail to control Peronospora parasitica. In contrast, the effectiveness of these fungicides is not altered in Arabidopsis mutants defective in the ethylene or jasmonic acid signal transduction pathways. Application of the systemic acquired resistance activator benzothiadiazole (BTH) in combination with these fungicides results in a synergistic effect on pathogen resistance in wild-type plants and an additive effect in NahG and BTH-unresponsive nim1 plants. Interestingly, BTH treatment normally induces long-lasting pathogen protection; however, in NahG plants, the protection is transient. These observations suggest that BTH treatment can compensate only partially for an impaired signal transduction pathway and support the idea that pathogen defense mechanisms are under positive feedback control. These observations are strikingly reminiscent of the reduced efficacy of antifungal agents in immunocompromised animals.  相似文献   

20.
After evaluation of the responses of bean and broad bean common cultivars against an isolate of Cucumber mosaic virus (CMV-K) and Bean yellow mosaic virus (BYMV-K), interaction of isolates was statistically studied on co-infected plants of bean cv. Bountiful and broad bean cv. Lahijan at two trials. Based on viral relative concentration determined by quantitative enzyme-linked immunosorbent assay, BYMV interacts synergistically with CMV in bean at 14 days post inoculation, while in co-infection with BYMV, CMV interacts antagonistically in both host plants at least in one of the two trials. This suggests that CMV/BYMV interaction is dependent on host species and developmental stage of plant. Co-infection like single infection with CMV in bean plants led to significantly decrease in plants’ height and fresh weight than BYMV singly infected and healthy plants, while viral infection of broad bean plants did not significantly affect growth parameters. Decline effect of viral infection (especially co-infection) on chlorophyll and carotenoids value of bean plants was greater than those of broad bean. Viral infection (singly or doubly) caused irregular changes in nutrient elements values of both hosts compared with healthy ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号