首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Estrogen treatment of hatchling female zebra finches causes the masculine development of singing behavior and of the telencephalic brain regions involved in the control of song. However, early estrogen treatment of males also blocks masculine development of copulatory behavior, presumably controlled by diencephalic regions. In an effort to determine whether the differences in estrogen action are related to sex and regional differences in androgen metabolism (estrogen synthesis or androgen inactivation), we measured aromatase and 5β-reductase activity in dissociated-cell cultures made separately from the telencephalon, diencephalon, and also cerebellum of hatching zebra finches under a variety of conditions. Cultures from all three brain regions express high levels of aromatase and 5β-reductase activity. Comparisons between telencephalic and diencephalic cultures of the activity and kinetics of aromatase suggest that the telencephalic cultures convert androgen to estrogen more efficiently than diencephalic cultures, which might be important in the differential action of estrogen in the two brain regions. However, the activity of neither aromatase nor 5β-reductase was significantly different between the sexes in either telencephalic or diencephalic cultures. Thus, comparisons between the sexes do not support the idea that differences in posthatching aromatase or 5β-reductase activity account for the pattern of sexual differentiation of the song and copulatory systems. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Intratumoral metabolism and synthesis of biologically active steroids such as estradiol and 5-dihydrotestosterone as a result of interactions of various enzymes are considered to play very important roles in the pathogenesis and development of hormone-dependent breast carcinoma. Among these enzymes involved in estrogen metabolism, intratumoral aromatase play an important role in converting androgens to estrogens in situ from serum and serving as the source of estrogens, especially in postmenopausal patients with breast carcinoma. However, other enzymes such as 17β-hydroxysteroid dehydrogenase (17β-HSD) isozymes, estrogen sulfatase (STS), and estrogen sulfotransferase, which contribute to in situ availability of biologically active estrogens, also play pivotal roles in this intratumoral estrogen production above. Androgen action on human breast carcinoma has not been well-studied but are considered important not only in hormonal regulation but also other biological features of carcinoma cells. Intracrine mechanisms also play important roles in androgen actions on human breast carcinoma cells. Among the enzymes involved in biologically active androgen metabolism and/or synthesis, both 17β-hydroxysteroid dehydrogenase type 5 (17βHSD5; conversion from circulating androstenedione to testosterone) and 5-reductase (5Red; reduction of testosterone to DHT (5-dihydrotestosterone) were expressed in breast carcinoma tissues, and in situ production of DHT has been proposed in human breast cancer tissues. However, intracrine mechanisms of androgens as well as their biological or clinical significance in the patients with breast cancer have not been fully elucidated in contrast to those in estrogens.  相似文献   

4.
17α-Methyl testosterone is a synthetic androgen with affinity for the androgen receptor. 17α-Methyl testosterone is used widely as a component of hormone replacement therapy. Previous reports have indicated that contrary to testosterone, 17α-methyl testosterone is not aromatized. However, 17α-methyl testosterone still could affect local estrogen formation by regulating aromatase expression or by inhibiting aromatase action. Both possibilities have important clinical implications. To evaluate the effect of 17α-methyl testosterone on the expression and activity of aromatase, we tested the choriocarcinoma Jar cell line, a cell line that express high levels of P450 aromatase, and the macrophage-like THP-1 cells, which express aromatase only after undergoing differentiation. We found that in both cell lines, 17α-methyl testosterone inhibits aromatase activity in a dose-related manner. The curve of inhibition parallels that of letrozole and gives complete inhibition at 10−4 M 17α-methyl testosterone, determined by the tritium release assay. 17α-Methyl testosterone does not have detectable effects on aromatase RNA and protein expression by Jar cells. Undifferentiated THP-1 cells had no aromatase activity and showed no effect of 17α-methyl testosterone, but differentiated THP-1 (macrophage-like) cells had a similar inhibition of aromatase activity by 17α-methyl testosterone to that seen in Jar cells. The Lineweaver–Burke plot shows 17α-methyl testosterone to be a competitive aromatase inhibitor. Our results show for the first time that 17α-methyl testosterone acts as an aromatase inhibitor. These findings are relevant for understanding the effects of 17α-methyl testosterone as a component of hormone replacement therapy. 17α-Methyl testosterone may, as a functional androgen and orally active steroidal inhibitor of endogenous estrogen production, also offer special possibilities for the prevention/treatment of hormone-sensitive cancers.  相似文献   

5.
The effect of preincubation with cortisol on estrogen and androgen metabolism was investigated in human fibroblast monolayers grown from biopsies of genital and non-genital skin of the same person. The activity in the cells of aromatase, 5 alpha-reductase, 17 beta-hydroxysteroid oxidoreductase and 3 alpha-hydroxysteroid oxidoreductase was investigated by isolating estrone, estradiol, estriol, dihydrotestosterone, androstanedione, androsterone, 3 alpha-androstanediol, testosterone and androstenedione after incubation of the cells with [14C]testosterone or [14C]androstenedione. For experiments with 14C-labeled substrate the cells were incubated in medium, charcoal stripped of steroids without Phenol Red. Preincubation from 6 to 36 h with cortisol in concentrations of 10(-8) - 10(-6) M showed maximal stimulation of aromatase activity after 12 h preincubation with cortisol in concentrations of 0.5-1.0 x 10(-6) M in both cell lines. When preincubation with cortisol was omitted no estrogen synthesis was detected. The formation of androgen was not altered after preincubation with cortisol. Pronounced differences were found in estrogen and in androgen metabolism in the two cell lines suggesting a local regulation of the hormonal environment. The aromatase activity, which is low in many tissues could be stimulated by cortisol without altering the androgen metabolism was found to be a suitable system for investigations of the cellular interconversion of androgens and estrogens and for investigations of the in vitro regulation of the enzymes involved.  相似文献   

6.
7.
It is well-known that 1α,25-dihydroxyvitamin D(3) and analogs exert anti-proliferative and pro-differentiating effects and these compounds have therefore been proposed to be of potential use as anti-cancer agents. Due to its effects on aromatase gene expression and enzyme activity, 1α,25-dihydroxyvitamin D(3) has been proposed as an interesting substance in breast cancer treatment and prevention. In the present study, we have examined the effects of 1α,25-dihydroxyvitamin D(3) on estrogen and androgen metabolism in adrenocortical NCI-H295R cells, breast cancer MCF-7 cells and prostate cancer LNCaP cells. The NCI-H295R cell line has been proposed as a screening tool to study endocrine disruptors. We therefore studied whether this cell line reacted to 1α,25-dihydroxyvitamin D(3) treatment in the same way as cells from important endocrine target tissues. 1α,25-Dihydroxyvitamin D(3) exerted cell line-specific effects on estrogen and androgen metabolism. In breast cancer MCF-7 cells, aromatase gene expression and estradiol production were decreased, while production of androgens was markedly increased. In NCI-H295R cells, 1α,25-dihydroxyvitamin D(3) stimulated aromatase expression and decreased dihydrotestosterone production. In prostate cancer LNCaP cells, aromatase expression increased after the same treatment, as did production of testosterone and dihydrotestosterone. In summary, our data show that 1α,25-dihydroxyvitamin D(3) exerts tissue-specific effects on estrogen and androgen production and metabolism. This is important knowledge about 1α,25-dihydroxyvitamin D(3) as an interesting substance for further research in the field of breast cancer prevention and treatment. Furthermore, the observed cell line-specific effects are of importance in the discussion about NCI-H295R cells as a model for effects on estrogen and androgen metabolism.  相似文献   

8.
The regulatory mechanisms involved in the control of the nuclear NADPH-dependent 3-ketosteroid 5α-reductase (5α-reductase) activity were studied in liver, kidney and prostate. The substrate used was [1,2-3H]androst-4-ene-3,17-dione (androstenedione) (for liver and kidney) or [4-14C]androstenedione (for prostate). The hepatic nuclear 5α-reductase activity was greater in female than in male rats, was greater in adult than in prepubertal female rats, increased after castration of male rats, but was not affected by treatment with testosterone propionate or oestradiol benzoate. These regulatory characteristics are in part different from those previously described for the hepatic microsomal 5α-reductase. The renal nuclear metabolism of androstenedione, i.e. 5α reduction and 17β-hydroxy steroid reduction, was relatively unaffected by sex, age, castration and treatment with testosterone propionate. However, treatment of castrated male rats with oestradiol benzoate led to a significant increase in the 5α-reductase activity and a significant decrease in the 17β-hydroxy steroid reductase activity. Finally, the nuclear 5α-reductase activity in prostate was androgen-dependent, decreasing after castration and increasing after treatment with testosterone propionate. In conclusion, the nuclear 5α-reductase activities in liver, kidney and prostate seem to be under the control of distinctly different regulatory mechanisms. The hypothesis is presented that whereas the prostatic nuclear 5α-reductase participates in the formation of a physiologically active androgen, 5α-dihydrotestosterone, this may not be the true function of the nuclear 5α-reductase in liver and kidney. These enzymes might rather serve to protect the androgen target sites in the chromatin from active androgens (e.g. testosterone) by transforming them into less active androgens (e.g. 5α-androstane-3,17-dione and/or 5α-dihydrotestosterone).  相似文献   

9.
Inhibitors of aromatase and 5α-reductase may be of use for the therapy of postmenopausal breast cancer and benign prostatic hyperplasia, respectively. FCE 27993 is a novel steroidal irreversible aromatase inhibitor structurally related to exemestane (FCE 24304). The compound was found to be a very potent competitive inhibitor of human placental aromatase, with a Ki of 7.2 nM (4.3 nM for exemestane). In preincubation studies with placental aromatase FCE 27993, like exemestane, was found to cause time-dependent inhibition with a higher rate of inactivation ( ) and a similar Ki(inact) (56 vs 66 nM). The compound was found to have a very low binding affinity to the androgen receptor (RBA 0.09% of dihydrotestosterone) and, in contrast to exemestane, no androgenic activity up to 100 mg/kg/day s.c. in immature castrated rats. Among a series of novel 4-azasteroids with fluoro-substituted-17β-amidic side chains, three compounds, namely FCE 28260, FCE 28175 and FCE 27837, were identified as potent in vitro and in vivo inhibitors of prostatic 5α-reductase. Their IC50 values were found to be 16, 38 and 51 nM for the inhibition of the human enzyme, and 15, 20 and 60 nM for the inhibition of the rat enzyme, respectively. When given orally for 7 days in castrated and testosterone (Silastic implants) supplemented rats, the new compounds were very effective in reducing prostate growth. At a dose of 0.3 mg/kg/day inhibitions of 42, 36 and 41% were caused by FCE 28260, FCE 28175 and FCE 27837, respectively.  相似文献   

10.
Myotis nigricans is a species of vespertilionid bat, whose males show two periods of total testicular regression within the same annual reproductive cycle in the northwest São Paulo State, Brazil. Studies have demonstrated that its epididymis has an elongation of the caudal portion, which stores spermatozoa during the period of testicular regression in July, but that they had no sperm during the regression in November. Thus, the aim of this study was to analyze the impact of the total testicular regression in the epididymal morphophysiology and patterns of its hormonal regulation. The results demonstrate a continuous activity of the epididymis from the Active to the Regressing periods; a morphofunctional regression of the epididymis in the Regressed period; and a slow recrudescence process. Thus, we concluded that the processes of total testicular regression and posterior recrudescence suffered by M. nigricans also impact the physiology of the epididymis, but with a delay in epididymal response. Epididymal physiology is regulated by testosterone and estrogen, through the production and secretion of testosterone by the testes, its conduction to the epididymis (mainly through luminal fluid), conversion of testosterone to dihydrotestosterone by the 5α-reductase enzyme (mainly in epithelial cells) and to estrogen by aromatase; and through the activation/deactivation of the androgen receptor and estrogen receptor α in epithelial cells, which regulate the epithelial cell morphophysiology, prevents cell death and regulates their protein expression and secretion, which ensures the maturation and storage of the spermatozoa.  相似文献   

11.
This paper summarizes the most recent data obtained in the authors' laboratory on the metabolism of testosterone and progesterone in neurons, in the glia, and in neuroblastoma cells. The activities of the 5α-reductase (the enzyme that converts testosterone into dihydrotestosterone, DHT), and of the 3α-hydroxysteroid dehydrogenase (the enzyme that converts DHT into 5α-androstane-3α,17β-diol, 3α-diol) have been first evaluated in primary cultures of neurons, oligodendrocytes and type-1 and -2 astrocytes, obtained from the fetal or neonatal rat brain. All the cultures were used on the fifth day. The formation of DHT or 3α-diol was evaluated incubating the different cultures with labeled testosterone or DHT as substrates. The results obtained indicate that the formation of DHT takes place preferentially in neurons; however, type-2 astrocytes and oligodendrocytes also possess considerable 5α-reductase activity, while type-1 astrocytes show a much lower enzymatic concentration. A completely different localization was observed for 3α-hydroxysteroid dehydrogenase; the formation of 3α-diol appears to be prevalently, if not exclusively, present in type-1 astrocytes; 3α-diol is formed in very low yields by neurons, type-2 astrocytes and oligodendrocytes. The compartmentalization of two strictly correlated enzymes (5α-reductase and 3α-hydroxysteroid dehydrogenase) in separate central nervous system (CNS) cell populations suggests the simultaneous participation of neurons and glial cells in the 5α-reductive metabolism of testosterone. Subsequently it has been shown that, similarly to what happens when testosterone is used as the substrate, the 5α-reductase which metabolizes progesterone into 5α-pregnane-3,20-dione (DHP) shows a significantly higher activity in neurons than in glial cells; however, type-1 and -2 astrocytes as well as oligodendrocytes also possess some ability to 5α-reduce progesterone. On the other hand, 3α-hydroxysteroid dehydrogenase, the enzyme which converts DHP into 5α-pregnane-3α-ol-20-one, appears to be present mainly in type-1 astrocytes; much lower levels of this enzyme are present in neurons and in type-2 astrocytes. At variance with the previous results obtained using androgens as precursors, oligodendrocytes show considerable 3α-hydroxysteroid dehydrogenase activity, even if this is statistically lower than that present in type-1 astrocytes. The existence of isoforms of the enzyme involved in androgen and progesterone metabolism is discussed.Finally, the ability of the human neuroblastoma cell line SH-SY5Y to metabolize androgens and progesterone was studied incubating the cells in the presence of labeled testosterone or progesterone to measure, respectively, the formation of DHT or DHP (5α-reductase activity). 3α-Hydroxysteroid dehydrogenase activity was studied by evaluating the conversion of labeled DHT into 3α-diol. The results demonstrate that undifferentiated neuroblastoma cells possess a significant 5α-reductase activity, as shown by the considerable conversion of testosterone into DHT; moreover, this enzymatic activity seems to be significantly stimulated following cell differentiation induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), but not after differentiation induced by retinoic acid (RA). The 5α-reductase present in SH-SY5Y cells is also able to convert progesterone into DHP. In undifferentiated cell, this conversion is about 8 times higher than that of testosterone into DHT. Under the influences of TPA and RA, the formation of DHP follows the same pattern observed for that of DHT. SH-SY5Y cells also appear to possess the enzyme 3α-hydroxysteroid dehydrogenase, since they are able to convert DHT into 3α-diol. This enzymatic activity is not altered following TPA-induced differentiation, and appears to be decreased following treatment with RA. It is suggested that the SH-SY5Y cell line may represent a useful “in vitro” model for the study of the mechanisms involved in the control of androgen and progesterone metabolism in nervous cells.  相似文献   

12.
A cDNA encoding a full-length rat 5α-reductase was isolated using female rat liver mRNA and the polymerase chain reaction, and fused to the Escherichia coli trp E gene in a pATH expression vector. The trp E-5α-reductase fusion protein expressed in bacteria and a synthetic oligopeptide corresponding to the C-terminus of rat 5α-reductase were used as antigens to produce rabbit polyclonal antibodies to 5α-reductase. Antibodies to the 5α-reductase portion of the fusion protein and to the peptide were purified by affinity chromatography. Antibodies against the 5α-reductase fusion protein reacted with a single component of rat liver microsomes with Mr 26,000 on Western blots, consistent with the size of 5α-reductase predicted from its cDNA, and with a Mr 23,000 component on Western blots of detergent extracts of rat ventral prostate nuclei; other rat ventral prostate cellular fractions (mitochondrial, microsomal, cytosol) bound little or no antibody. Antibody against the synthetic peptide reacted with a Mr 26,000 component of rat liver microsomes as well as with several components in various cellular fractions of rat ventral prostate. With anti-5α-reductase fusion protein antibodies, specific immunocytochemical staining was observed in the epithelial cell nuclei of the rat ventral prostate, seminal vesicle, epididymis and other accessory sex glands. This nuclear staining was specific, since antibodies from non-immunized rabbits did not give nuclear staining and preincubation of the anti-5α-reductase fusion protein antibodies with the trp E-5α-reductase fusion protein eliminated nuclear staining. Incubation of antibodies with trp E (without the 5α-reductase fusion) had no effect on nuclear staining. Specific staining was not detected in the cytoplasm of these epithelial cells. Little or no specific staining was observed in stromal cells in these rat tissuess. Human prostate was also immunocytochemically stained with this antibody. Specific staining was found in both epithelial and stromal cell nuclei.  相似文献   

13.

Introduction

Sex hormones, especially estrogens, have been implicated in articular cartilage metabolism and the pathogenesis of postmenopausal osteoarthritis. The conversion by aromatase (CYP19A1) of androstenedione into estrone (E1) and of testosterone into 17β-estradiol (E2) plays a key role in the endogenous synthesis of estrogens in tissue.

Methods

We analyzed the expression of aromatase (CYP19A1) in immortalized C-28/I2 and T/C-28a2 chondrocytes, as well as in cultured primary human articular chondrocytes and human articular cartilage tissue, by means of RT-PCR, Western blotting and immunohistochemistry. By means of quantitative RT-PCR and enzyme-linked immunosorbent assay, we also determined whether the aromatase inhibitor letrozole influences estrogen metabolism of cultured chondrocytes in immortalized C-28/I2 chondrocytes.

Results

Aromatase mRNA was detected in both immortalized chondrocyte cell lines, in cultured primary human chondrocytes, and in human articular cartilage tissue. By means of Western blot analysis, aromatase was detected at the protein level in articular cartilage taken from various patients of both sexes and different ages. Cultured primary human articular chondrocytes, C-28/I2 and T/C-28a2, and human articular cartilage tissue reacted with antibodies for aromatase. Incubation of C-28/I2 chondrocytes with 10−11 M to 10−7 M letrozole as an aromatase inhibitor revealed significantly increased amounts of the mRNAs of the enzyme cytochrome P4501A1 (CYP1A1), which is involved in the catagen estrogen metabolism, and of the estrogen receptors ER-α and ER-β. Concomitantly, synthesis of estrone (E1) was significantly downregulated after incubation with letrozole.

Conclusions

We demonstrate that human articular cartilage expresses aromatase at the mRNA and protein levels. Blocking of estrone synthesis by the aromatase inhibitor letrozole is counteracted by an increase in ER-α and ER-β. In addition, CYP1A1, an enzyme involved in catabolic estrogen metabolism, is upregulated. This suggests that articular chondrocytes use ERs functionally. The role of endogenous synthesized estrogens in articular cartilage health remains to be elucidated.  相似文献   

14.
Hepatocellular carcinoma (HCC), the major manifestation of primary liver cancer, is one of the most frequent and malignant cancers worldwide, especially in Taiwan. Estrogen receptors (ERs) have been reported to play either a proliferation- or apoptosis-enhancing role in the differentiation of cancers, including HCC. In a previous experiment, we showed that transient overexpressed estrogen receptor-α induced early stage HCC cell line Hep 3B cell apoptosis by increasing the hTNF-α gene expression in a ligand-independent manner. To further clarify if the apoptotic effect occurs in poorly differentiated HCC cell line, HA22T, and elucidate the roles of ERs and TNF-α, DNA fragmentation and caspase activity were measured in late stage HCC cell line, HA22T, by measuring the expression of hER-α and hER-β using a Tetracycline-induciable system (Tet-on). Increased DNA fragmentation and caspase-3 activity were found in hERβ-overexpressed HA22T cells treated with estrogen (10−8 M) but not in hERα-overexpressed HA22T cells. Using RT-PCR/PCR and western blotting in HA22T cells, overexpressed hER-β was also found to increase the expression of hTNF-α mRNA and induce hTNF-α-dependent luciferase activity in a ligand-dependent manner. Additionally, LPS treatment and hER-β overexpression both enhance caspase-8 activities, whereas neither hER-β nor E2 treatment affected caspase-9 activities. In addition, the overexpressed hER-β plus E2 enhanced DNA fragmentation and caspase-8 activities were only partially reduced by anti-hTNF-α (0.1ng/ml), which was possibly due to the involvement of P53 and TGF-β. Taken together, our data indicates that overexpressed hER-β but not hER-α may induce caspase-8-mediated apoptosis by increasing the hTNF-α gene expression in a ligand-dependent manner in poorly differentiated HA22T cells. (Mol Cell Biochem xxx: 1–9, 2005)Shares equally contribution Contract grant sponsor: National Science Council; Contract grant number: NSC 91-2314-B-075A-006, NSC 92-2314-B-075A-014.  相似文献   

15.
A number of years ago we reported that tight junctions between adjacent Sertoli cells subdivide the seminiferous epithelium into two compartments, basal and adluminal, thus forming the morphological basis of the blood-testis barrier. It is now generally believed that the special milieu created by the Sertoli cells in the adluminal compartment is essential for germ cell differentiation. In order to duplicate the compartmentalization that occurs in vivo, Sertoli cells were cultured in bicameral chambers on Millipore filters impregnated with a reconstituted basement membrane. Confluent monolayers of these cells were tall columnar (40–60 µ in height) and highly polarized. These Sertoli cell monolayers established electrical resistance that peaked when the Sertoli-Sertoli tight junctions developed in culture. In addition, the monolayers formed a permeability barrier to 3H-inulin and lanthanum nitrate. The bicameral chambers were utilized in a number of studies on protein secretion, and it was revealed that numerous proteens are secreted in a polarized manner. In another study, hormone- stimulated aromatase activity was measured in Sertoli cells grown on plastic culture dishes, plastic dishes coated with laminin or Matrigel, and in the bicameral chambers. Cell culture on basement membrane substrate decreased the FSH-dependent estrogen production. No estrogen production was observed when the Sertoli cells were cultured in the bicameral chambers. These results are in accord with the hypothesis that differentiated Sertoli cells lose their ability to metabolize androgen to estrogen in an hormone-dependent manner, whereas undifferentiated cells in culture, or in vivo, have a very active FSH-dependent aromatase activity. This bicameral culture system could serve as an important model system to examine various functions of Sertoli cells including interactions of Sertoli cells with germ, Leydig, and myoid cells.  相似文献   

16.
The aim of this study was to investigate the seasonal expression of androgen receptor (AR), estrogen receptors α and β (ERα and ERβ) and aromatase cytochrome P450 (P450arom) mRNA and protein by real-time PCR and immunohistochemistry in the wild ground squirrel (WGS) testes. Histologically, all types of spermatogenic cells including mature spermatozoa were identified in the breeding season (April), while spermatogonia and primary spermatocytes were observed in the nonbreeding season (June), and spermatogonia, primary spermatocytes and secondary spermatocytes were found in pre-hibernation (September). AR was present in Leydig cells, peritubular myoid cells and Sertoli cells in the breeding season and pre-hibernation with more intense staining in the breeding season, whereas AR was only found in Leydig cells in the nonbreeding season; P450arom was expressed in Leydig cells, Sertoli cells and germ cells during the breeding season, whereas P450arom was found in Leydig cells and Sertoli cells during pre-hibernation, but P450arom was not present in the nonbreeding season; Stronger immunohistochemical signal for ERα was present in Sertoli cells and Leydig cells during the breeding season; ERβ was only expressed in Leydig cells of the breeding season. Consistent with the immunohistochemical results, the mean mRNA level of AR, P450arom, ERα and ERβ were higher in the testes of the breeding season when compared to pre-hibernation and the nonbreeding season. These results suggested that the seasonal changes in spermatogenesis and testicular recrudescence and regression process in WGSs might be correlated with expression levels of AR, P450arom and ERs, and that estrogen and androgen may play an important autocrine/paracrine role to regulate seasonal testicular function.Key words: Wild ground squirrels, testes, seasonal expression, androgen and estrogen receptors, aromatase cytochrome P450, Citellus dauricus Brandt  相似文献   

17.
18.
We have mainly focused on the regulatory mechanism of cytochrome P450 aromatize in bone cells. Our previous study demonstrated a strong positive correlation of serum dehydroepiandrosterone sulfate (DHEA-S) and estrone (E1) with BMD in postmenopausal women but no correlation between serum estradiol (E2) and BMD in the same group. In addition, administration of DHEA to ovariectomized rat significantly increased BMD. These in vivo findings strongly suggested that circulating adrenal androgen may be converted to estrogen in osteoblast and may contribute to BMD maintenance. Actually, in cultured human osteoblast cells, DHEA was found to convert to androstenedione by 3β-hydroxysteroid dehydrogenase (3β-HSD) activity and then androstenedione to estrone through the apparent aromatase activity. The aromatase activity in cultured human osteoblast cells was significantly increased by dexamethasone (DEX). Interestingly, DEX and 1α,25-dihydroxyvitamin D3 (VD3) synergistically enhanced aromatase activity as well as P450arom mRNA expression. A little stronger induction of aromatase activity by DEX and VD3 was observed in cultured human fibroblasts. The increase of the aromatase activity by DEX and VD3 was accompanied with the increase of luciferase activity of fibroblast cells transfected with Exon 1b-promoter-luciferase construct, but not of osteoblasts transfected with the same construct, suggesting a different regulatory mechanism of aromatase by DEX and 1α,25-dihydroxyvitamin D3 (VD3) between these two cells despite the same promotor usuage. In human bone cells, intracrine mechanism through aromatase activity, together with a positive regulation of aromatase activity by glucocorticoid and VD3, may contribute to the local production of estrogens, thus leading to protective effect against osteoporosis especially after menopause. The effect of sex steroids (estrogen versus testosterone) in bone remodeling was also briefly reviewed based on several recent findings in this field.  相似文献   

19.
When 5α-reductase-sufficient genital skin fibroblast (GSF) monolayers are incubated with testosterone (T), they first form androgen (A)-receptor (R) complexes that dissociate at a fast rate [k(37°C = 0.024 min−1]. As T is converted to 5α-dihydrotestosterone (DHT), this population of T-R complexes is eventually replaced by one that dissociates much more slowly [k(37°C) = 0.006 min−1], at a rate typical of DHT-R complexes. During the course of T to DHT conversion, one may observe a population of A-R complexes that has a linear (monophasic) intermediate dissociation rate constant [k(37°C) = 0.012 min−1]; this population cannot simply reflect a mixture of T- and DHT-R complexes. The rate at which the complexes are processed from one dissociative form to the next varies with the incubation temperature and the presence or absence of serum in the medium; it also varies within and among GSF strains under apparently constant conditions. To explain these facts, we propose a model that enables the 5α-reductase enzyme to influence the processive dissociative behaviour of T-R complexes by engaging in some sort of coupling with the AR. The proposal is strengthened by a set of observations in cells with constitutive, mendelian or inhibitor-induced 5α-reductase deficiency that preclude a simple quantitative relation between A-R complex processing and the extent of T to DHT conversion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号