首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Cellular retinoic acid binding proteins, types I and II (CRABP I and II), are cytosolic proteins that exhibit a binding preference for all-trans retinoic acid. As part of a larger study to determine whether retinoic acid plays a role in neurogenesis in vivo, we questioned whether CRABP II is present in rat postnatal olfactory epithelium (OE), a sensory tissue that continually replaces neurons throughout adult life. We have determined that both CRABP II and CRABP I proteins and the mRNAs that encode them are present in postnatal rat OE. Immunoreactivity with CRABP II and CRABP I antibodies was not observed in the nasal respiratory epithelium. Double immunolabeling experiments, conducted with antibodies showing specificity for each antigen, indicate that CRABP II and CRABP I are found in different cell types within the olfactory neuroepithelium. We also asked whether CRABP II is expressed in the postnatal rat retina, a neural tissue that is not known to show neuron replacement during adult life. CRABP type II immunoreactivity was not observed in the mature rat retina. The presence of CRABP II in postnatal OE and its absence from mature retina is consistent with previous reports indicating that the distribution of CRABP II in adult mammals is restricted to tissue systems that exhibit ongoing growth and differentiation throughout life.  相似文献   

2.
3.
4.
5.
CRABP1 (cellular retinoic acid binding protein 1) belongs to the family of fatty acid binding proteins. Retinoic acid binding is the only known functional activity of this protein. The role of CRABP1 in human carcinogenesis remains poorly understood. Here, for the first time we demonstrated pro-metastatic and pro-tumorigenic activity of CRABP1 in mesenchymal tumors. Further functional analysis revealed that the pro-tumorigenic effect of CRABP1 does not depend on retinoic acid binding activity. These results suggest that CRABP1 could have an alternative intracellular functional activity that contributes to the high malignancy of transformed mesenchymal cells. Microarray analysis detected CRABP1-mediated alterations in the expression of about 100 genes, including those encoding key regulatory proteins. CRABP1 is ubiquitously expressed in monophasic synovial sarcomas, while in biphasic synovial sarcomas it is expressed uniquely by the spindle cells of the aggressive mesenchymal component. High level of CRABP1 expression is associated with lymph node metastasis and poor differentiation/high grade of pancreatic neuroendocrine tumors (pNETs). Presented data suggest CRABP1 as a promising biomarker of pNETs’ clinical behavior. Our results give the first evidence of pro-tumorigenic and pro-metastatic activity of CRABP1 in mesenchymal and neuroendocrine tumors.  相似文献   

6.
Cellular retinoic acid binding proteins are considered to be involved in retinoic acid (RA) signaling pathways. Our aim was to compare the expression and localization of cellular retinoic acid binding proteins I and II (CRABP I and II) in embryonic mouse hearts during normal development and after a single teratogenic dose of RA. Techniques such as real-time PCR, RT-PCR, Western blots and immunostaining were employed to examine hearts from embryos at 9-17 dpc. RA treatment at 8.5dpc affects production of CRABP I and II in the heart in the 48-h period. Changes in expression of mRNA for retinaldehyde dehydrogenase II (Raldh2), Crabp1 and Crabp2 genes also occur within the same time window (i.e. 10-11dpc) after RA treatment. In the embryonic control heart these proteins are localized in groups of cells within the outflow tract (OT), and the atrioventricular endocardial cushions. A gradient of labeling is observed with CRABP II but not for CRABP I along the myocardium of the looped heart at 11 dpc; this gradient is abolished in hearts treated with RA, whereas an increase of RALDH2 staining has been observed at 10 dpc in RA-treated hearts. Some populations of endocardial endothelial cells were intensively stained with anti-CRABP II whereas CRABP I was negative in these structures. These results suggest that CRABP I and II are independently regulated during heart development, playing different roles in RA signaling, essential for early remodeling of the heart tube and alignment of the great arteries to their respective ventricles.  相似文献   

7.
Burns LL  Ropson IJ 《Proteins》2001,43(3):292-302
The folding mechanisms of cellular retinol binding protein II (CRBP II), cellular retinoic acid binding protein I (CRABP I), and cellular retinoic acid binding protein II (CRABP II) were examined. These beta-sheet proteins have very similar structures and higher sequence homologies than most proteins in this diverse family. They have similar stabilities and show completely reversible folding at equilibrium with urea as a denaturant. The unfolding kinetics of these proteins were monitored during folding and unfolding by circular dichroism (CD) and fluorescence. During unfolding, CRABP II showed no intermediates, CRABP I had an intermediate with nativelike secondary structure, and CRBP II had an intermediate that lacked secondary structure. The refolding kinetics of these proteins were more similar. Each protein showed a burst-phase change in intensity by both CD and fluorescence, followed by a single observed phase by both CD and fluorescence and one or two additional refolding phases by fluorescence. The fluorescence spectral properties of the intermediate states were similar and suggested a gradual increase in the amount of native tertiary structure present for each step in a sequential path. However, the rates of folding differed by as much as 3 orders of magnitude and were slower than those expected from the contact order and topology of these proteins. As such, proteins with the same final structure may not follow the same route to the native state.  相似文献   

8.
It has been suggested that cellular retinoic acid-binding protein (II) (CRABP(II)) may have a role in the movement of retinoic acid (RA) to its nuclear receptors, thereby enhancing the action of RA in the cells in which it is expressed. RA has also been shown to increase expression of CRABP(II). Previous work from our laboratory has shown that 17 beta-estradiol (E2) administration to prepubertal female rats leads to acquisition of the ability of the lining epithelium to synthesize RA as well as to express CRABP(II). To determine whether this appearance of CRABP(II) was dependent on the production of RA, both E2 and RA were administered to ovariectomized rats. E2 administration induced expression of the CRABP(II) gene in the uterus within 4 h, and this induction was not inhibited by prior administration of puromycin, indicating that the induction was direct. In contrast, RA caused no change in CRABP(II) message level, even at times as late as 48 h after administration. Isolation and analysis of 4.5 kb of the 5'-flanking region of the gene revealed no apparent E2-response element. Using this portion of the gene to drive expression of the luciferase gene in transfected cells allowed identification of a region containing an imperfect estrogen-response element and estrogen-response element half-site, necessary for E2-driven induction. A possible Sp1 binding site in the 5'-flanking region of the CRABP(II) gene was also required for this induction. The ability of E2 to induce expression of CRABP(II) suggests that it can enhance the activity of RA, directly affecting expression of retinoid-responsive genes.  相似文献   

9.
Cellular retinoic acid-binding proteins (CRABPs) are carrier proteins thought to play a crucial role in the transport and metabolism of all-trans-retinoic acid (atRA) and its derivatives within the cell. This report describes a novel photoaffinity-based binding assay involving competition between potential ligands of CRABP and [(3)H]atRA or [(3)H]-9-cis-RA for binding to the atRA-binding sites of CRABP I and II. Photoaffinity labeling of purified CRABPs with [(3)H]atRA was light- and concentration-dependent, saturable, and protected by several retinoids in a concentration-dependent manner, indicating that binding occurred in the CRABP atRA-binding site. Structure-function relationship studies demonstrated that oxidative changes to the atRA beta-ionone ring did not affect ligand potency. However, derivatives lacking a terminal carboxyl group and some cis isomers did not bind to CRABPs. These studies also identified two novel ligands for CRABPs: 5,6-epoxy-RA and retinoyl-beta-D-glucuronide (RAG). The labeling of both CRABPs with 9-cis-RA occurred with much lower affinity. Experimental evidence excluded nonspecific binding of RAG to CRABPs and UDP-glucuronosyltransferases, the enzymes responsible for RAG synthesis. These results established that RAG is an effective ligand of CRABPs. Therefore, photoaffinity labeling with [(3)H]atRA can be used to identify new ligands for CRABP and retinoid nuclear receptors and also provide information concerning the identity of amino acid(s) localized in the atRA-binding site of these proteins.  相似文献   

10.
The cellular fatty acid-binding proteins (FABP) and cellular retinoid (retinol, retinoic acid)-binding proteins (CRtBP) are structurally and functionally-defined groups within an evolutionarily conserved gene family. CRtBP are expressed in both fully differentiated and developing tissues in a manner that supports a relationship to the action of retinoic acid in morphogenesis and cellular differentiation. The FABP are, by contrast, expressed only in fully differentiated tissues in a manner compatible with a major function in the metabolism of long-chain fatty acids (LCFA) for energy production or storage. The precise function(s) of FABP and CRtBP remain imperfectly understood, while subspecialization of function(s) within the two groups is suggested by the complex diversity in both of structurally distinct members that display striking tissue and temporal specificity of expression in addition to ligand specificity. Notwithstanding this considerable apparent functional diversity among the FABP and CRtBP, available evidence supports a dual set of generic functions for both protein groups in a) promoting cellular flux of poorly water-soluble ligands and their subsequent metabolic utilization or transformation, and b) sequestration of ligands in a manner that limits their association with alternative binding sites within the cell, of which members of the steroid hormone nuclear receptor superfamily (HNR) are a potentially important category. Theoretical as well as experimental models probing diffusional fluxes of LCFAin vitro and in living cells have provided support for a function for FABP in intracellular LCFA transport. Protein-bound ligand also appears to provide the substrate for metabolic transformation of retinoids bound to CRtBP, but convincing evidence is lacking for an analogous mechanism in the direct facilitation of fatty acid utilization by FABP. An emerging relationship between FABP and CRtBP function centers on their binding of, and induction by, ligands which activate or transform specific HNR-the retinoic acid receptors and the peroxisome proliferator activated receptor in the case of CRtBP and FABP, respectively. Evidence consistent with both a promotive role (provision of ligands for HNR) and a protective role (limiting availability of free ligand for HNR association) has been advanced for CRtBP. Available data supports a protective function for cellular retinoic acid-binding proteins (CRABP) and liver FABP (L-FABP) and points to the existence of ligand-defined, lipid-binding-protein-HNR relationships in which CRABP serve to attenuate the induction of gene expression by retinoic acid, and in which L-FABP may modulate a cellular adaptive multigene response to increased LCFA flux or compromised LCFA utilization. Furthermore, the emerging role of LCFA in the regulation of gene expression combined with the complex interplay between heterologous HNR-ligand associations and gene cross-regulation implies an important potential interaction between FABP, CRtBP, and their respective ligands in gene regulation.Abbreviations A-FABP Adipocyte Fatty Acid-Binding Protein - CRABP Cellular Retinoic Acid-Binding Protein(s) - CRABP I Cellular Retinoic Acid-Binding Protein type I - CRABP II Cellular Retinoic Acid-Binding Protein type II - CRBP Cellular Retinol-Binding Protein(s) - CRBP Cellular Retinol-Binding Protein typy I - CRBP II Cellular Retinol-Binding Protein type II - CRtBP Cellular Retinoid-Binding Proteins - FABP Fatty Acid-Binding Protein - H-FABP Heart Fatty Acid-Binding Protein - HNR steroid Hormone-type Nuclear Receptor - I-FABP Intestinal Fatty Acid-Binding Protein - LCFA Long-Chain Fatty Acids - L-FABP Liver Fatty Acid-Binding Protein - NBD-stearate 12-(N-methyl)-N-(7-nitrobenzo-2-oxa-1,3,-diazol-4-yl)amino)-octadecanoic acid - PPAR Peroxisome Proliferator-Activated Receptor - RAR Retinoic Acid Receptor(s) - RARE Retinoic Acid Response Element - RXR Retinoic acid X Receptors(s) - RXRE Retinoic acid X Response Element  相似文献   

11.
Retinol and retinoic acid that are potent modulators of gene expression are vital for development and growth of the conceptus. Apart from being transported across the placenta, retinol and retinoic acid may also be active in the placenta per se. Three proteins involved in 1) serum transport of retinol (retinol binding protein [RBP]), 2) cellular transport and metabolism of retinol (cellular RBP [CRBP] I), and 3) retinoic acid (cellular retinoic acid binding protein [CRABP] I), respectively, have been located by immunohistochemistry during gestation in the porcine placenta. This is a diffuse epitheliochorial placenta composed of areolar-gland subunits, where transport of larger molecules takes place, and interareolar regions, where gas-exchange and trophoblast absorption of hemotroph occur. Immunoreactive-RBP (ir-RBP) as well as CRBP I (ir-CRBP) was detected in uterine glands and in areolar trophoblasts, suggesting that RBP-retinol is secreted by the glands and absorbed by the trophoblasts. Both proteins were present also at the interareolar regions, with ir-CRBP in both the uterine epithelium and the apposing trophoblasts, but ir-RBP only in the former. The localization of ir-CRABP was, in contrast, strictly limited to interareolar trophoblasts. Together these findings suggest that 1) the areolar gland subunits are important for transport of retinol and retinol-RBP, and 2) retinoid binding proteins are involved in the development and growth of the porcine placenta.  相似文献   

12.
Cellular retinoic acid-binding protein (CRABP), a potential mediator of retinoic acid action, enables retinoic acid to bind in a specific manner to nuclei and chromatin isolated from testes of control and vitamin A-deficient rats. The binding of retinoic acid was followed after complexing [3H]retinoic acid with CRABP purified from rat testes. The binding was specific, saturable, and temperature dependent. If CRABP charged with nonlabeled retinoic acid was included in the incubation, binding of radioactivity was diminished, whereas inclusion of free retinoic acid, or the complex of retinol with cellular retinol binding protein (CRBP) or serum retinol binding protein had no effect. Approximately 4.0 X 10(4) specific binding sites for retinoic acid were detected per nucleus from deficient animals. The number of binding sites observed was influenced by vitamin A status. Refeeding vitamin A-deficient rats (4 h) with retinoic acid lowered the amount of detectable binding sites in the nucleus. CRABP itself did not remain bound to these sites, indicating a transfer of retinoic acid from its complex with CRABP to the nuclear sites. Further, CRBP, the putative mediator of retinol action, was found to enable retinol to be bound to testicular nuclei, in an interaction similar to the binding of retinol to liver nuclei described previously.  相似文献   

13.
细胞内视黄酸信号传递系统   总被引:3,自引:0,他引:3  
视黄酸对基因表达的调控与肿瘤细胞的分化、胚胎的发育以及疾病的发生关系密切.视黄酸的基因调控作用是通过视黄酸信号传递系统实现的.视黄酸信号传递系统包括视黄酸、细胞液视黄醇(酸)结合蛋白、视黄酸细胞核受体及视黄酸反应元件等.视黄酸信号传递系统自成一体系,在这一系列调控的级联反应中存在着多级反馈调控环节,而且该系统还与视黄酸配体以外的信号系统相联系.  相似文献   

14.
Understanding neurogenesis is valuable for the treatment of nervous system disorders. However, there is currently limited information about the molecular events associated with the transition from primate ES cells to neural cells. We therefore sought to identify the proteins involved in neurogenesis, from Macaca fascicularis ES cells (CMK6 cell line) to neural stem (NS) cells to neurons using two-dimensional gel electrophoresis (2-DE), peptide mass fingerprinting (PMF), and liquid chromatography-tandem mass spectrometry (LC-MS-MS). During the differentiation of highly homogeneous ES cells to NS cells, we identified 17 proteins with increased expression, including fatty acid binding protein 7 (FABP7), collapsin response mediator protein 2 (CRMP2), and cellular retinoic acid binding protein 1 (CRABP1), and seven proteins with decreased expression. In the differentiation of NS cells to neurons, we identified three proteins with increased expression, including CRMP2, and 10 proteins with decreased expression. Of these proteins, FABP7 is a marker of NS cells, CRMP2 is involved in axon guidance, and CRABP1 is thought to regulate retinoic acid access to its nuclear receptors. Western blot analysis confirmed the upregulation of FABP7 and CRABP1 in NS cells, and the upregulation of CRMP2 in NS cells and neurons. RT-PCR results showed that CRMP2 and FABP7 mRNAs were also upregulated in NS cells, while CRABP1 mRNA was unchanged. These results provide insight into the molecular basis of monkey neural differentiation.  相似文献   

15.
16.
Free retinoids suffer promiscuous metabolism in vitro. Diverse enzymes are expressed in several subcellular fractions that are capable of converting free retinol (retinol not sequestered with specific binding proteins) into retinal or retinoic acid. If this were to occur in vivo, regulating the temporal-spatial concentrations of functionally-active retinoids, such as RA (retinoic acid), would be enigmatic. In vivo, however, retinoids occur bound to high-affinity, high-specificity binding proteins, including cellular retinol-binding protein, type I (CRBP) and cellular retinoic acid-binding protein, type I (CRABP). These binding proteins, members of the superfamily of lipid binding proteins, are expressed in concentrations that exceed those of their ligands. Considerable data favor a model pathway of RA biosynthesis and metabolism consisting of enzymes that recognize CRBP (apo and holo) and holo-CRABP as substrates and/or affecters of activity. This would restrict retinoid access to enzymes that recognize the appropriate binding protein, imparting specificity to RA homeostasis; preventing, e.g. opportunistic RA synthesis by alcohol dehydrogenases with broad substrate tolerances. An NADP-dependent microsomal retinol dehydrogenase (RDH) catalyzes the first reaction in this pathway. RDH recognizes CRBP as substrate by the dual criteria of enzyme kinetics and chemical crosslinking. A cDNA of RDH has been cloned, expressed and characterized as a short-chain alchol dehydrogenase. Retinal generated in microsomes from holo-CRBP by RDH supports cytosolic RA synthesis by an NAD-dependent retinal dehydrogenase (RalDH). RalDH has been purified, characterized with respect to substrate specificity, and its cDNA has been cloned. CRABP is also important to modulating the steady-state concentrations of RA, through sequestering RA and facilitating its metabolism, because the complex CRABP/RA acts as a low Km substrate.  相似文献   

17.
18.
We have investigated the role of Vitamin A (retinoid) proteins in hepatic retinoid processing under normal conditions and during chemical stress induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a chemical known to interfere with retinoid turnover and metabolism. Three separate studies were performed in wildtype control mice and transgenic mice that lack one or more isoforms of retinoic acid receptors (RAR), retinoid X receptors (RXR), or intracellular retinoid-binding proteins (CRABP I, CRABP II, CRBP I). Body and organ weight development was monitored from 2 weeks of age to adult, and hepatic levels of retinyl esters, retinol, and retinoic acid were investigated. In addition, hepatic concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid, a recently discovered retinoid metabolite that has proven sensitive to both TCDD exposure and Vitamin A status, were also determined. Mice absent in the three proteins CRBP I, CRABP I, and CRABP II (CI/CAI/CAII-/-) displayed significantly lower hepatic retinyl ester, retinol, and all-trans-retinoic acid levels compared to wildtype mice, whereas the liver concentrations of 9-cis-4-oxo-13,14-dihydro-retinoic acid was considerably higher. After treatment with TCDD, hepatic total retinoids were almost entirely depleted in the CI/CAI/CAII-/- mice, whereas wildtype mice and mice lacking CRABP I, and CRABP II (CAI/CAII-/-) retained approximately 60-70% of their Vitamin A content compared to controls at 28 days. RAR and RXR knockout mice responded similarly to wildtype mice with respect to TCDD-induced retinoid disruption, with the exception of RXRbeta-/- mice which showed no decrease in hepatic Vitamin A concentration, suggesting that the role of RXRbeta in TCDD-induced retinoid disruption should be further investigated. Overall, the abnormal retinoid profile in the triple knockout mice (CI/CAI/CAII-/-), but not double knockout (CAI/CAII-/-) mice, suggests that a loss of CRBP I may account for the difference in retinoid profile in CI/CAI/CAII-/- mice, and is likely to result in an increased susceptibility to hepatic retinoid depletion following dioxin exposure.  相似文献   

19.
Three-dimensional modeling of the complex between retinoic acid-binding protein (CRABP) and retinoic acid suggests that binding of the ligand is mediated by interaction between the carboxyl group of retinoic acid and two charged amino acids (Arg-111 and Arg-131) whose side chains project into the barrel of the protein. To assess the contribution of these amino acids to protein-ligand interaction, amino acid substitutions were made by oligonucleotide-directed, site-specific mutagenesis. The wild-type and mutant proteins were expressed in E. coli and subsequently purified. Like wild-type CRABP, the mutant proteins are composed mainly of beta-strands as determined by circular dichroism in the presence and absence of ligand, and thus presumably are folded into the same compact barrel structure as the wild-type protein. Mutants in which Arg-111 and Arg-131 are replaced by glutamine bind retinoic acid with significantly lower affinity than the wild-type protein, arguing that these two residues indeed interact with the ligand. The mutant proteins are more resistant to thermal denaturation than wild-type CRABP in the absence of retinoic acid, but they are not as thermostable as the CRABP-retinoic acid complex. These data suggest a model for CRABP-retinoic acid interaction in which the repulsive forces between the positively-charged arginine residues provide conformational flexibility to the native protein for retinoic acid to enter the binding pocket. Elimination of the positively-charged pair of amino acids produces a protein that is more thermostable than wild-type CRABP but less effective at ligand-binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号