首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Our understanding of geographic patterns of species diversity and the underlying mechanisms is increasing rapidly, whereas the temporal variation in these patterns remains poorly understood. We examined the seasonal species richness and species turnover patterns of non‐volant small mammals along three subtropical elevational gradients in southwest China. Small mammal diversity was surveyed in two seasons (early wet season and late wet season) using a standardized sampling protocol. The comparison of species richness patterns between two seasons indicated a temporal component in magnitude and shape, with species richness at high elevations clearly increased during the late wet season. Species richness demonstrated weak correlations with modelled temperature and precipitation. The elevational pattern of species turnover measured by Chao‐Sørenson similarity index also changed seasonally, even though the temporal pattern varied with scale. Species turnover between neighboring elevations at high elevations was slower in the late wet season. Meanwhile, there was an acceleration of species turnover along the whole range of the gradient. The seasonal change in species diversity patterns may be due to population‐level increases in abundance and elevational migration, whereas seasonal variation in factors other than temperature and precipitation may play a greater role in driving seasonal diversity patterns. Our study strongly supports the seasonality in elevational patterns of small mammal diversity in subtropical montane forests. Thus it is recommended that subsequent field surveys consider temporal sampling replicate for elevational diversity studies.  相似文献   

2.
3.
4.
Interest in the diversity of arbuscular mycorrhizal (AM) fungal communities has been stimulated by recent data that demonstrate that fungal communities influence the competitive hierarchies, productivity, diversity, and successional patterns of plant communities. Although natural communities of AM fungi are diverse, we have a poor understanding of the mechanisms that promote and maintain that diversity. Plants may coexist by inhabiting disparate temporal niches; plants of many grasslands are either warm or cool season specialists. We hypothesized that AM fungi might be similarly seasonal. To test our hypothesis, we tracked the sporulation of individual AM fungal species growing within a North Carolina grassland. Data were collected in 1996 and 1997; in 1997, sampling focused on two common species. We found that AM fungi, especially Acaulospora colossica and Gigaspora gigantea, maintained different and contrasting seasonalities. Acaulospora colossica sporulated more frequently in the warm season, but Gi. gigantea sporulated more frequently in the cool season. Moreover, AM fungal species were spatially aggregated at a fine scale. Contrasting seasonal and spatial niches may facilitate the maintenance of a diverse community of AM fungi. Furthermore, these data may illuminate our understanding of the AM fungal influence on plant communities: various fungal species may preferentially associate with different plant species and thereby promote diversity in the plant community.  相似文献   

5.
Semiarid scrubland communities are highly dynamic in terms of their species composition, abundance, and functioning, given the drastic changes in climate among seasons. Spatiotemporal patterns of saprophagous Copestylum (Diptera: Syrphidae) communities in different cactus species richness have not yet been studied, although seasonal changes and plant species richness have been shown to strongly impact the diversity and distribution of many insect communities in scrublands. We analyzed the impact of seasonality and of habitat type (disturbed and undisturbed) on Copestylum communities reared from cactus species at the Barranca de Metztitlán Biosphere Reserve, in central Mexico, by comparing their community structure between seasons and habitats, and assessing the contribution of diversity components for the total diversity of this genus. We also measured patterns of temporal niche overlap among hoverfly species considering their breeding medium. Seasonal variation influenced Copestylum community composition most significantly. Species richness and abundance of Copestylum were higher in the rainy season. Additive partitioning of diversity showed that the main component for species richness is beta diversity between seasons. We detected high niche overlap during the dry season and low overlap during the rainy season. This study provides evidence of temporal shifts in xeric hoverfly communities and suggests that the Copestylum species partition resources over time.  相似文献   

6.
We analyzed geographic patterns of richness in both the breeding and winter season in relation to a remotely sensed index of seasonal production (normalized difference vegetation index [NDVI]) and to measures of habitat heterogeneity at four different spatial resolutions. The relationship between avian richness and NDVI was consistent between seasons, suggesting that the way in which available energy is converted to bird species is similar at these ecologically distinct times of year. The number and proportion of migrant species in breeding communities also increased predictably with the degree of seasonality. The NDVI was a much better predictor of seasonal richness at finer spatial scales, whereas habitat heterogeneity best predicted richness at coarser spatial resolutions. While we find strong support for a positive relationship between available energy and species richness, seasonal NDVI explained at most 61% of the variation in richness. Seasonal NDVI and habitat heterogeneity together explain up to 69% of the variation in richness.  相似文献   

7.
The seasonal distribution and abundance of benthic macrophytes were characterized from second- and third-order segments of a stream flowing over granite flatrock in the southeastern United States. Eighteen genera were identified over two annual cycles including macroalgae (60% of the total), angiosperms (30%), and bryophytes (10%). Light availability as affected by riparian shading was a major factor influencing community structure. Based on strong agreement among two-way indicator species analysis, detrended correspondence analysis and cluster analysis, we identified four communities characteristic of distinct light regimes and seasons. In shaded sites the red alga Lemanea australis was dominant during cool seasons, and the aquatic moss Fontinalis sp. was dominant during warm seasons. By contrast, in open sites L. australis and the angiosperm Podostemum ceratophyllum were co-dominant during cool seasons, and P. ceratophyllum was also dominant in warm seasons. The prolific macrophyte communities followed a pattern of broad seasonal maxima for dominant species along with rapid fluctuations in ephemerals. The community dynamics suggest that competitive interactions control space partitioning among macrophytes on the granite flatrock.  相似文献   

8.
Complex frugivory networks are common in heterogeneous environments, but how the structure of those networks varies due to seasonality and other environmental factors remains unclear. For example, seasonal variation in rainfall can influence fruit production and diaspore characteristics, which could alter the quantity and quality of resources available to different animals in the network and, hence, network structure. We investigated how a frugivory network varied seasonally in Brazilian savanna (Cerrado), where there are well-defined dry and wet seasons and fructification mainly during the rainy season for most tree species. We recorded fruit consumption by animals during the dry and wet seasons in two different gallery forests and used these data to test the hypotheses that connectance, links per species and nestedness would be higher in the dry season than rainy season due to low available food in the former that would be consumed by various species of frugivores. Concomitantly, we also measured seed width and lipid content from diaspores of the fruiting trees to determine if these characteristics influenced interaction properties between fruiting trees and frugivores. Among the measured network parameters, connectance, links per species and specialization varied between seasons in one site but not in the other, indicating that seasonal variation in networks is not necessarily consistent over time or space. The number of tree species with small diaspores with high lipid content differed between seasons, and those characteristics were key factors increasing the interaction parameter of fruiting trees. We suggest that network stability between seasons may be related to local frugivore diversity, resource availability, and fruit quality.  相似文献   

9.
Evolutionary changes in the seasonal timing of life-history events can alter a population's exposure to seasonally variable environmental factors. We illustrate this principle in Wyeomyia smithii by showing that: (1) geographic divergence in diapause timing reduces differences among populations in the thermal habitat experienced by nondiapause stages; and (2) the thermal habitat of the growing season is more divergent at high compared with low temperatures with respect to daily mean temperatures. Geographic variation in thermal reaction norms for development time was greater in a warm compared with a cool rearing treatment, mirroring the geographic trend in daily mean temperature. Geographic variation in body size was unrelated to geographic temperature variation, but was also unrelated to development time or fecundity. Our results suggest that proper interpretation of geographic trends may often require detailed knowledge of life-history timing.  相似文献   

10.
Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape‐scale attributes. Generalized linear mixed‐effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment‐matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in resource abundance and consequently to local and landscape scale attributes.  相似文献   

11.
海南岛以南海域浮游植物群落特征研究   总被引:4,自引:0,他引:4  
为掌握海南岛以南海域浮游植物群落特征, 1998–1999年对其进行了4个航次的现场调查。经显微镜检, 共鉴定出浮游植物290种(包括23个变种和5个变型)。在此基础上, 作者通过统计和聚类分析方法, 研究了这一区域浮游植物的物种组成、丰度变动和群落结构等特征。结果显示, 海南岛以南海域浮游植物物种丰富, 以硅藻门和甲藻门为主; 物种组成的时空差异显著。其优势种的暖水性、高盐性或广盐性特征明显。冷季以广温种小舟形藻(Navicula subminuscula)占优势, 随气温回升, 暖水性种类优势地位突出。不同季节浮游植物丰度差异小, 以硅藻门丰度占优势, 但与冷季相比, 暖季中甲藻门和蓝藻门丰度明显上升。4月和9月的高丰度中心位于西部海域北部湾湾口附近, 1月和12月则出现在中东部水域。聚类结果显示各浮游植物群落组分无明显的斑块分布特征。群落物种多样性表现为4月和9月高于1月和12月; 群落稳定性以12月份为最差; 中南部水域群落稳定性较差。总之, 海南岛以南海域浮游植物群落具独特的热带开阔海域生物区系特征。冷暖季群落特征有明显差异。海域水文条件对群落特征的影响复杂。  相似文献   

12.
Lovelock CE  Andersen K  Morton JB 《Oecologia》2003,135(2):268-279
Arbuscular mycorrhizal (AM) fungi are mutualists with plant roots that are proposed to enhance plant community diversity. Models indicate that AM fungal communities could maintain plant diversity in forests if functionally different communities are spatially separated. In this study we assess the spatial and temporal distribution of the AM fungal community in a wet tropical rainforest in Costa Rica. We test whether distinct fungal communities correlate with variation in tree life history characteristics, with host tree species, and the relative importance of soil type, seasonality and rainfall. Host tree species differ in their associated AM fungal communities, but differences in the AM community between hosts could not be generalized over life history groupings of hosts. Changes in the relative abundance of a few common AM fungal species were the cause of differences in AM fungal communities for different host tree species instead of differences in the presence and absence of AM fungal species. Thus, AM fungal communities are spatially distinguishable in the forest, even though all species are widespread. Soil fertility ranging between 5 and 9 Mg/ha phosphorus did not affect composition of AM fungal communities, although sporulation was more abundant in lower fertility soils. Sampling soils over seasons revealed that some AM fungal species sporulate profusely in the dry season compared to the rainy season. On one host tree species sampled at two sites with vastly different rainfall, relative abundance of spores from Acaulospora was lower and that of Glomus was relatively higher at the site with lower and more seasonal rainfall.  相似文献   

13.
Hydrological seasonality of flow dictates diversity in tropical aquatic ecosystems. Large tropical rivers and tributaries are typically more depth and shows increased flow velocity and area in flood than in dry season. A thorough analysis of seasonality effect on fish community structure can provide valuable information of major forces driving tropical communities. However, these types of analyses have been limited by poor knowledge of tropical diversity, human impacts on environment, and biased sampling methods. We used a pristine large tropical river (and tributaries) and five types (12 gill nets, beach seine nets, longlines, branch baited hooks, and cast nets) of fishing gears to present an evaluation of flow seasonality effect on fish community. We sampled fourteen sites in river channel and tributaries in the lower Araguaia River. Sampling was conducted in flood (March and May 2009) and dry (July and September 2009) seasons of a typical seasonal year. Species richness, Shannon Diversity and Evenness, mean similarity of binary data, and abundance (CPUE) were analyzed by PERMANOVA and PCoA. We also analyzed the species most correlated (by Spearman correlation rank) with flood and dry season. Features differed significantly between flood and dry seasons, but not between channel and tributaries. The composition and abundance of community, and the representative species of flood and dry changed quite along the year. Flood showed lotic-related species, and dry presented lentic-related species. Thus, we achieved an alternation of fish community between season, both for channel and tributaries.  相似文献   

14.
Knowledge of aquatic food resources entering terrestrial systems is important for food web studies and conservation planning. Bats, among other terrestrial consumers, often profit from aquatic insect emergence and their activity might be closely related to such events. However, there is a lack of studies which monitor bat activity simultaneously with aquatic insect emergence, especially from lakes. Thus, our aim was to understand the relationship between insect emergence and bat activity, and investigate whether there is a general spatial or seasonal pattern at lakeshores. We assessed whole‐night bat activity using acoustic monitoring and caught emerging and aerial flying insects at three different lakes through three seasons. We predicted that insect availability and seasonality explain the variation in bat activity, independent of the lake size and characteristics. Spatial (between lakes) differences of bat activity were stronger than temporal (seasonal) differences. Bat activity did not always correlate to insect emergence, probably because other factors, such as habitat characteristics, or bats’ energy requirements, play an important role as well. Aerial flying insects explained bat activity better than the emerged aquatic insects in the lake with lowest insect emergence. Bats were active throughout the night with some activity peaks, and the pattern of their activity also differed among lakes and seasons. Lakes are important habitats for bats, as they support diverse bat communities and activity throughout the night and the year when bats are active. Our study highlights that there are spatial and temporal differences in bat activity and its hourly nocturnal pattern, that should be considered when investigating aquatic–terrestrial interactions or designing conservation and monitoring plans.  相似文献   

15.
Sun P  Yu HH  Zhao XQ  Wang DH 《动物学研究》2011,32(5):561-565
行为是反映动物应对环境变化的最直接形式。动物可以根据周围环境条件的变化以及自身的生理状况来调整行为,异地放养是保护珍稀动物的有效方法,但必然会对其行为产生影响。为了探讨藏羚(Pantholops hodgsonii)对异地环境的行为学适应,对异地圈养藏羚的警戒行为进行了不同季节间的比较研究,采用全事件记录法和焦点动物取样法,记录和统计了异地圈养藏羚在冷季和暖季的警戒行为,进而推测其对人类干扰的行为适应性。研究结果表明,雌性和雄性藏羚的警戒时间及警戒比例(警戒时间占全天活动时间的比例)在暖季存在显著差异(警戒时间:Z=4.36,P<0.05;警戒比例:Z=4.559,P<0.05),而在冷季则无差异(警戒时间:Z=0.001,P>0.05;警戒比例:Z=0.0014,P>0.05);而季节差异对雌、雄性藏羚的警戒时间、警戒比例均具有极显著的影响(雄性-警戒时间:F=31.758,P<0.01;警戒比例:F=21.768,P<0.01;雌性-警戒时间:F=14.98,P<0.01;警戒比例:F=11.05,P<0.01);但是季节和性别对藏羚警戒行为的影响没有交互作用(Z=?0.576,P>0.05)。这些结果提示异地圈养藏羚警戒行为的变化可能是对陌生环境适应的结果。  相似文献   

16.
Temporary streams are characterised by short periods of seasonal or annual stream flow after which streams contract into waterholes or pools of varying hydrological connectivity and permanence. Although these streams are widespread globally, temporal variability of their ecology is understudied, and understanding the processes that structure community composition in these systems is vital for predicting and managing the consequences of anthropogenic impacts. We used multivariate and univariate approaches to investigate temporal variability in macroinvertebrate compositional data from 13 years of sampling across multiple sites from autumn and spring, in South Australia, the driest state in the driest inhabited continent in the world. We examined the potential of land-use, geographic and environmental variables to predict the temporal variability in macroinvertebrate assemblages, and also identified indicator taxa, that is, those highly correlated with the most significantly associated physical variables. Temporal trajectories of macroinvertebrate communities varied within site in both seasons and across years. A combination of land-use, geographic and environmental variables accounted for 24% of the variation in community structure in autumn and 27% in spring. In autumn, community composition among sites were more closely clustered together relative to spring suggesting that communities were more similar in autumn than in spring. In both seasons, community structure was most strongly correlated with conductivity and latitude, and community structure was more associated with cover by agriculture than urban land-use. Maintaining temporary streams will require improved catchment management aimed at sustaining seasonal flows and critical refuge habitats, while also limiting the damaging effects from increased agriculture and urban developments.  相似文献   

17.
Food intake in nectar-feeding animals is affected by food quality, their energetic demands, and the environmental conditions they face. These animals increase their food intake in response to a decrease in food quality, a behavior named “intake response”. However, their capacity to achieve compensatory feeding, in which they maintain a constant flux of energy, could be constrained by physiological processes. Here we evaluated how both a seasonal change in environmental conditions and physiological constraints affected the food ingestion in the bat Glossophaga soricina. We measured food intake rate during both the wet/warm and dry/cool seasons at sucrose solutions ranging from 146 to 1,022 mmol L−1. We expected that food intake and metabolic demands would be greater during the dry/cool season. Bats ingested ~20% more food in the dry/cool than in the wet/warm season. Regardless of season, bats were unable to achieve a constant flux of energy when facing the different sugar concentrations that we used in our experiments. This suggests that the rate of food intake is physiologically constrained in G. soricina. Using the digestive capacity of bats we modeled their food intake. The analytic model we used predicts that digestive limitations to ingest energy should have an important effect on the ecology of this species.  相似文献   

18.
The strong season-to-season variation (seasonality) in abiotic factors and productivity shape the changing patterns of species distribution and diversity throughout the year in temperate ecosystems. However, the determinants of seasonal changes within animal communities have rarely been explored, and the prognosis of community variation typically relies on identifying simple factors (e.g., mean temperature) that are assumed to have a constant effect throughout the year. Here we analyze the competing and changing roles of biotic (vegetation structure and phenology) and abiotic (temperature and elevation) factors in determining the richness and nestedness of montane Mediterranean oakwoods (central Spain) bird species in winter and spring. In winter, the most energy-demanding period, birds prefer mature forests with higher nocturnal temperatures where they can minimize thermoregulation costs during the long winter nights. In spring, which is the breeding season, spatial variation of species richness and nestedness is more deterministic than in winter. Breeding birds prefer lower forests with cooler temperatures at midday (presumably to avoid summer overheating stress), less unpredictable weather, and where trees develop leaves earlier (suggesting that birds, particularly those that prey on folivorous insects, would be able to breed early in the season). Thus, although both biotic and abiotic factors take part in the assemblage of local communities, the intervening specific components vary between seasons. For example, temperature—the factor most widely used to forecast future community changes—had opposite effects in winter than in spring. These results highlight the importance of fine-grained scale studies in accounting for temporal variation to understand both current and future regional biodiversity patterns.  相似文献   

19.
For many ectothermic animals, the acquisition, storage and depletion of lipids is integral to successfully coping with reduced metabolic rates and activity levels associated with cold, winter periods. In fish, lipids are crucial for overwinter survival and successful reproduction. The timing and magnitude of seasonal lipid storage should therefore vary predictably among fish with different thermal preferences and spawn times. Small‐ and large‐bodied fish should also face different constraints associated with season that influence lipid cycling. However, much work to date has been species‐ and location‐specific and a general conceptual model for the seasonal energy budgets of freshwater fish is lacking. Here, we conducted a comprehensive literature review of seasonal lipid levels in freshwater fishes. We predicted that warm and cool water species would be more likely to demonstrate peak lipid levels during warm months than cold water species, and expected a larger magnitude of annual lipid cycling in warm and cool water compared to cold water fish. We also expected dampened lipid cycling in larger fish due to their lower mass‐specific metabolic rates. Observed patterns in the timing and magnitude of lipid storage contradicted our prediction because lipid cycling was widespread across species, despite thermal guild, with peak lipid levels commonly occurring during warmer months, even in cold water fish. For body size effects, larger bodied fish species had dampened seasonal lipid cycling, as predicted. We developed a conceptual framework describing how the ‘scope’ for variation in annual lipid cycling changes with body size both among and within species in order to guide future work. Together, our findings suggest that energy acquired during warm months is broadly important for overwinter survival and reproduction in fishes, and provide a new perspective on the differential constraints and physiological responses to seasonality among freshwater fish. Improving our understanding of these dynamics is especially pressing given that a changing global climate is anticipated to alter existing seasonal signals.  相似文献   

20.
群落中的物种相互作用构成了复杂的生态网络。有关物种的数量和组成的季节性动态变化已有较多的研究, 但是对于生态网络的动态变化知之甚少。揭示生态网络的动态变化对于理解群落的稳定性以及群落的动态变化过程和机理具有重要意义。本研究以垂叶榕(Ficus benjamina)榕小蜂群落为研究对象, 分别在西双版纳的干季和雨季采集了榕小蜂的种类和数量信息。比较了两个季节榕小蜂群落的动态变化以及共存网络的参数(例如网路直径、连接数、嵌套性和群落矩阵温度)变化。结果显示: 雨季榕果内传粉榕小蜂Eupristina koningsbergeri所占比例高于干季, 传粉榕小蜂的种群数量也高于干季, 而在干季非传粉榕小蜂的种类增加(干季15种小蜂, 雨季14种)。从榕树-传粉榕小蜂互利共生系统的适合度来看, 干季非传粉小蜂的增加对传粉榕小蜂和榕树的适合度是不利的。在干季, 共存网络物种间的连接数(干季0.95, 雨季0.47)多于雨季, 群落矩阵温度(干季23.24, 雨季2.64)也显著高于雨季。表明干季榕小蜂群落组成及种间关系较雨季更为复杂而多样, 高的矩阵温度暗示群落受到的干扰更大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号