首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Photosynthetic characteristics were compared between plants of low altitude (LA) grown at LA (Palampur; 1 300 m) and at high altitude, HA (Kibber; 4 200 m), and plants naturally occurring at different altitudes (Palampur, 1 300 m; Palchan, 2 250 m; and Marhi, 3 250 m). Net photosynthetic rate (P N) was not significantly different between altitudes. However, the slopes of the curve relating P N to intercellular CO2 concentration (C i) were higher in plants at Palchan, Marhi, and Kibber compared to those at Palampur, indicating that plants had higher efficiency of carbon uptake (the initial slope of P N/C i curve is an indication) at HA. They had also higher stomatal conductance (g s), transpiration rate, and lower water use efficiency at HA. g s was insensitive to photosynthetic photon flux density (PPFD) for plants naturally occurring at Palampur, Palchan, and Marhi, whereas plants from LA grown at Palampur and Kibber responded linearly to increasing PPFD. Insensitivity of g s to PPFD could be one of the adaptive features allowing wider altitudinal distribution of the plants.This research is supported by the Department of Biotechnology (DBT), Government of India vide grant number BT/PR/502/AGR/08/39/966-VI.  相似文献   

2.
Wheat (Triticum aestivum L. cv. HD 2285) was grown in control (C) and heated (H) open top chambers (OTCs) for entire period of growth and development till maturity. The mean maximum temperature of the entire period was 3 °C higher in H-compared to C-OTCs. Net photosynthetic rate (P N) measured at different temperature (20–40 °C) of C-and H-grown plants showed greater sensitivity to high temperature in H-plants. P N measured at respective growth temperature was lower in H-compared to C-plants. The CO2 and irradiance response curves of photosynthesis also showed lesser response in H-compared to C-plants. The initial slope of P N versus internal CO2 concentration (P N/C i) curve was lower in H-than C-plants indicating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) limitation. In irradiance response curve, the plateau was lower in H-compared to C-plants which is interpreted as RuBPCO limitation. RuBPCO content in the leaves of C-and H-plants, however, was not significantly different. Ribulose-1,5-bisphosphate carboxylase (RuBPC) initial activity was lower in H-plants, whereas activity of fully activated enzyme was not affected, indicating a decrease in activation state of the enzyme. This was further substantiated by the observed decrease in RuBPCO activase activity in H-compared to C-plants. RuBPCO activase was thus sensitive even to moderate heat stress. The decrease in P N under moderate heat stress was mainly due to a decrease in activation state of RuBPCO catalysed by RuBPCO activase.  相似文献   

3.
In addition to other factors, high altitude (HA) environment is characterized by high photosynthetic photon flux density (PPFD). Photosynthetic characteristics of wild and cultivated plants were studied at different irradiances at Losar, India (altitude 4 200 m). Wild plants were tolerant to high PPFDs. Slopes of curve between net photosynthetic rate (P N) and intercellular CO2 concentration (C i) or stomatal conductance (g s) increased with increase in irradiance suggesting insensitivity or tolerance of these plants to higher PPFD. Cultivated plants, however, were sensitive to higher PPFD, their slopes of curves between P N and C i or g s decreased with increased PPFD. Tolerance or insensitivity to higher PPFD was an important parameter affecting plant performance at HA.  相似文献   

4.
The effect of drought stress (DS) on photosynthesis and photosynthesis-related enzyme activities was investigated in F. pringlei (C3), F. floridana (C3–C4), F. brownii (C4-like), and F. trinervia (C4) species. Stomatal closure was observed in all species, probably being the main cause for the decline in photosynthesis in the C3 species under ambient conditions. In vitro ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) and stromal fructose 1,6-bisphosphatase (sFBP) activities were sufficient to interpret the net photosynthetic rates (P N), but, from the decreases in P N values under high CO2 (C a = 700 μmol mol− 1) it is concluded that a decrease in the in vivo rate of the RuBPCO reaction may be an additional limiting factor under DS in the C3 species. The observed decline in the photosynthesis capacity of the C3–C4 species is suggested to be associated both to in vivo decreases of RuBPCO activity and of the RuBP regeneration rate. The decline of the maximum P N observed in the C4-like species under DS was probably attributed to a decrease in maximum RuBPCO activity and/or to decrease of enzyme substrate (RuBP or PEP) regeneration rates. In the C4 species, the decline of both in vivo photosynthesis and photosynthetic capacity could be due to in vivo inhibition of the phosphoenolpyruvate carboxylase (PEPC) by a twofold increase of the malate concentration observed in mesophyll cell extracts from DS plants.  相似文献   

5.
Net photosynthetic rate (P N) measured at the same CO2 concentration, the maximum in vivo carboxylation rate, and contents of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBPCO) and RuBPCO activase were significantly decreased, but the maximum in vivo electron transport rate and RuBP content had no significant change in CO2-enriched [EC, about 200 μmol mol−1 above the ambient CO2 concentration (AC)] wheat leaves compared with those in AC grown wheat leaves. Hence photosynthetic acclimation in wheat leaves to EC is largely due to RuBP carboxylation limitation.  相似文献   

6.
Olivo  N.  Martinez  C.A.  Oliva  M.A. 《Photosynthetica》2002,40(2):309-313
Plants of Solanum curtilobum (from high altitude) and Solanum tuberosum (from low altitude) were grown in open-top chambers in a greenhouse at either ambient (AC, 360 µmol mol–1) or ca. twice ambient (EC, 720 µmol mol–1) CO2 concentrations for 30 d. CO2 treatments started at the reproductive stage of the plants. There were similar patterns in the physiological response to CO2 enrichment in the two species. Stomatal conductance was reduced by 59 % in S. tuberosum and by 55 % in S. curtilobum, but such a reduction did not limit the net photosynthetic rate (P N), which was increased by approximately 56 % in S. curtilobum and 53 % in S. tuberosum. The transpiration rate was reduced by 16 % in both potato species while instantaneous transpiration efficiency increased by 80 % in S. tuberosum and 90 % in S. curtilobum. Plants grown under EC showed 36 and 66 % increment in total dry biomass, whereas yields (dry mass of tubers) were increased by 40 and 85 % in S. tuberosum and S. curtilobum, respectively. EC promoted productivity by increasing P N. Thus S. tuberosum, cultivated around the world at low altitudes, and S. curtilobum, endemic of the highland Andes, respond positively to EC during the tuberisation stage.  相似文献   

7.
Diurnal variation of gas exchange, chlorophyll (Chl) fluorescence, and xanthophyll cycle components of three maize (Zea mays L.) hybrids released in different years, i.e. Baimaya (1950s), Zhongdan2 (1970s), and Nongda108 (1990s), were compared. On cloudless days, the newer hybrids always had higher net photosynthetic rate (P N), especially at noon, than the older ones. At noon, all the hybrids decreased their maximal yield of photosystem 2 (PS2) photochemistry (Fv/Fm) and actual quantum yield of PS2 (ΦPS2), the newer ones always showing higher values. Generally, the newer hybrids displayed higher photochemical quenching of Chl (qP) and lower non-photochemical quenching (NPQ). The interhybrid differences in P N may be owing to their differential photochemical efficiency. A midday depression in P N occurred in all hybrids, which might be caused by serious photoinhibition or by decreased stomatal conductance. However, midday depression in P N was more obvious in the older hybrids, especially when leaves were senescent. The higher de-epoxidation state of the xanthophylls was noted in older hybrids, which was confirmed by their larger NPQ. The newer maize hybrids did not need a strong de-epoxidation state since they had a better photosynthetic quantum conversion rate and a lower NPQ.  相似文献   

8.
Oscillations in many of photosynthetic quantities with a period of about 1 min can be routinely measured with higher plant leaves after perturbation of the steady state by sudden change in gas phase. Among all hypotheses suggested so far to explain the oscillations, an effect of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activation status to control the oscillations is highly probable, at least upon high temperature (HT) treatment when in vivo RuBPCO activity controlled by RuBPCO activase (RuBPCO-A) decreases. Therefore, we measured the oscillations in fluorescence signal coming from barley leaves (Hordeum vulgare L. cv. Akcent) after their exposure for various time intervals to different HTs in darkness. We also evaluated steady state fluorescence and CO2 exchange parameters to have an insight to functions of electron transport chain within thylakoid membrane and Calvin cycle before initiation of the oscillations. The changes in period of the oscillations induced by moderate HT (up to 43 °C) best correlated with changes in non-photochemical fluorescence quenching (qN) that in turn correlated with changes in gross photosynthetic rate (P G) and rate of RuBPCO activation (kact). Therefore, we suggest that changes in period of the oscillations caused by moderate HT are mainly controlled by RuBPCO activation status. For more severe HT (45 °C), the oscillations disappeared which was probably caused by an insufficient formation of NADPH by electron transport chain within thylakoid membrane as judged from a decrease in photochemical fluorescence quenching (qP). Suggestions made on the basis of experimental data were verified by theoretical simulations of the oscillations based on a model of Calvin cycle and by means of a control analysis of the model.  相似文献   

9.
Liu  H.Q.  Jiang  G.M.  Zhang  Q.D.  Sun  J.Z.  Guo  R.J.  Gao  L.M.  Bai  K.Z.  Kuang  T.Y. 《Photosynthetica》2002,40(2):237-242
Three winter wheat (Triticum aestivum L.) cultivars, representatives of those widely cultivated in Beijing over the past six decades, were grown in the same environmental conditions. Net photosynthetic rate (P N) per unit leaf area and instantaneous water use efficiency (WUE) of flag leaves increased with elevated CO2 concentration. With an increase in CO2 concentration from 360 to 720 µmol mol–1, P N and WUE of Jingdong 8 (released in 1990s and having the highest yield) increased by 173 and 81 %, while those of Nongda 139 (released in 1970s) increased by 88 and 66 %, and Yanda 1817 (released in 1945, with lowest yield) by 76 and 65 %. Jingdong 8 had the highest P N and WUE values under high CO2 concentration, but Yanda 1817 showed the lowest P N. Stomatal conductance (g s) of Nongda 139 and Yanda 1817 declined with increasing CO2 concentration, but g s of Jingdong 8 firstly went down and then up as the CO2 concentration further increased. Intercellular CO2 concentration (C i) of Jingdong 8 and Nongda 139 increased when CO2 concentration elevated, while that of Yanda 139 increased at the first stage and then declined. Jingdong 8 had the lowest C i of the three wheat cultivars, and Yanda 1817 had the highest C i value under lower CO2 concentrations. However, Jingdong 8 had the highest P N and lowest C i at the highest CO2 concentration which indicates that its photosynthetic potential may be high.  相似文献   

10.
Leaf stomatal density (SD), net photosynthetic rates (P N), and stomatal conductance (g s) of Hordeum vulgare and Pisum sativum cultivars in Himalaya increased with altitude. Higher P N and leaf temperature under low CO2 partial pressure at high altitudes could evoke a higher g s and SD to allow sufficient influx of CO2 as well as more efficient leaf cooling through transpiration.  相似文献   

11.
Field tests of running and laboratory tests were performed in La Paz [high altitude (HA), 3700 m] and in Clermont-Ferrand [low altitude (LA), 300 m] to investigate their validity at HA. Prepubertal boys of mean ages 10.6 years (HA1,n = 16; LA1,n = 28) and pubertal boys of 13.7 years (HA2,n = 12; LA2,n = 41) took part in the study. All the boys performed a 30-m sprint (v 30m), a 30-s shuttle run (v 3os) and a progressive shuttle run test until their maximal aerobic velocity (v maxsRT). Maximal oxygen consumption was extrapolated from the last test. . In the laboratory, the boys performed a force-velocity test (P max), a Wingate test (P Wing) and a graded test to measure maximal oxygen consumption ; direct method) on a cycle ergometer. At similar ages, there was no significant difference between HA and LA boys forv 30m andP max. Thev 30s of HA boys was 3%–4% lower than those of LA boys (P<0.05); there was no significant difference forP Wing. Significant relationships were observed at both altitudes betweenP max (watts per kilogram) andv 30m (HA:r=0.76; LA:r=0.84) and betweenP Wing andv 30s (HA:r=0.67; LA:r = 0.77); the slopes and the origins were the same at HA and LA. The ,v maxSRT and were lower by 9%, 12% and 20%, respectively, at HA than at LA (P<0.05). However, the relationships between and (litres per minute) at HA (r=0.88) and at LA (r=0.93) were identical. In conclusion, chronic hypoxia did not modify performance in very short dash exercises. The influence of HA appeared when the exercise duration increased and, during a maximal shuttle run test, performance was reduced by 10% at HA. Moreover, it was possible to assessP max,P Wing and at HA as well as at LA from field tests.  相似文献   

12.
The effects of nitrogen (N) supply restriction on the CO2 assimilation and photosystem 2 (PS2) function of flag leaves were compared between two contrastive Japanese rice cultivars, a low-yield cultivar released one century ago, cv. Shirobeniya (SRB), and a recently improved high-yield cultivar, cv. Akenohoshi (AKN). Both cultivars were solution-cultured at four N supply levels from N4 (control) to N1 (the lowest). With a reduction in N-supply, contents of N (LNC), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), and chlorophyll (Chl) in flag leaves decreased in both cultivars. In parallel with this, the net photosynthetic rate (P N), mesophyll conductance (g m), and stomatal conductance (g s) decreased. P N was more dominantly restricted by g m than g s. The values of P N, g m, and RuBPCO content were larger in AKN than SRB at the four N supply levels. The content of Chl greatly decreased with N deficiency, but the reduction in the maximum quantum yield of PS2 was relatively small. Quantum yield of PS2 (ΦPS2) decreased with N deficiency, and its significant cultivar difference was observed between the two cultivars at N1: a high value was found in AKN. The content ratio of Chl/RuBPCO was also significantly low in AKN. The low Chl/RuBPCO is one of the reasons why AKN maintained a comparatively high P N and ΦPS2 at N deficiency. The adequate ratio of N distribution between Chl and RuBPCO is the important prerequisite for the efficient and sustainable photosynthesis in a flag leaf of rice plant under low N-input.  相似文献   

13.
Effects of plant hormones indole-3-yl-acetic acid (IAA), gibberellic acid (GA), benzylaminopurine (BAP), abscisic acid (ABA) and ethrel (ETH) in 5 M concentration on gas exchange, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO, EC 4.1.1.39) activity, pigment content and yield in cotton (Gossypium hirsutum L. cv. H-777) under drought were studied. At reproductive stage (55 – 60 d after sowing) these hormones were sprayed on shoots one day prior to stress imposition by withholding irrigation. The soil moisture of control plants was kept at field capacity. Net photosynthetic rate (PN), stomatal conductance (gs), transpiration rate (E), carboxylation efficiency (CE), water use efficiency (WUE), RuBPCO activity, boll number per plant, seed number per plant and lint mass per plant significantly decreased at drought while chlorophyll (Chl) b content and flower number per plant increased. ABA and ETH significantly reduced gas exchange parameters, Chl a and Chl b content. Detrimental drought effect on PN, gs, E, CE, RuBPCO and lint mass per plant was significantly alleviated by BAP and also its effect on seed number and lint mass per plant was significantly alleviated with the ABA treatment.  相似文献   

14.
Zhang  Shouren  Gao  Rongfu 《Photosynthetica》2000,37(4):559-571
Diurnal changes in net photosynthetic rate (P N), chlorophyll (Chl) fluorescence, and stomatal aperture of several hybrid poplar clones subjected to midday light stress were measured in July and August of 1996. Midday depression of P N, photosystem 2 (PS2) efficiency, stomatal conductance (g s), and stomatal aperture was observed in all clones, though at differing rates among them. Non-uniform stomatal closure occurred at noon and at other times, requiring a modification of intercellular CO2 concentration (C 1). A linear relationship was found between g s and stomatal aperture. More than half of the photons absorbed by PS2 centre dissipated thermally when subjected to light stress at noon. There was a linear relationship between the rate of PS2 photochemical electron transport (PxPFD) and P N. There was a consensus for two fluorescence indicators (1 – qP/qN and (Fm' – F)/Fm') in assessment of susceptibility of photoinhibition in the clones. According to P N, Chl fluorescence, and stomatal aperture, we conclude that midday depression of photosynthesis can be attributed to both stomatal and non-stomatal limitations.  相似文献   

15.
Capillarity, fibre types, fibre area and enzyme activities of different skeletal muscles (pectoralis, extensor digitorum longus), tibialis anterior, plantaris and the myocardium were compared in Andean coot (Fulica americana peruviana) native to high altitude (Junín, Perú, 4200 m) and the same species nesting at sea level. Numbers of capillaries per square millimeter were higher in all high-altitude muscles when compared with sea-level muscles (P<0.0001). Moreover, values for capillaries per fibre and capillaries in contact with each fibre were higher in digitorum and tibialis high-altitude muscles. Muscle fibres were classified as Type I, Type IIA or Type IIB on the basis of their myofibrillar ATPase pH lability. Pectoralis muscle of high-altitude and sea-level coots presented only fibres of Type IIA. In contrast, all the leg muscles studied showed a mosaic pattern of the three fibre types. Fibre areas were determined using a Leitz Texture Analysis System. Significant differences in fibre area were observed (P<0.01) between high-altitude and sea-level muscles. Mean muscle fibre diameters were also lower in the high-altitude group than in the sea-level group. The enzyme activities studied were hexokinase, lactate dehydrogenase, citrate synthase and 3-hydroxyacyl-CoA-dehydrogenase. The oxidative capacity, as reflected by citrate synthetase and hydroxyacyl-CoA-dehydrogenase activities, was greater for myocardial and pectoralis than for leg muscles. However, analysis of maximal enzyme activities showed that there were no significant differences between the glycolytic and oxidative enzyme activities of high-altitude and sea-level coots. These results suggest that in Andean coots genetically adapted to high altitude, changes in muscle capillarity and fibre size, in addition to high haemoglobin O2 affinity and low haemoglobin concentration, are sufficient to allow adequate energy production without increases in enzymatic activities.Abbreviations BSA bovine serum albumin - C:F ratio Capillaries per fibre - CAF Capillaries in contact with each fibre - CD capillary density (mm-2) - CS citrate synthetase - EDL muscularis digitorum longus - fra fraction reduction area - HA high altitude - HAD hydroxyacyl-CoA-dehydrogenase - HK hexokinase - LDH lactate dehydrogenase - P 50 PO2 at which hemoglobin is half saturated with O2 - P aO2 arterial partial pressure of oxygen - PAS periodic acid-schiff - PEC muscularis pectoralis - PLA muscularis planaris - P tO2 mean tissue oxygen pressure - P vO2 mixed venous partial pressure of oxygen - SD standard deviation - SL sea level - TA muscularis tibialis anterior - TAS texture analysis system  相似文献   

16.
Jacot  Katja A.  Lüscher  Andreas  Nösberger  Josef  Hartwig  Ueli A. 《Plant and Soil》2000,225(1-2):201-211
The significance of symbiotic N2 fixation in legumes (Trifolium alpinum L., T. nivale Sieber, T. pratense L., T. badium Schreber, T. thalii Vill., T. repens L., Lotus alpinus [DC.] Schleicher, L. corniculatus L., Vicia sativa L.) and other N sources for the N budget of grassland ecosystems was studied along an altitudinal gradient in the Swiss Alps. The total annual symbiotic N2 fixation was compared with other sources of N for plant growth of the total plant community (mineralisation and wet deposition). The contribution of symbiotically fixed N to total above-ground N yield of the swards decreased from at least 16% to 9% with increasing altitude where legumes were present. This decrease was due to a decrease in the yield proportion of legumes from 15% at 900 and 1380 m a.s.l. to 5% at 2100 and 2300 m a.s.l. (no legumes were found above 2750 m a.s.l.) and not to a decline in the activity of symbiotic N2 fixation. With increasing altitude legumes are more patchily distributed. The high symbiotic N2 fixation of individual plants up to their altitudinal limit is not primarily the result of low mineral N availability since an addition of NH4 + or NO3 fertiliser at 2300 m a.s.l. led either to no decrease or only to a minor decrease in symbiotic N2 fixation. At 1380 m a.s.l., N mineralisation (13.45 g N m−2 yr−1) appeared to be the main source of N for growth of the sward; N from symbiosis (at least 1.0 g to 2.6 g N m−2 yr−1) and wet deposition (0.4 g to 0.6 g m−2 yr−1) was not a significant N source for plant growth at this altitude. At 2100 m a.s.l., the combined amounts of N from symbiotic N2 fixation (at least 0.1 g N m−2 yr−1) and wet deposition (0.3 g N m−2 yr−1) appeared to be similarly important for plant growth as soil N mineralisation (0.47 g N m−2 yr−1). At high altitudes, wet N deposition and symbiotic N2 fixation together represent a significant source of N for the grassland ecosystem while at low altitudes these N inputs appear to be much less important. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
In comparison with its wild type (WT), the transgenic (TG) rice with silenced OsBP-73 gene had significantly lower plant height, grain number per panicle, and leaf net photosynthetic rate (P N). Also, the TG rice showed significantly lower chlorophyll (Chl), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), RuBPCO activase, and RuBP contents, photosystem 2 (PS2) photochemical efficiency (Fv/Fm and ΔF/Fm′), apparent quantum yield of carbon assimilation (Φc), carboxylation efficiency (CE), photosynthetic electron transport and photophosphorylation rates as well as sucrose phosphate synthase activity, but higher intercellular CO2 concentration, sucrose, fructose, and glycerate 3-phosphate contents, and non-photochemical quenching of Chl fluorescence (NPQ). Thus the decreased P N in the TG rice leaves is related to both RuBP carboxylation and RuBP regeneration limitations, and the latter is a predominant limitation to photosynthesis.  相似文献   

18.
Huang  Z.-A.  Jiang  D.-A.  Yang  Y.  Sun  J.-W.  Jin  S.-H. 《Photosynthetica》2004,42(3):357-364
Gas exchange, chlorophyll (Chl) fluorescence, and contents of photosynthetic pigments, soluble proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase, RuBPCO), and antioxidant enzymes were characterized in the fully expanded 6th leaves in rice seedlings grown on either complete (CK) or on nitrogen-deficient nutrient (N-deficiency) solutions during a 20-chase period. Compared with the control plants, the lower photosynthetic capacity at saturation irradiance (P max) was accompanied by an increase in intercellular CO2 concentration (Ci), indicating that in N-deficient plants the decline in P max was not due to stomatal limitation but due to the reduced carboxylation efficiency. The fluorescence parameters PS2, Fv/Fm, electron transport rate (ETR), and qP showed the same tendency as P max in N-deficient plants. Correspondingly, a higher qN paralleled the rise of the ratio of carotenoid (Car) to Chl contents. However, Fv/Fm was still diminished, suggesting that photoinhibition did occur in the photosystem 2 (PS2) reaction centres. In addition, the activities of antioxidant enzymes on a fresh mass basis were gradually lowered, leading to the aggravation of membrane lipid peroxidation with the proceeding N-deficiency. The accumulation of malonyldialdehyde resulted in the lessening of Chl and soluble protein content. Analyses of regression showed PS2 excitation pressure (1 - qP) was linearly correlated with the content of Chl and inversely with soluble protein (particularly RuBPCO) content. There was a lag phase in the increase of PS2 excitation pressure compared to the decrease of RuBPCO content. Therefore, the increased excitation pressure under N-deficiency is probably the result of saturation of the electron transport chain due to the limitation of the use of reductants by the Calvin cycle. Rice plants responded to N-deficiency and high irradiance by decreasing light-harvesting capacity and by increasing thermal dissipation of absorbed energy.  相似文献   

19.
We investigated net photosynthetic rate (PN) of ear and two uppermost (flag and penultimate) leaves of wheat cultivars Hongmangmai (drought resistant) and Haruhikari (drought sensitive) during post-anthesis under irrigated and non-irrigated field conditions. The PNof ear and flag leaf were significantly higher and less affected by drought in Hongmangmai than in Haruhikari. The rate of reduction in stomatal conductance (gs) was similar for the two cultivars, but intercellular CO2concentration (Ci) in the flag leaf of Hongmangmai was lower than that of Haruhikari in non-irrigated treatment. No differences were observed in leaf water potential (1) and osmotic adjustment of the flag leaf of the cultivars. These results imply that differences in photosynthetic inhibition on the flag leaf at low leaf 1between the cultivars were primarily due to non-stomatal effects. Hence the main physiological factor associated with yield stability of Hongmangmai under drought stress may be attributed to the capacity for chloroplast activity in the flag leaf, which apparently allows sustained PNof flag leaf during grain filling under drought stress. The higher PNof ear in Hongmangmai under drought could also be related to its drought resistance.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

20.
Wang  Qibing  Chen  Jianjun 《Photosynthetica》2003,41(3):443-447
Three genetically related Spathiphyllum cultivars, Claudia, Double Take, and Petite with similar initial sizes and biomass, were grown in a shaded greenhouse and fertilized with a constant supply of nitrogen at 200 g m–3 using an ebb-and-flow fertigation system. Seven months later, Claudia and Double Take had plant sizes and biomasses significantly greater than Petite. Stomatal conductances of Claudia and Double Take were 30 % greater, thus net photosynthetic rates (P N) were significantly higher than in Petite. In addition, the leaf areas (LA) of Claudia and Double Take were 60 % larger than of Petite. Since P N was expressed per leaf surface area, the greater the LA was, the more CO2 was fixed. Thus, the differences in plant size and biomass production of Claudia and Double Take compared to Petite are attributed to high P N and increased LA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号