首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
The sucrose non-fermenting protein kinase 1 gene (SNF1) regulates the derepression of glucose-repressible genes in microorganisms. In this study, we cloned an ortholog of SNF1 from Penicillium digitatum and characterized its functions through a gene knock-out strategy. Growth of the PdSNF1 mutant (ΔPdSNF1) on the synthetic medium (SM) supplemented with pectin or polygalacturonic acid was severely disturbed. The appearance of disease symptoms on the ΔPdSNF1 mutant-inoculated citrus fruits was significantly delayed as well. The expression levels of the cell wall-degrading enzyme (CWDE) genes (e.g., XY1, PL1, PNL1, and EXPG2) after pectin induction were up-regulated in wild type, but unchanged or less up-regulated in the ΔPdSNF1 mutant. During infection in citrus fruit, the up-regulation of XY1 was delayed in the ΔPdSNF1 mutant. Disruption of PdSNF1 also resulted in impaired conidiation and caused malformation of the conidiophore structures. In addition, the expression of BrlA, a gene that regulates conidiophore development, was significantly impaired in the ΔPdSNF1 mutant. However, the expression of FadA, encoding the α-subunit of a heterotrimeric G protein, was up-regulated in this mutant. Collectively, our results demonstrate that the PdSNF1 plays a role in adapting P. digitatum to alternative carbon sources. Its involvements in the virulence of P. digitatum is probably via regulation of the expression of CWDE genes; and it is also involved in conidiation, probably through activation of the conidiation signaling pathway while inactivating the mycelial growth-signaling pathway.  相似文献   

2.
Penicillium digitatum is the major source of postharvest decay in citrus fruits worldwide. This fungus shows a limited host range, being able to infect mainly mature fruit belonging to the Rutaceae family. This highly specific host interaction has attracted the interest of the scientific community. Researchers have investigated the chemical interactions and specialized virulence strategies that facilitate this fungus's fruit colonization, thereby leading to a successful citrus infection. There are several factors that mediate and affect the interaction between P. digitatum and its host citrus, including hydrogen peroxide modulation, secretion of organic acids and consequently pH control, and other strategies described here. The recently achieved sequencing of the complete P. digitatum genome opened up new possibilities for exploration of the virulence factors related to the host-pathogen interaction. Through such techniques as RNAseq, RT-PCR and targeted gene knockout mediated by Agrobacterium tumefaciens, important genes involved in the fungal infection process in citrus have been reported, helping to elucidate the molecular mechanisms, metabolites and genetic components that are involved in the pathogenicity of P. digitatum. Understanding the infection process and fungal strategies represents an important step in developing ways to protect citrus from P. digitatum infection, possibly leading to more productive citriculture.  相似文献   

3.
《Fungal biology》2022,126(9):566-575
The filamentous fungus Penicillium digitatum brings out great losses in citrus fruits by causing citrus green mold disease during the postharvest period. Previously, we obtained a T-DNA insertion mutant N2130 of P. digitatum, which produced albino conidia. To understand the role of green-grey conidial pigment in P. digitatum, we identified the insertion site and deeply explored the 1,8-dihydroxynaphtsalene (DHN)-melanin synthesis gene cluster in this phytopathogen. In this study, we deleted five genes in P. digitatum, PdPksP, PdAbr1, PdArp1, PdArp2, and PdAyg1, and the experiments were further performed on phenotype analyses, including pigmentation, UV-C tolerance, virulence, growth rate, conidiation, stress (osmotic-, oxidative-, cell wall disturbing-, and high temperature-) tolerance, fungicide resistance, and conidial hydrophobicity. The results showed that the five deletion mutants (ΔPdPksP, ΔPdAbr1, ΔPdArp1, ΔPdArp2 and ΔPdAyg1) produced albino, brownish, brown, reddish-brown, and Yellowish green conidia, respectively. In addition, the survival colony forming units (CFUs) of the deletion mutants, under the treatment of UV-C radiation (261.4 mJ/cm2), were 0.3- to 0.6-fold of those surviving in wild-type strain N1. Moreover, after 522.8 mJ/cm2-UV-C-irradiation on conidia, the deletion mutants showed a larger decrease in pathogenicity on Valencia Orange fruits compared with strain N1. However, there were no significant differences among other phenotypes tested in this study. Collectively, our research reported the DHN-melanin synthesis pathway in P. digitatum for the first time, and revealed that DHN-melanin is important for P. digitatum to tolerate UV-C irradiation.  相似文献   

4.
The fungus Penicillium digitatum, the causal agent of green mould rot, is the most destructive post‐harvest pathogen of citrus fruit in Mediterranean regions. In order to identify P. digitatum genes up‐regulated during the infection of oranges that may constitute putative virulence factors, we followed a polymerase chain reaction (PCR)‐based suppression subtractive hybridization and cDNA macroarray hybridization approach. The origin of expressed sequence tags (ESTs) was determined by comparison against the available genome sequences of both organisms. Genes coding for fungal proteases and plant cell wall‐degrading enzymes represent the largest categories in the subtracted cDNA library. Northern blot analysis of a selection of P. digitatum genes, including those coding for proteases, cell wall‐related enzymes, redox homoeostasis and detoxification processes, confirmed their up‐regulation at varying time points during the infection process. Agrobacterium tumefaciens‐mediated transformation was used to generate knockout mutants for two genes encoding a pectin lyase (Pnl1) and a naphthalene dioxygenase (Ndo1). Two independent P. digitatum Δndo1 mutants were as virulent as the wild‐type. However, the two Δpnl1 mutants analysed were less virulent than the parental strain or an ectopic transformant. Together, these results provide a significant advance in our understanding of the putative determinants of the virulence mechanisms of P. digitatum.  相似文献   

5.
6.
7.
8.
9.
The sigma factor σ54 (RpoN) is an important regulator of bacterial response to environmental stresses. Here, we demonstrate the roles of RpoN in Vibrio anguillarum M3 by comparative investigation of physiological phenotypes and virulence of the wild-type, an rpoN mutant, and an rpoN complemented strain. Disruption of rpoN was found to decrease biofilm formation, production of exopolysaccharides, and production of the metalloproteases EmpA and PrtV. Injection experiments in fish showed that the M3 ΔrpoN mutant was attenuated in virulence when administrated either by intramuscular injection or by immersion challenge. Slower proliferation of the mutant in fish was also observed. Complementation of the mutant strain with rpoN restored some of the phenotypes to wild-type levels. RpoN was involved in regulation of some virulence-associated genes, as shown by real-time quantitative reverse PCR analysis. These results revealed a pleiotropic regulatory role of RpoN in biofilm formation, production of proteases and exopolysaccharides, and virulence in V. anguillarum M3.  相似文献   

10.
Pseudomonas aeruginosa is an environmental microorganism and a causative agent of diverse acute and chronic, biofilm-associated infections. Advancing research-based knowledge on its adaptation to conditions within the human host is bound to reveal novel strategies and targets for therapeutic intervention. Here, we investigated the traits that P. aeruginosa PA14 as well as a virulence attenuated ΔlasR mutant need to survive in selected murine infection models. Experimentally, the genetic programs that the bacteria use to adapt to biofilm-associated versus acute infections were dissected by passaging transposon mutant libraries through mouse lungs (acute) or mouse tumours (biofilm-infection). Adaptive metabolic changes of P. aeruginosa were generally required during both infection processes. Counter-selection against flagella expression was observed during acute lung infections. Obviously, avoidance of flagella-mediated activation of host immunity is advantageous for the wildtype bacteria. For the ΔlasR mutant, loss of flagella did not confer a selective advantage. Apparently, other pathogenesis mechanisms are active in this virulence attenuated strain. In contrast, the infective process of P. aeruginosa in the chronic biofilm model apparently required expression of flagellin. Together, our findings imply that the host immune reactions against the infectious agent are very decisive for acuteness and duration of the infectious disease. They direct disease outcome.  相似文献   

11.
12.
Green mold, caused by Penicillium digitatum, is the most destructive post-harvest disease in citrus. Secondary metabolites produced by fungal phytopathogens have been associated with toxicity to their respective host through the interaction with a wide range of cell targets. Natural products have also been described as important molecules for biocontrol and competition in their respective environment. For P. digitatum, the production of indole alkaloids, tryptoquialanines A and B, have been reported. However, their biological role remains unknown. Mass Spectrometry Imaging (MSI) technique was applied here for the first time to monitor the secondary metabolites produced on the orange surface during infection in order to gain insights about the P. digitatum-citrus interaction mechanisms. Through the combination of MSI and molecular networking it was possible to report, for the first time, the production of tryptoquivalines and fumiquinazolines by P. digitatum and also the accumulation of tryptoquialanines on the fruit surface from 4 to 7 d post inoculation. P. digitatum was also evaluated concerning the ability to sinthesize indole alkaloids in vivo in the different citrus hosts. The biological role of tryptoquialanines was investigated and tryptoquialanine A was submitted to insecticidal bioassays that revealed its high toxicity against Aedes Aegypti, suggesting an important insecticidal action during orange decay.  相似文献   

13.
Ralstonia (Pseudomonas) solanacearum causes bacterial wilt, a serious disease of many crop plants. The pathogen produces several extracellular plant cell wall-degrading enzymes, including polygalacturonases (PGs) and pectin methylesterase (Pme). Pme removes methyl groups from pectin, thereby facilitating subsequent breakdown of this cell wall component by PGs, which are known bacterial wilt virulence factors. R. solanacearum PGs could not degrade 93% methylated pectin unless the substrate was first demethylated by Pme, but as the degree of methylation of the pectin substrate decreased, PG activity increased. Primers derived from a published pme sequence generated an 800-bp DNA probe fragment, which identified Pme-encoding plasmids from a R. solanacearum genomic library. A pme chromosomal mutant had no detectable Pme activity in vitro and no longer grew on 93% methylated pectin as a carbon source. Curiously, the pme mutant, which had no detectable PG activity on highly methylated pectin, was just as virulent as the wild-type strain on tomato, eggplant (aubergine), and tobacco. Since PG activity is required for full virulence, this result suggests that the pectin in these particular hosts may not be highly methylated, or that the breakdown of highly methylated pectin is not a significant factor in the disease process in general. A positive response regulator of PG production called PehR was not required for wild-type Pme production. However, a mutant strain lacking PhcA, which is a global regulator of several virulence genes, produced no detectable Pme activity. Thus, pme expression is directly or indirectly regulated by PhcA but not by PehR.  相似文献   

14.
Two of the primary virulence regulators of Vibrio cholerae, ToxR and TcpP, function together with cognate effector proteins. ToxR undergoes regulated intramembrane proteolysis (RIP) during late stationary phase in response to nutrient limitation at alkaline pH; however, the specific function of its cognate ToxS remains unresolved. In this work, we found that ToxR rapidly becomes undetectable in a ΔtoxS mutant when cultures are exposed to either starvation conditions or after alkaline pH shock individually. A ΔtoxS mutant enters into a dormant state associated with the proteolysis of ToxR at a faster rate than wild‐type, closely resembling a ΔtoxR mutant. Using a mutant with a periplasmic substitution in ToxS, we found that the proteases DegS and DegP function additively with VesC and a novel protease, TapA, to degrade ToxR in the mutant. Overall, the results shown here reveal a role for ToxS in the stabilization of ToxR by protecting the virulence regulator from premature proteolysis.  相似文献   

15.
16.
BackgroundXanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker is maintained as an epiphyte on citrus leaves until entering the plant tissue. During epiphytic survival, bacteria may encounter low water availability that challenges the infection process. Proteomics analyses of Xcc under saline stress, mimicking the conditions found during epiphytic survival, showed increased abundance of a putative NAD(P)H dehydrogenase encoded by XAC2229.MethodsExpression levels of XAC2229 and a Xcc mutant in XAC2229 were analyzed in salt and oxidative stress and during plant-pathogen interaction. An Escherichia coli expressing XAC2229 was obtained, and the role of this protein in oxidative stress resistance and in reactive oxygen species production was studied. Finally, Xac2229 protein was purified, spectrophotometric and cofactor analyses were done and enzymatic activities determined.ResultsXAC2229 was expressed under salt stress and during plant-pathogen interaction. ΔXAC2229 mutant showed less number of cankers and impaired epiphytic survival than the wild type strain. ΔXAC2229 survived less in the presence of H2O2 and produced more reactive oxygen species and thiobarbituric acid-reactive substances than the wild type strain. Similar results were observed for E. coli expressing XAC2229. Xac2229 is a FAD containing flavoprotein, displays diaphorase activity with an optimum at pH 6.0 and has quinone reductase activity using NADPH as an electron donor.ConclusionsA FAD containing flavoprotein from Xcc is a new NADPH quinone reductase required for bacterial virulence, particularly in Xcc epiphytic survival on citrus leaves.General significanceA novel protein involved in the worldwide disease citrus canker was characterized.  相似文献   

17.
《Genomics》2021,113(2):439-446
P. digitatum, the causative agent of green mold, is one of the most destructive pathogens in the citrus industry. To facilitate basal researches on this important plant pathogen, here we report a finished genome sequence for P. digitatum strain PDW03 using a combination of Illumina, PacBio, and Hi-C sequencing technologies. The assembly comprised 6 chromosomes from telomere to telomere and encodes approximately 9000 proteins. Genomic re-analyses identified 302 Carbohydrate-active enzymes, 420 secreted proteins, and 39 secondary metabolite (SM) gene clusters. Furthermore, we found 10 fragmentary SM clusters in the P. digitatum PDW03 genome. Pangenome analysis based on 5 P. digitatum genomes available showed that conserved orthogroups account for ~68% of the species pangenome. Taken together, this fully completed P. digitatum genome will provide an optimum resource for further researches to investigate the driving forces of fungal host switch and effectors functioning in plant-pathogen interaction.  相似文献   

18.
19.
Streptococcus suis serotype 2 (SS2) is an emerging zoonotic agent responsible for a number of infections in pigs and humans. Pili have been proposed as virulence factors in Gram-positive bacteria. However, due to the abolition of pili production, the function of the srtBCD pilus cluster, especially the truncated major pilin subunit Sbp2 (Sbp2′, Sbp2″), has not been explored. In this study, isogenic mutants (Δsbp2′, Δsbp2″) were constructed by homologous replacement in SS2 strain P1/7. Deletion of sbp2′ attenuated the virulence in a zebrafish model as shown by more than an eightfold increase in the LD50 of Δsbp2′, compared with that of the parent strain. In addition, the adhesion of Δsbp2′ to HEp-2 cell monolayers decreased significantly. Compared with the parent strain, no obvious differences in virulence and adherence efficiency were observed for Δsbp2″. Our data suggest that Sbp2′ could be involved in SS2 pathogenesis despite absence of its pilus shaft.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号