首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical and functional analysis of the SIV fusion peptide.   总被引:8,自引:0,他引:8       下载免费PDF全文
The fusion domain of simian immunodeficiency virus (SIV) envelope glycoproteins is a hydrophobic region located at the amino-terminal extremity of the transmembrane protein (gp32). Assuming an alpha helical structure for the SIV fusogenic domain of gp32 in a lipid environment, theoretical studies have predicted that the fusion peptide would insert obliquely in the lipid bilayer. This oblique insertion could be an initial step of the fusion process by disorganizing locally the structure of the lipid bilayer. We have tested this hypothesis by selectively mutagenizing the SIV gp160 expressed via a vaccinia virus vector, to alter the theoretical angle of insertion of the fusion peptide. The fusogenic activity of the wild-type and mutant glycoproteins was tested after infection of T4 lymphocytic cell lines by the recombinant vaccinia virus, and measure of syncytia formation. Mutations that modified the oblique orientation reduced the fusogenic activity. In contrast, mutations that conserve the oblique orientation did not alter the fusogenic properties. Our results support the hypothesis that oblique orientation is important for fusogenic activity.  相似文献   

2.
Peptides of 12, 16 and 24 amino acids length corresponding to the NH2 terminal sequence of SIV gp32 were synthesized. Fluorescence energy transfer studies have shown that those peptides can induce lipid mixing of SUV (Small Unilamellar Vesicles) of various compositions at pH 7.4 and 37 degrees C. LUV (Large Unilamellar Vesicles) were shown to undergo fusion, provided they contained PE in their lipid composition. This work is an attempt to determine how the fusogenic activity depends on the structure of the peptide inserted into a lipidic environment. The peptides secondary structure and orientation in the lipid bilayer were determined using Fourier Transform infrared spectroscopy (FTIR). They adopt mainly a beta-sheet conformation in the absence of lipids. After interaction with DOPC SUV, the beta-sheet is partly converted into alpha-helix oriented obliquely with respect to the membrane interface. We bring here evidence that this oblique orientation is a prerequisite to the fusion process.  相似文献   

3.
Fusogenic peptides belong to a class of helical amphipathic peptides characterized by a hydrophobicity gradient along the long helical axis. According to the prevailing theory regarding the mechanism of action of fusogenic peptides, this hydrophobicity gradient causes the tilted insertion of the peptides in membranes, thus destabilizing the lipid core and, thereby, enhancing membrane fusion. To assess the role of the hydrophobicity gradient upon the fusogenic activity, two of these fusogenic peptides and several variants were synthesized. The LCAT-(57-70) peptide, which is part of the sequence of the lipolytic enzyme lecithin cholesterol acyltransferase, forms stable beta-sheets in lipids, while the apolipoprotein A-II (53-70) peptide remains predominantly helical in membranes. The variant peptides were designed through amino acid permutations, to be either parallel, perpendicular, or to retain an oblique orientation relative to the lipid-water interface. Peptide-induced vesicle fusion was monitored by lipid-mixing experiments, using fluorescent probes, the extent of peptide-lipid association, the conformation of lipid-associated peptides and their orientation in lipids, were studied by Fourier Transformed Infrared Spectroscopy. A comparison of the properties of the wild-type and variant peptides shows that the hydrophobicity gradient, which determines the orientation of helical peptides in lipids and their fusogenic activity, further influences the secondary structure and lipid binding capacity of these peptides.  相似文献   

4.
Fusogenic peptides belong to a class of helical amphipathic peptides characterized by a hydrophobicity gradient along the long helical axis. According to the prevailing theory regarding the mechanism of action of fusogenic peptides, this hydrophobicity gradient causes the tilted insertion of the peptides in membranes, thus destabilizing the lipid core and, thereby, enhancing membrane fusion. To assess the role of the hydrophobicity gradient upon the fusogenic activity, two of these fusogenic peptides and several variants were synthesized. The LCAT-(57-70) peptide, which is part of the sequence of the lipolytic enzyme lecithin cholesterol acyltransferase, forms stable beta-sheets in lipids, while the apolipoprotein A-II (53-70) peptide remains predominantly helical in membranes. The variant peptides were designed through amino acid permutations, to be either parallel, perpendicular, or to retain an oblique orientation relative to the lipid-water interface. Peptide-induced vesicle fusion was monitored by lipid-mixing experiments, using fluorescent probes, the extent of peptide-lipid association, the conformation of lipid-associated peptides and their orientation in lipids, were studied by Fourier Transformed Infrared Spectroscopy. A comparison of the properties of the wild-type and variant peptides shows that the hydrophobicity gradient, which determines the orientation of helical peptides in lipids and their fusogenic activity, further influences the secondary structure and lipid binding capacity of these peptides.  相似文献   

5.
Fusion peptides mimic the membrane fusion activities of the larger viral proteins from which they derive their sequences. A possible mode of activity involves their oblique insertion into lipid bilayers, causing membrane disruption by promoting highly curved hemifusion intermediates, leading to fusion. We have determined the location and orientation of the simian immunodeficiency virus (SIV) fusion peptide in planar lipid bilayers using neutron lamellar diffraction. The helical axis of the peptide adopts an angle of 55 degrees relative to the membrane normal, while it positions itself nearest the lipid bilayer surface. This is the first direct observation of the structural interaction between a fusion peptide and a phospholipid bilayer.  相似文献   

6.
Previous studies showed that apoA1, the major protein component of HDL (High Density Lipoprotein), inhibited HIV infectivity and virus-induced syncytia formation. The mechanism of inhibition is unknown. We bring here evidence that the amphipathic helices of apoA1 interact with the N-terminal peptides of SIV gp32 and HIV gp41. These peptides have been shown to be associated with the initial steps of the fusion between the host cell and the virus. Binding of apoA1 to these peptides prevents the insertion of the fusogenic domains into the cell membrane and inhibits the fusion and the entry of the virus into the host cell.  相似文献   

7.
The structures of the 16-residue fusion domain (or fusion peptide, FP) of the human immunodeficiency virus gp41 fusion protein, two of its mutants, and a shortened peptide (5-16) were studied by molecular dynamics simulation in an explicit palmitoyloleoylphosphoethanolamine bilayer. The simulations showed that the active wild-type FP inserts into the bilayer approximately 44 degrees +/- 6 degrees with respect to the bilayer normal, whereas the inactive V2E and L9R mutants and the inactive 5 to 16 fragment lie on the bilayer surface. This is the first demonstration by explicit molecular dynamics of the oblique insertion of the fusion domain into lipid bilayers, and provides correlation between the mode of insertion and the fusogenic activity of these peptides. The membrane structure of the wild-type FP is remarkably similar to that of the influenza HA(2) FP as determined by nuclear magnetic resonance and electron spin resistance power saturation. The secondary structures of the wild-type FP and the two inactive mutants are quite similar, indicating that the secondary structure of this fusion domain plays little or no role in affecting the fusogenic activity of the fusion peptide. The insertion of the wild-type FP increases the thickness of the interfacial area of the bilayer by disrupting the hydrocarbon chains and extending the interfacial area toward the head group region, an effect that was not observed in the inactive FPs.  相似文献   

8.
We have studied a group of fusion peptides of influenza hemagglutinin in which the N-terminal amino acid, Gly (found in the wild-type peptide), has been systematically substituted with Ala, Ser, Val, or Glu. The activity of the intact hemagglutinin protein with these same substitutions has already been reported. As a measure of the extent of modulation of intrinsic membrane curvature by these peptides, we determined their effects on the polymorphic phase transition of dipalmitoleoylphosphatidylethanolamine. The wild-type peptide is the only one that, at pH 5, can substantially decrease the temperature of this transition. This is also the only form in which the intact protein promotes contents mixing in cells. The Ala and Ser mutant hemagglutinins exhibit a hemifusion phenotype, and their fusion peptides have little effect on lipid polymorphism at low pH. The two mutant proteins that are completely fusion inactive are the Val and Glu mutant hemagglutinins. The fusion peptides from these forms significantly increase the polymorphic phase transition temperature at low pH. We find that the effect of the fusion peptides on membrane curvature, as monitored by a shift in the temperature of this polymorphic phase transition, correlates better with the fusogenic activities of the corresponding protein than do measurements of the isotropic (31)P NMR signals or the ability to induce the fusion of liposomes. The inactivity of the hemagglutinin protein with the hydrophobic Val mutation can be explained by the change in the angle of membrane insertion of the helical fusion peptide as measured by polarized FTIR. Thus, the nature of the interactions of the fusion peptides with membranes can, in large part, explain the differences in the fusogenic activity of the intact protein.  相似文献   

9.
The amino-terminal extremity of the human immunodeficiency virus type 1 transmembrane protein (gp41) is thought to play a pivotal role in the fusion of virus membranes with the plasma membrane of the target cell and in syncytium formation. Peptides with sequences taken from the human immunodeficiency virus type 1 gp41 fusogenic (synthetic peptides SPwt and SP-2) and nonfusogenic (SP-3 and SP-4) glycoproteins adopt mainly a beta-sheet conformation in the absence of lipid, as determined by attenuated total reflection Fourier transform infrared spectroscopy, and after interaction with large unilamellar liposomes, the beta-sheet is partly converted into an alpha-helical conformation. Peptides SPwt and SP-2 but not SP-3 or SP-4 were able to promote lipid mixing as assessed by fluorescence energy transfer assay and dye leakage in a vesicle leakage assay. By using polarized attenuated total reflection Fourier transform infrared spectroscopy, SPwt and SP-2 were found to adopt an oblique orientation in the lipid membrane whereas SP-3 and SP-4 were oriented nearly parallel to the plane of the membrane. These findings confirm the correlation between the membrane orientation of the alpha-helix and the lipid mixing ability in vitro. Interestingly, the data provide a direct correlation with the fusogenic activity of the parent glycoproteins in vivo.  相似文献   

10.
The fusion peptide of HIV-1 gp41 is formed by the 16 N-terminal residues of the protein. This 16-amino acid peptide, in common with several other viral fusion peptides, caused a reduction in the bilayer to hexagonal phase transition temperature of dipalmitoleoylphosphatidylethanolamine (T(H)), suggesting its ability to promote negative curvature in membranes. Surprisingly, an elongated peptide corresponding to the 33 N-terminal amino acids raised T(H), although it was more potent than the 16-amino acid fusion peptide in inducing lipid mixing with large unilamellar liposomes of 1:1:1 dioleoylphosphatidylethanolamine/dioleoylphosphatidylcholine/choleste rol. The 17-amino acid C-terminal fragment of the peptide can induce membrane fusion by itself, if it is anchored to a membrane by palmitoylation of the amino terminus, indicating that the additional 17 hydrophilic amino acids contribute to the fusogenic potency of the peptide. This is not solely a consequence of the palmitoylation, as a random peptide with the same amino acid composition with a palmitoyl anchor was less potent in promoting membrane fusion and palmitic acid itself had no fusogenic activity. The 16-amino acid N-terminal fusion peptide and the longer 33-amino acid peptide were labeled with NBD. Fluorescence binding studies indicate that both peptides bind to the membrane with similar affinities, indicating that the increased fusogenic activity of the longer peptide was not a consequence of a greater extent of membrane partitioning. We also determined the secondary structure of the peptides using FTIR spectroscopy. We find that the amino-terminal fusion peptide is inserted into the membrane as a beta-sheet and the 17 C-terminal amino acids lie on the surface of the membrane, adopting an alpha-helical conformation. It was further demonstrated with the use of rhodamine-labeled peptides that the 33-amino acid peptide self-associated in the membrane while the 16-amino acid N-terminal peptide did not. Thus, the 16-amino acid N-terminal fusion peptide of HIV inserts into the membrane and, like other viral fusion peptides, lowers T(H). In addition, the 17 consecutive amino acids enhance the fusogenic activity of the fusion peptide presumably by promoting its self-association.  相似文献   

11.
The lipid-interacting properties of the N-terminal domain of human apolipoprotein C-III (apo C-III) were investigated. By molecular modeling, we predicted that the 6-20 fragment of apo C-III is obliquely orientated at the lipid/water interface owing to an asymmetric distribution of the hydrophobic residues when helical. This is characteristic of 'tilted peptides' originally discovered in viral fusion proteins and later in various proteins including some involved in lipoprotein metabolism. Since most tilted peptides were shown to induce liposome fusion in vitro, the fusogenic capacity of the 6-20 fragment of apo C-III was tested on unilamellar liposomes and compared with the well characterized SIV fusion peptide. Mutants were designed by molecular modeling to assess the role of the hydrophobicity gradient in the fusion. FTIR spectroscopy confirmed the predominantly helical conformation of the peptides in TFE solution and also in lipid-peptide complexes. Lipid-mixing experiments showed that the apo C-III (6-20) peptide is able to increase the fluorescence of a lipophilic fluorescent probe. The vesicle fusion was confirmed by core-mixing and leakage assays. The hydrophobicity gradient plays a key role in the fusion process because the mutant with no hydrophobic asymmetry but the same mean hydrophobicity as the wild type does not induce significant lipid fusion. The apo C-III (6-20) fragment is, however, less fusogenic than the SIV peptide, in agreement with their respective mean hydrophobicity. Since lipid fusion should not be the physiological function of the N-terminal domain of apo CIII, we suggest that its peculiar distribution of hydrophobic residues is important for the lipid-binding properties of apo C-III and should be involved in apolipoprotein and lipid exchanges crucial for triglyceride metabolism.  相似文献   

12.
According to their distinct biological functions, membrane-active peptides are generally classified as antimicrobial (AMP), cell-penetrating (CPP), or fusion peptides (FP). The former two classes are known to have some structural and physicochemical similarities, but fusogenic peptides tend to have rather different features and sequences. Nevertheless, we found that many CPPs and some AMPs exhibit a pronounced fusogenic activity, as measured by a lipid mixing assay with vesicles composed of typical eukaryotic lipids. Compared to the HIV fusion peptide (FP23) as a representative standard, all designer-made peptides showed much higher lipid-mixing activities (MSI-103, MAP, transportan, penetratin, Pep1). Native sequences, on the other hand, were less fusogenic (magainin 2, PGLa, gramicidin S), and pre-aggregated ones were inactive (alamethicin, SAP). The peptide structures were characterized by circular dichroism before and after interacting with the lipid vesicles. A striking correlation between the extent of conformational change and the respective fusion activities was found for the series of peptides investigated here. At the same time, the CD data show that lipid mixing can be triggered by any type of conformation acquired upon binding, whether α-helical, β-stranded, or other. These observations suggest that lipid vesicle fusion can simply be driven by the energy released upon membrane binding, peptide folding, and possibly further aggregation. This comparative study of AMPs, CPPs, and FPs emphasizes the multifunctional aspects of membrane-active peptides, and it suggests that the origin of a peptide (native sequence or designer-made) may be more relevant to define its functional range than any given name.  相似文献   

13.
In a previous work, we predicted and demonstrated that the 29-42-residue fragment of beta-amyloid peptide (Abeta peptide) has in vitro capacities close to those of the tilted fragment of viral fusion proteins. We further demonstrated that apolipoprotein E2 and E3 but not apolipoprotein E4 can decrease the fusogenic activity of Abeta(29-42) via a direct interaction. Therefore, we suggested that this fragment is implicated in the neurotoxicity of Abeta and in the protective effects of apolipoprotein E in Alzheimer's disease. Because structurally related apolipoproteins do not interact with the Abeta C-terminal domain but inhibit viral fusion, we suggested that interactions existing between fusogenic peptides and apolipoproteins are selective and responsible for the inhibition of fusion. In this study, we simulated interactions of all amphipathic helices of apolipoproteins E and A-I with Abeta and simian immunodeficiency virus (SIV) fusogenic fragments by molecular modeling. We further calculated cross-interactions that do not inhibit fusion in vitro. The results suggest that interactions of hydrophobic residues are the major event to inhibit the fusogenic capacities of Abeta(29-42) and SIV peptides. Selectivity of those interactions is due to the steric complementarity between bulky hydrophobic residues in the fusogenic fragments and hydrophobic residues in the apolipoprotein C-terminal amphipathic helices.  相似文献   

14.
A detailed molecular dynamics study of the haemagglutinin fusion peptide (N-terminal 20 residues of the HA2 subunits) in a model bilayer has yielded useful information about the molecular interactions leading to insertion into the lipids. Simulations were performed on the native sequence, as well as a number of mutant sequences, which are either fusogenic or nonfusogenic. For the native sequence and fusogenic mutants, the N-terminal 11 residues of the fusion peptides are helical and insert with a tilt angle of approximately 30 degrees with respect to the membrane normal, in very good agreement with experimental data. The tilted insertion of the native sequence peptide leads to membrane bilayer thinning and the calculated order parameters show larger disorder of the alkyl chains. These results indicate that the lipid packing is perturbed by the fusion peptide and could be used to explain membrane fusion. For the nonfusogenic sequences investigated, it was found that most of them equilibrate parallel to the interface plane and do not adopt a tilted conformation. The presence of a charged residue at the beginning of the sequence (G1E mutant) resulted in a more difficult case, and the outcomes do not fall straightforwardly into the general picture. Sequence searches have revealed similarities of the fusion peptide of influenza haemagglutinin with peptide sequences such as segments of porin, amyloid alpha eta peptide, and a peptide from the prion sequence. These results confirm that the sequence can adopt different folds in different environments. The plasticity and the conformational dependence on the local environment could be used to better understand the function of fusion peptides.  相似文献   

15.
The fusion peptides of HIV and influenza virus are crucial for viral entry into a host cell. We report the membrane-perturbing and structural properties of fusion peptides from the HA fusion protein of influenza virus and the gp41 fusion protein of HIV. Our goals were to determine: 1), how fusion peptides alter structure within the bilayers of fusogenic and nonfusogenic lipid vesicles and 2), how fusion peptide structure is related to the ability to promote fusion. Fluorescent probes revealed that neither peptide had a significant effect on bilayer packing at the water-membrane interface, but both increased acyl chain order in both fusogenic and nonfusogenic vesicles. Both also reduced free volume within the bilayer as indicated by partitioning of a lipophilic fluorophore into membranes. These membrane ordering effects were smaller for the gp41 peptide than for the HA peptide at low peptide/lipid ratio, suggesting that the two peptides assume different structures on membranes. The influenza peptide was predominantly helical, and the gp41 peptide was predominantly antiparallel beta-sheet when membrane bound, however, the depths of penetration of Trps of both peptides into neutral membranes were similar and independent of membrane composition. We previously demonstrated: 1), the abilities of both peptides to promote fusion but not initial intermediate formation during PEG-mediated fusion and 2), the ability of hexadecane to compete with this effect of the fusion peptides. Taken together, our current and past results suggest a hypothesis for a common mechanism by which these two viral fusion peptides promote fusion.  相似文献   

16.
The complete amino-acid sequence of viral fusion proteins has been analyzed by the Eisenberg procedure. The region surrounding the cleavage site contains a highly hydrophilic region immediately followed by a membrane-like region. Since the effective cleavage between these two domains seems required to expose the fusogenic domain (located at the N-terminal sequence of the transmembrane like region) which is assumed to interact with the lipid membrane of the host cell, we have focused our analysis on the conformation and mode of insertion of this membrane-like domain in a lipid monolayer. It was inserted as an alpha-helical structure into a dipalmitoylphosphatidylcholine (DPPC) monolayer and its orientation at the lipid/water interface was determined using a theoretical analysis procedure allowing the assembly of membrane components. For each viral protein sequence these N-terminal helical segments oriented obliquely with respect to the lipid/water interface. This rather unusual orientation is envisaged as a prerequisite to membrane destabilization and fusogenic activity.  相似文献   

17.
The amino-terminal segment of the membrane-anchored subunit of influenza hemagglutinin (HA) plays a crucial role in membrane fusion and, hence, has been termed the fusion peptide. We have studied the secondary structure, orientation, and effects on the bilayer structure of synthetic peptides corresponding to the wild-type and several fusogenic and nonfusogenic mutants with altered N-termini of the influenza HA fusion peptide by fluorescence, circular dichroism, and Fourier transform infrared spectroscopy. All peptides contained segments of alpha-helical and beta-strand conformation. In the wild-type fusion peptide, 40% of all residues were in alpha-secondary and 30% in beta-secondary structures. By comparison, the nonfusogenic peptides exhibited larger beta/alpha secondary structure ratios. The order parameters of the helices and the amide carbonyl groups of the beta-strands of the wild-type fusion peptide were measured separately, based on the infrared dichroism of the respective absorption bands. Order parameters in the range 0.1-0.7 were found for both segments of the wild-type peptide, which indicates that they are most likely aligned at oblique angles to the membrane normal. The nonfusogenic but not the fusogenic peptides induced splitting of the infrared absorption band at 1735 cm(-1), which is assigned to stretching vibrations of the lipid ester carbonyl bond. This splitting, which reports on an alteration of the hydrogen bonds formed between the lipid ester carbonyls and water and/or hydrogen-donating groups of the fusion peptides, correlated with the beta/alpha ratio of the peptides, suggesting that unpaired beta-strands may replace water molecules and hydrogen-bond to the lipid ester carbonyl groups. The profound structural changes induced by single amino acid replacements at the extreme N-terminus of the fusion peptide further suggest that tertiary or quaternary structural interactions may be important when fusion peptides bind to lipid bilayers.  相似文献   

18.
A synthetic, amphipathic 30-amino acid peptide with the major repeat unit Glu-Ala-Leu-Ala (GALA) was designed to mimic the behavior of the fusogenic sequences of viral fusion proteins. GALA is a water-soluble peptide with an aperiodic conformation at neutral pH and becomes an amphipathic alpha-helix as the pH is lowered to 5.0 where it interacts with bilayers. Fluorescence energy transfer measurements indicated that GALA induced lipid mixing between phosphatidylcholine small unilamellar vesicles but not large unilamellar vesicles. This lipid mixing occurred only at pH 5.0 and not at neutral pH. Concomitant with lipid mixing, the vesicles increased in diameter from 500 to 750 to 1000 A as measured by dynamic light scattering and internal volume determination. GALA induced leakage of small molecules (Mr 450) at pH 5.0 was too rapid to permit detection of contents mixing. However, retention of larger molecules (Mr 4100) under the same conditions suggests that vesicle fusion is occurring. For a 100/1 lipid/peptide ratio all vesicles fused just once, whereas for a 50/1 ratio higher order fusion products formed. A mass action model gives good simulation of the kinetics of increase in fluorescence intensity and yields rate constants of aggregation and fusion. As the lipid to peptide ratio decreases from 100/1 to 50/1 both rate constants of aggregation and fusion increase, indicating that GALA is a genuine inducer of vesicle fusion. The presence of divalent cations which can alter GALAs conformation at pH 7.5 had little effect on its lipid mixing activity. GALA was modified by altering the sequence while keeping the amino acid composition constant or by shortening the sequence. These peptides did not have any lipid mixing activity nor did they induce an increase in vesicle size. Together, these results indicate that fusion of phosphatidylcholine small unilamellar vesicles induced by GALA requires both a peptide length greater than 16 amino acids as well as a defined topology of the hydrophobic residues.  相似文献   

19.
《Biophysical journal》2022,121(20):3811-3825
In this paper, we studied fusogenic peptides of class I-III fusion proteins, which are relevant to membrane fusion for certain enveloped viruses, in contact with model lipid membranes. We resolved the vertical structure and examined the adsorption or penetration behavior of the fusogenic peptides at phospholipid Langmuir monolayers with different initial surface pressures with x-ray reflectometry. We show that the fusion loops of tick-borne encephalitis virus (TBEV) glycoprotein E and vesicular stomatitis virus (VSV) G-protein are not able to insert deeply into model lipid membranes, as they adsorbed mainly underneath the headgroups with only limited penetration depths into the lipid films. In contrast, we observed that the hemagglutinin 2 fusion peptide (HA2-FP) and the VSV-transmembrane domain (VSV-TMD) can penetrate deeply into the membranes. However, in the case of VSV-TMD, the penetration was suppressed already at low surface pressures, whereas HA2-FP was able to insert even into highly compressed films. Membrane fusion is accompanied by drastic changes of the membrane curvature. To investigate how the peptides affect the curvature of model lipid membranes, we examined the effect of the fusogenic peptides on the equilibration of cubic monoolein structures after a phase transition from a lamellar state induced by an abrupt hydrostatic pressure reduction. We monitored this process in presence and absence of the peptides with small-angle x-ray scattering and found that HA2-FP and VSV-TMD drastically accelerate the equilibration, while the fusion loops of TBEV and VSV stabilize the swollen state of the lipid structures. In this work, we show that the class I fusion peptide of HA2 penetrates deeply into the hydrophobic region of membranes and is able to promote and accelerate the formation of negative curvature. In contrast, we found that the class II and III fusion loops of TBEV and VSV tend to counteract negative membrane curvature.  相似文献   

20.
The 20 N-terminal residues of the HA2 subunit of influenza hemagglutinin (HA), known as the fusion peptide, play a crucial role in membrane fusion. Molecular dynamics simulations with implicit solvation are employed here to study the structure and orientation of the fusion peptide in membranes. As a monomer the alpha-helical peptide adopts a shallow, slightly tilted orientation along the lipid tail-head group interface. The average angle of the peptide with respect to membrane plane is 12.4 degrees . We find that the kinked structure proposed on the basis of NMR data is not stable in our model because of the high energy cost related to the membrane insertion of polar groups. Because hemagglutinin-mediated membrane fusion is promoted by low pH, we examined the effect of protonation of the Glu and Asp residues. The configurations of the protonated peptides were slightly deeper in the membrane but at similar angles. Finally, because HA is a trimer, we modeled helical fusion peptide trimers. We find that oligomerization affects the insertion depth of the peptide and its orientation with respect to the membrane: a trimer exhibits equally favorable configurations in which some or all of the helices in the bundle insert obliquely deep into the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号