首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Classification of the varieties of hemolytic anemia is based upon whether hemolysis is due to inherent defects within the erythrocyte or to extracellular factors.Confirmation of diagnosis in cases in which the disease is clinically suspected is made upon the basis of the following laboratory data: Hyperbilirubinemia giving an indirect van den Bergh reaction, observation of typical factors in a smear of the blood, a reactive bone marrow, increased urobilinogen in stools and urine, and absence of bilirubinuria.Differentiation of the different types depends upon determination of altered fragility of erythrocytes as indicated by tests of resistance to heat, acid, and mechanical and osmotic stimuli, and upon the identification of an antibody.The importance of detecting antibodies demonstrable in acid serum is mentioned.In a majority of cases, acquired hemolytic anemia is caused by antibodies, malignant disease, or toxic agents.  相似文献   

2.
Dematin and adducin are actin-binding proteins of the erythrocyte "junctional complex." Individually, they exert modest effects on erythrocyte shape and membrane stability, and their homologues are expressed widely in non-erythroid cells. Here we report generation and characterization of double knock-out mice lacking beta-adducin and the headpiece domain of dematin. The combined mutations result in altered erythrocyte morphology, increased membrane instability, and severe hemolysis. Peripheral blood analysis shows evidence of severe hemolytic anemia with reduced number of erythrocytes/hematocrit/hemoglobin and an approximately 12-fold increase in the number of circulating reticulocytes. The presence of a variety of misshapen and fragmented erythrocytes correlates with increased osmotic fragility and reduced in vivo life span. Despite the apparently normal protein composition of the mutant erythrocyte membrane, the retention of the spectrin-actin complex in the membrane under low ionic strength conditions is significantly reduced by the double mutation. Atomic force microscopy reveals an increase in grain size and a decrease in filament number of the mutant membrane cytoskeleton, although the volume parameter is similar to wild type erythrocytes. Aggregated, disassembled, and irregular features are visualized in the mutant membrane, consistent with the presence of large protein aggregates. Importantly, purified dematin binds to the stripped inside-out vesicles in a saturable manner, and dematin-membrane binding is abolished upon pretreatment of membrane vesicles with trypsin. Together, these results reveal an essential role of dematin and adducin in the maintenance of erythrocyte shape and membrane stability, and they suggest that the dematin-membrane interaction could link the junctional complex to the plasma membrane in erythroid cells.  相似文献   

3.
Lipid peroxidation leads to damage of polyunsaturated fatty acids of membrane phospholipids. The contribution of oxidative stress to hypercholesterolemia-induced hemolytic anemia and the effects of addition of taurine on erythrocyte lipid composition, oxidative stress, and hematological data were studied in rabbits fed on a high cholesterol (HC) diet (1%, w/w) for 2 months. The effects of taurine on erythrocyte hemolysis and H2O2-induced lipid peroxidation were investigated in normal rabbit erythrocytes in vitro. The HC diet resulted in increases in plasma lipids and lipid peroxide levels as well as increases in cholesterol levels and the cholesterol:phospholipid ratio in the erythrocytes. This diet caused a hemolytic anemia, but lipid peroxide levels remained unchanged in the erythrocytes of the rabbits. Taurine (2.5%, w/w) added to the food has an ameliorating effect on plasma lipids and lipid peroxide levels in rabbits fed on a HC diet. This treatment also caused decreases in elevated erythrocyte cholesterol levels and cholesterol:phospholipid ratio due to the HC diet, but it did not prevent the hemolytic anemia and did not change erythrocyte lipid peroxide levels. In addition, in an in vitro study, taurine did not protect erythrocytes against H2O2-induced hemolysis or lipid peroxidation. These results show that the HC diet causes hemolytic anemia without any changes in erythrocyte lipid peroxidation, and taurine treatment was not effective against hemolytic anemia caused by the HC diet.  相似文献   

4.
Mechanical properties of erythrocyte membranes play an important role in red cell functions. Stability of human erythrocytes under deforming mechanical tensions which occur in the rapidly moving fluid is studied. The activation energy of the mechanical hemolysis determined by the temperature dependence of the hemolysis rate is 55 + 7 kJ/mol. The fragility of erythrocytes rises sharply as the salt concentrations increase. Glutaric dialdehyde forms a certain number of interprotein bonds which increase the fragility of erythrocytes. The mechanical stability of the erythrocyte membrane falls at high (0.5 M) ethanol concentrations. Blood plasma proteins, particularly human serum albumin, have a pronounced stabilizing effect. The hemolysis occurring during the rapid mixing is not probably associated with an osmotic mechanism since high sucrose concentrations do not prevent this process. The mechanical hemolysis depends both on the deforming tension arising in the membrane and on the state of the erythrocyte membrane.  相似文献   

5.
Although the development of hemolytic anemia as a complication of acute copper intoxication is well documented, the precise mechanism by which copper produces accelerated erythrocyte destruction is unknown. Normal erythrocyte survival depends in part on the ability of the cell to deform and pass through narrow areas of microcirculation in the liver and especially in the spleen. In the present study, it is demonstrated that toxic concentrations of copper rapidly and markedly reduce erythrocyte deformability. This reduction in cell deformability is associated with a marked increase in membrane permeability and osmotic fragility of copper-treated cells. Further, the decrease in deformability occurs despite normal levels of cell ATP and the apparent absence of oxidative damage to the cell. These observations indicate that copper-mediated changes in the erythrocyte membrane may be responsible for reducing the flexibility of the cell. The loss of deformability could act to reduce erythrocyte survival and thus explain the hemolysis associated with copper intoxication in vivo.  相似文献   

6.
The hematological parameters and functional status of erythrocytes were studied using osmotic and ammonium load in healthy newborns and adults. The mean erythrocyte volume in newborns was greater than in adults. Significant differences in the osmotic fragility index in newborns were observed upon the transition from swelling to hemolysis. The erythrocyte hemolysis kinetics in the ammonium load was studied by small-angle light scattering using a LaSca analyzer. The percentage of erythrocyte hemolysis was smaller and the rate of hemolysis in newborns was by a factor of 2.5 lower than in adults.  相似文献   

7.
Alpha-tocotrienol (alpha-T3) has been suggested to protect cellular membranes against free radical damage. This study was done to estimate the effect of alpha-T3 on free radical-induced impairment of erythrocyte deformability by comparing it to alpha-tocopherol (alpha-T). An erythrocyte suspension containing 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) was forced to flow through microchannels with an equivalent diameter of 7 microm for measuring erythrocyte deformability. A higher concentration of AAPH caused a marked decrease in erythrocyte deformability with concomitant increase of membranous lipid peroxidation. Treatment of erythrocytes with alpha-T or alpha-T3 suppressed the impairment of erythrocyte deformability as well as membranous lipid peroxidation and they also increased erythrocyte deformability even in the absence of AAPH. In these cases, the protecting effect of alpha-T3 was significantly higher than that of alpha-T. We emphasize that higher incorporating activity of alpha-T3 into erythrocyte membranes seems to be the most important reason for higher protection against erythrocyte oxidation and impairment its deformability.  相似文献   

8.
通过对低渗溶血过程、荧光淬灭效应及阴离子跨膜通透性的研究,探讨了苯肼对红细胞膜结构和功能的影响。苯肼浓度0.01mM时,低渗溶血的K_1快过程开始变慢,表明膜脂质流动性的降低。苯肼浓度增至0.1mM后,膜和变性血红蛋白的结合大为增强,这种膜结构的变化提高了阴离子的跨膜通透性。  相似文献   

9.
Bovine erythrocytes were treated with each of three bacterial phospholipases C; phosphatidylcholine-hydrolyzing phospholipase C (PCase) of Clostridium perfringens, sphingomyelinase C (SMase) of Bacillus cereus and phosphatidylinositol-specific phospholipase C (PIase) of Bacillus thuringiensis. An increase in osmotic fragility was detected by means of a coil planet centrifugation (CPC) apparatus (Biomedical Systems Co., Tokyo) after the treatment with these enzymes. The peak of hemolysis normally observed in the untreated erythrocytes at the range between 50 and 100 mOsM shifted to 160 to 200 mOsM with the progress of sphingomyelin hydrolysis by phospholipase C of C. perfringens. Sphingomyelinase C of B. cereus showed two different effects on bovine erythrocytes: In the absence of divalent cations or in the presence of Ca2+ alone, the peak of hemolysis shifted to the region from 130 to 160 mOsM, without appreciable hydrolysis of sphingomyelin, while in the presence of Mg2+ or Mg2+ plus Ca2+, the peak of hemolysis further shifted to the region from 160 to 200 mOsM with the hydrolysis of sphingomyelin. Abrupt shift in osmotic fragility to a much higher region around 250 mOsM was produced by treatment with increasing amounts of phosphatidylinositol-specific phospholipase C. In this case, a significant amount of acetylcholinesterase was released from the erythrocyte membrane without hot or hot-cold hemolysis. The mechanism of alteration of osmotic fragility of bovine erythrocytes by treatment with phospholipases C seems to differ from case to case, depending upon the specific action of each enzyme toward the membrane phospholipids.  相似文献   

10.
Galectins are β-galactoside binding lectins with a potential hemolytic role on erythrocyte membrane integrity and permeability. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its hemolytic actions on erythrocyte membrane. When exposed to various saccharides, lactose and sucrose provided maximum protection against hemolysis, while glucose and galactose provided lesser protection against hemolysis. GHG-1 agglutinated erythrocytes were found to be significantly hemolyzed in comparison with unagglutinated erythrocytes. A concentration dependent rise in the hemolysis of trypsinized rabbit erythrocytes was observed in the presence of GHG-1. Similarly, a temperature dependent gradual increase in percent hemolysis was observed in GHG-1 agglutinated erythrocytes as compared to negligible hemolysis in unagglutinated cells. The hemolysis of GHG-1 treated erythrocytes showed a sharp rise with the increasing pH up to 7.5 which became constant till pH 9.5. The extent of erythrocyte hemolysis increased with the increase in the incubation period, with maximum hemolysis after 5 h of incubation. The results of this study establish the ability of galectins as a potential hemolytic agent of erythrocyte membrane, which in turn opens an interesting avenue in the field of proteomics and glycobiology.  相似文献   

11.
Thorium-232 (232Th), a natural radionuclide from the actinide family, is abundantly present in monazite and other ores. It is used as one of the prime fuel materials in nuclear industry and may pose an exposure risk to nuclear workers and members of the public. Human erythrocytes, as a classical cellular membrane model, were coincubated with 232Th in order to elucidate whether this naturally occurring important radionuclide produced perturbations to cell membrane. Present study revealed that erythrocytes underwent aggregation or lysis depending on the ratio of 232Th to cell. Scanning electron micrographs showed that erythrocytes transformed into equinocytes and/or spherocytes after 232Th treatment. Further examination of erythrocyte by atomic force microscopy suggested significant increase in surface roughness after 232Th treatment. Experiments on neuraminidase treated and/or anti-GpA antibody blocked erythrocytes suggested significant role of membrane sialic acid and glycophorin A (GpA) protein in aggregation or hemolytic effects of 232Th. Further results showed that 232Th caused hemolysis by colloid osmotic mechanism, as evidenced by potassium efflux, osmotic protection and osmotic fragility studies. Osmoprotection experiments indicated that hemolysis get elicited through the formation of membrane pores of ∼2.0 nm in size. Hemolysis studies in presence of inhibitors (TEA, bumetanide, DIDS and amiloride) revealed the role of K+ channel, Na+/K+/2Cl channel, Cl/HCO3 anion exchanger and Na+/H+ antiporter in 232Th induced erythrolysis. Presence of non-diffusible cation (N-methyl d-glucasamine) or anion (gluconate) in erythrocyte suspending medium further confirm the role of Na+ and Cl influx in hemolytic effect of 232Th. These findings provide significant insight in structural, biochemical and osmotic toxic effects of 232Th on human erythrocytes.  相似文献   

12.
The redox unbalance in erythrocytes has been found to contribute significantly in the development of anemia in visceral leishmaniasis (VL). The present study revealed enhanced production of reactive oxygen species (ROS) and gradual depletion of alpha-tocopherol and ascorbate in the erythrocytes of infected animals. The response of erythrocytes to chronic treatment with antioxidants was studied in hamsters during leishmanial infection. Treatment with a combination of alpha-tocopherol and ascorbate proved to be the most effective preventive for the proteolytic degradation of erythrocyte membrane. Erythrocytes from infected animals were thermally more sensitive compared to the control ones. Combination of both antioxidants was most successful in resisting heat induced structural defects in the cells. Cross-linking of membrane proteins subsequent to oxidative damage in the red cells was accompanied by the formation of high molecular weight protein band at the top of the resolving gel in the presence of the cross-linking agent dimethyladepimidate (DMA). Marked inhibition of cross-linking was observed with combination of both antioxidants. Treatment with alpha-tocopherol and ascorbate together could withstand osmotic lysis of erythrocytes in the infected animals very efficiently. Decreased hemoglobin (Hb) level was successfully replenished and was coupled with significant increase in the life span of red cells after treating the animals with both antioxidants. Results indicate better efficacy of the combination therapy with alpha-tocopherol and ascorbate in protecting the erythrocytes from structural and functional damages during leishmanial infection.  相似文献   

13.
The purpose of these studies was to determine the effect of polyphenols contained in extracts from apple, strawberry and blackcurrant on the properties of the erythrocyte membrane, treated as a model of the biological membrane. To this end, the effect of the substances used on hemolysis, osmotic resistance and shape of erythrocytes, and on packing order in the hydrophilic region of the erythrocyte membrane was studied. The investigation was performed with spectrophotometric and fluorimetric methods, and using the optical microscope. The hemolytic studies have shown that the extracts do not induce hemolysis at the concentrations used. The results obtained from the spectrophotometric measurements of osmotic resistance of erythrocytes showed that the polyphenols contained in the extracts cause an increase in the resistance, rendering them less prone to hemolysis in hypotonic solutions of sodium chloride. The fluorimetric studies indicate that the used substances cause a decrease of packing order in the hydrophilic area of membrane lipids. The observations of erythrocyte shapes in a biological optical microscope have shown that, as a result of the substances’ action, the erythrocytes become mostly echinocytes, which means that the polyphenols of the extracts localize in the outer lipid monolayer of the erythrocyte membrane. The results obtained indicate that, in the concentration range used, the plant extracts are incorporated into the hydrophilic area of the membrane, modifying its properties.  相似文献   

14.
Cholesterol diet-induced hemolytic anemia in rats was described. When rats were fed a cholesterol diet for 11 weeks, serum cholesterol rapidly increased within the first week, and was maintained in 5-10 times higher levels throughout the study as compared to those of control rats. Erythrocyte count, hematocrit and hemoglobin concentration decreased from about 2 weeks of feeding. The spleen showed an increase of hemosiderin deposition from 6 weeks of feeding. The half life of erythrocytes labelled with 51Cr was shortened significantly at 6 weeks of feeding. These findings indicate that cholesterol diet can induce hemolytic anemia. Serum cholesterol and phospholipid were markedly increased, but in erythrocyte membrane, free cholesterol content was not persistently increased and phospholipid content was decreased. In hemorrheological studies, erythrocyte deformability and mechanical hemolysis tended to reduce. In conclusion, it was considered that as a result of reduced phospholipid content the erythrocytes of cholesterol-fed rats were decreased in its deformability and were captured more easily by the spleen. The profile of hemolytic anemia in cholesterol-fed rats was quite different from those reported in cholesterol-fed guinea pigs, rabbits and dogs.  相似文献   

15.
In the paper, we present an improved method for evaluation of a compound ability to destabilize erythrocyte plasma membrane. The proposed method is based on the continuous monitoring of the light scattered by erythrocytes exposed to osmotic pressure differences. The kinetics of hemolysis depends on the plasma membrane mechanics and the extent of the osmotic stress. Generally, the osmotic pressure difference of approximately 150 mOsm is taken for measurements, as a result of the equal volume mixing with the physiological salt solutions. In this approach the hemolytic process completion is not established which may result in poor quality and reproducibility of the experimental data. In consequence, inaccurate parameters of the kinetic are determined due to the low quality fitting to the, widely used, single exponential model. In the paper we propose a new experimental protocol allowing to determine the extended set of parameters for kinetics of hemolysis. Namely, the method of the minimal osmotic pressure difference determination is proposed which ensures the completeness of the hemolytic process. This step allows improving the quality and exactness of the calculated parameters. The developed methodology was tested on two qualitatively different, biologically relevant, experiments; evaluation of the peptide effect on the plasma membrane properties and differentiating between human and rabbit erythrocytes.  相似文献   

16.
The osmotic fragility of human erythrocytes is well known to decrease as the temperature is elevated. The cellular site for the temperature effect was studied by assessing possibles roles of hemoglobin and of membrane lipids and by taking advantage of the unique response of camel erythrocytes to temperature. It is concluded that the erythrocyte membrane is the site for the temperature effect on osmotic fragility. The human erythrocyte is likely to rupture in protein-lipid boundary regions in the membrane, from which cholesterol is apparently excluded.  相似文献   

17.
The effects of O33 and O49 P. mirabilis lipopolysaccharides (LPSs) on human erythrocyte membrane properties were examined. Physical parameters of the plasma membrane, such as membrane lipid fluidity, physical state of membrane proteins, and osmotic fragility, were determined. The fluidity of the lipids was estimated using three spin-labeled stearic acids of doxyl derivatives: 5-doxylstearic acid, 12-doxylstearic acid, and 16-doxylstearic acid. All the applied labels locate to different depths of the lipid layer and provide information on the ordering of phospholipid fatty acyl chain mobility. LPSs O49 increased the membrane lipid fluidity in the polar region of the lipid bilayer as indicated by spin-labeled 5-doxylstearic acid. An increase in fluidity was also observed in the deeper region using 12-doxylstearic acid only for O33 LPSs. The highest concentration of O33 LPSs (1 mg/ml) increased the motion of membrane proteins detected by the spin-label residue of iodoacetamide. These results showed different actions of O33 and O49 LPSs on the plasma membrane due to the different chemical structures of O-polysaccharides. P. mirabilis O33 and O49 LPSs did not induce changes in the membrane cytoskeleton, osmotic fragility and lipid peroxidation of erythrocytes. On the other hand a rise in the content of carbonyl compounds was observed for the highest concentrations of O33 LPS. This result indicated protein oxidation in the erythrocyte membrane. Lipid A, the hydrophobic part of LPS, did not change the membrane lipid fluidity and osmotic fragility of erythrocytes. Smooth and rough forms of P. mirabilis LPSs were tested for their abilities for complement-mediated immunohemolysis of erythrocytes. Only one out of seven LPSs used was a potent agent of complement-mediated hemolysis. It was rough, Ra-type of P. mirabilis R110 LPS. The O-polysaccharide-dependent scheme of reaction is presented.  相似文献   

18.
Bovine erythrocyte exposure to isometamidium chloride causes increased osmotic fragility. Control cells tolerated up to 1 mg/ml drug with no effects. Carrier erythrocytes were highly susceptible to drug, with increased osmotic fragility and decreased encapsulation potential of sucrose and inulin. Scanning electron micrographs of control and carrier erythrocytes exposed to drug revealed the formation of enkephalocytes with carrier erythrocytes. Control erythrocytes showed greater tolerance to the drug. Apparently, access of the drug to the interior of the erythrocyte membrane allows the drug to be more interactive with the membrane.  相似文献   

19.
Theoretical osmotic fragility curves were calculated and drawn by computer using the van't Hoff equation and the isotonic areas and volumes of 1000 individual erythrocytes. We studied the influence on the calculated curves of theoretically altering the fraction of the volume which was osmotically active from 50 to 70%, and of altering the permissible stretch before hemolysis from zero to 10%. With the two assumptions–that the membrane does not stretch before hemolysis, and that the osmotically active fraction of the cell volume is 0.58–it was possible to duplicate the general shape of the standard fragility curve; the exact NaCl concentration, however, at which there was 50% hemolysis was approximately 0.1 gm/100 ml higher than found in vitro. The calculated osmotic fragility curves can be made quantitatively similar to in vitro ones if the following statements are true: the osmotically active volume is 58%, the permissible stretch of the membrane without lysis is 6%, the cell membrane resists a slight osmotic pressure gradient of approximately 0.1 atmospheres, and hemolysis is an all or nothing phenomenon. This set of values for the relevant factors is sufficient but not unique in causing the superposition of the calculated and experimental curves. The frequency distribution of the cells according to the hemolytic salt concentrations (the sodium chloride concentration at which an individual cell just hemolyzes) was skewed positively and was leptokurtic for each of the seven normal subjects studied.  相似文献   

20.
Sen G  Mukhopadhaya R  Ghosal J  Biswas T 《Life sciences》2000,67(26):3181-3190
Visceral leishmaniasis (V.L.) is associated with enhanced lipid peroxidation along with impaired function of antioxidant defense system in erythrocytes. The effect of chronic treatment with ascorbate and alpha-tocopherol was studied on erythrocytes in hamsters infected with Leishmania donovani. Combination treatment with both antioxidants proved to be a potential suppressor of lipid hydroperoxide formation as well as hypotonic osmotic lysis during the leishmanial infection. Positive correlations between the depleted levels of erythrocyte ascorbate, GSH and alpha-tocopherol exhibit proportionate alterations in the nonenzymatic antioxidant levels at different stages of infection. Indirect measurement of transmembrane electron transfer as ferricyanide reduction suggests an active participation of endogenous contents of ascorbate and alpha-tocopherol in the protection against oxidative damage of membrane lipids. Cooperative behavior of both antioxidants in the ferricyanide reducing capacity was further evinced by resealing the ghosts in presence of exogenous ascorbate and alpha-tocopherol. Furthermore, intravesicular ascorbate serves in the defense of extravesicular ferricyanide induced oxidation of endogenous alpha-tocopherol. The results suggest an interacting role of ascorbate and alpha-tocopherol in maintaining the antioxidant reserve of erythrocytes during anemia in V.L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号