首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of root growth by aluminum (Al) is well established, yet a unifying mechanism for Al toxicity remains unclear. The association between cell growth and endogenously generated ionic currents measured in many different systems, including plant roots, suggests that these currents may be directing growth. A vibrating voltage microelectrode system was used to measure the net ionic currents at the apex of wheat (Triticum aestivum L.) roots from Al-tolerant and Al-sensitive cultivars. We examined the relationship between these currents and Al-induced inhibition of root growth. In the Al-sensitive cultivar, Scout 66, 10 micromolar Al (pH 4.5) began to inhibit the net current and root elongation within 1 to 3 hours. These changes occurred concurrently in 75% of experiments. A significant correlation was found between current magnitude and the rate of root growth when data were pooled. No changes in either current magnitude or growth rate were observed in similar experiments using the Al-tolerant cultivar Atlas 66. Measurements with ion-selective microelectrodes suggested that H+ influx was responsible for most of the current at the apex, with smaller contributions from Ca2+ and Cl fluxes. In 50% of experiments, Al began to inhibit the net H+ influx in Scott 66 roots at the same time that growth was affected. However, in more than 25% of cases, Al-induced inhibition of growth rate occurred before any sustained decrease in the current or H+ flux. Although showing a correlation between growth and current or H+ fluxes, these data do not suggest a mechanistic association between these processes. We conclude that the inhibition of root growth by Al is not caused by the reduction in current or H+ influx at the root apex.  相似文献   

2.

Aims

Aluminum-tolerant wheat plants often produce more root exudates such as malate and phosphate than aluminum-sensitive ones under aluminum (Al) stress, which provides environmental differences for microorganism growth in their rhizosphere soils. This study investigated whether soil bacterial community composition and abundance can be affected by wheat plants with different Al tolerance.

Methods

Two wheat varieties, Atlas 66 (Al-tolerant) and Scout 66 (Al-sensitive), were grown for 60 days in acidic soils amended with or without CaCO3. Plant growth, soil pH, exchangeable Al content, bacterial community composition and abundance were investigated.

Results

Atlas 66 showed better growth and lower rhizosphere soil pH than Scout 66 irrespective of CaCO3 amendment or not, while there was no significant difference in the exchangeable Al content of rhizosphere soil between the two wheat lines. The dominant bacterial community composition and abundance in rhizosphere soils did not differ between Atlas 66 and Scout 66, although the bacterial abundance in rhizosphere soil of both wheat lines was significantly higher than that in bulk soil. Sphingobacteriales, Clostridiales, Burkholderiales and Acidobacteriales were the dominant bacteria phylotypes.

Conclusions

The difference in wheat Al tolerance does not induce the changes in the dominant bacterial community composition or abundance in the rhizosphere soils.  相似文献   

3.
Recent research from our laboratory indicates that aluminium (Al) and calcium (Ca) transport interactions may play an important role in the mechanisms of Al phytotoxicity. In this study, we investigated the effects of Al on Ca2+ transport in intact roots of winter wheat (Triticum aestivum L.) cultivars (Al-tolerant Atlas 66 and Al-sensitive Scout 66). We used both a vibrating Ca2+-microelectrode technique and 45Ca2+ to monitor Ca2+ influx in intact roots. Root apical Ca2+ uptake was immediately inhibited, when roots were exposed to Al levels that ultimately decreased root growth in Al-sensitive Scout 66. The Al-tolerant cultivar was able to resist this Al inhibition of Ca2+ uptake, and to resist Al inhibition of 45Ca2+ translocation from roots to shoots. We also studied Ca2+ transport in right-side out plasmalemma vesicles isolated from roots of Al-sensitive and tolerant wheat cultivars. Calcium influx into the vesicles was mediated by a voltage-gated Ca2+ channel. Aluminium blocks the Ca2+ channel equally well in the plasmalemma vesicles isolated from Al-sensitive and Al-tolerant wheat roots. The results indicate that the differential response observed in intact roots is not due to differences in Ca2+ channels. The Al-tolerant wheat cultivar may have an ability to reduce Al3+ activity in the rhizosphere, thus reducing the Al-inhibition of Ca2+ influx.  相似文献   

4.
In this study, the role of root organic acid synthesis and exudation in the mechanism of aluminum tolerance was examined in Al-tolerant (South American 3) and Al-sensitive (Tuxpeño and South American 5) maize genotypes. In a growth solution containing 6 M Al3+, Tuxpeño and South American 5 were found to be two- and threefold more sensitive to Al than South American 3. Root organic acid content and organic acid exudation from the entire root system into the bulk solution were investigated via high-performance liquid chromatographic analysis while exudates collected separately from the root apex or a mature root region (using a dividedroot-chamber technique) were analyzed with a more-sensitive ion chromatography system. In both the Al-tolerant and Al-sensitive lines, Al treatment significantly increased the total root content of organic acids, which was likely the result of Al stress and not the cause of the observed differential Al tolerance. In the absence of Al, small amounts of citrate were exuded into the solution bathing the roots. Aluminum exposure triggered a stimulation of citrate release in the Al-tolerant but not in the Al-sensitive genotypes; this response was localized to the root apex of the Al-tolerant genotype. Additionally, Al exposure triggered the release of phosphate from the root apex of the Al-tolerant genotype. The same solution Al3+ activity that elicited the maximum difference in Al sensitivity between Al-tolerant and Al-sensitive genotypes also triggered maximal citrate release from the root apex of the Al-tolerant line. The significance of citrate as a potential detoxifier for aluminum is discussed. It is concluded that organic acid release by the root apex could be an important aspect of Al tolerance in maize.Abbreviations SA3 South American 3, an Al-tolerant maize cultivar - SA5 South American 5, an Al-sensitive maize cultivar The authors would like to express their appreciation to Drs. John Thompson, Ross Welch and Mr. Stephen Schaefer for their training and guidance in the use of the chromatography systems. This work was supported by a Swiss National Science Foundation Fellowship to Didier Pellet, and U.S. Department of Agriculture/National Research Initiative Competitive Grant 93-37100-8874 to Leon Kochian. We would also like to thank Drs. S. Pandey and E. Ceballos from the CIMMYT Regional office at CIAT Cali, Colombia for providing seed for the maize varieties and inbred line.  相似文献   

5.
H+-ATPase activity of a plasma membrane-enriched fraction decreased after the treatment of barley (Hordeum vulgare) seedlings with Al for 5 days. A remarkably high level of Al was found in the membrane fraction of Al-treated roots. A long-term effect of Al was identified as the repression of the H+-ATPase of plasma membranes isolated from the roots of barley and wheat (Triticum aestivum) cultivars, Atlas 66 (Al-tolerant) and Scout 66 (Al-sensitive). To monitor short-term effects of Al, the electrical membrane potentials across plasma membranes of both wheat cultivars were compared indirectly by measuring the efflux of K+ for 40 min under various conditions. The rate of efflux of K+ in Scout was twice that in Atlas at low pH values such as 4.2. Vanadate, an inhibitor of the H+-ATPase of the plasma membrane, increased the efflux of K+. Al repressed this efflux at low pH, probably through an effect on K+ channels, and repression was more pronounced in Scout. Al strongly repressed the efflux of K+ irrespective of the presence of vanadate. Ca2+ also had a repressive effect on the efflux of K+ at low pH. The effect of Ca2+, greater in Scout, might be related to the regulation of the net influx of H+, since the effect was negated by vanadate. The results suggest that extracellular low pH may cause an increase in the influx of H+, which in turn is counteracted by the efflux of K+ and H+. These results suggest that the ability to maintain the integrity of the plasma membrane and the ability to recover the electrical balance at the plasma membrane through a net influx of H+ and the efflux of K+ seem to participate in the mechanism of tolerance to Al stress under acidic conditions.  相似文献   

6.
Pellet  D.M.  Papernik  L.A.  Jones  D.L.  Darrah  P.R.  Grunes  D.L.  Kochian  L.V. 《Plant and Soil》1997,192(1):63-68
The goal of this study was to determine if Al-chelators other than malate are released from root apices and are involved in Al-tolerance in different wheat (Triticum aestivum L.) genotypes. Also we wanted to establish if root exudates contribute to increases in rhizosphere pH around the root tip. In seedlings of Al-tolerant Atlas, we have documented a constitutive phosphate exudation from the root apex. Because phosphate can complex Al and bind protons, it could play an important role in Al tolerance, both via complexation of Al3+ and by contributing to the alkalinization of rhizosphere pH observed at the apex of Atlas. This study suggests that in wheat, Al-tolerance can be mediated by multiple exclusion mechanisms controlled by different genes.  相似文献   

7.
Zhang G  Taylor GJ 《Plant physiology》1989,91(3):1094-1099
Uptake of aluminum (Al) by excised roots of two Al-tolerant cultivars and two Al-sensitive cultivars of Triticum aestivum L. (wheat) was biphasic, with a rapid phase of uptake in the first 30 minutes followed by a linear phase of uptake up to 180 minutes. At the end of the uptake period, higher concentrations of Al were found in roots of the Al-sensitive cultivars (Neepawa and Scout-66) than in the Al-tolerant cultivars (Atlas-66 and PT-741), but differences were small. Experiments testing the effectiveness of several desorption agents demonstrated that citric acid was most effective in desorption of loosely bound Al (the putative apoplasmic compartment) followed by others in the order tartaric acid > EDTA > CaSO4 = ScCl3. In all cultivars, 30 minutes of desorption with citric acid depleted the rapidly exchanging, putative apoplasmic compartment, although some tightly bound Al remained in that compartment. The relationship between Al remaining after desorption and time in the uptake medium was nearly linear and no distinction was observed between Al-tolerant and Al-sensitive cultivars. However, uptake of Al by the Al-tolerant cultivars was increased by treatment with the protonophore 2,4-dinitrophenol (DNP), while uptake of Al by Al-sensitive cultivars was relatively unaffected. Such results suggest the possible involvement of an active exclusion mechanism in Al-tolerant cultivars of T. aestivum.  相似文献   

8.
The role of Al interactions with root-cell plasma membrane (PM) Ca2+ channels in Al toxicity and resistance was studied. The experimental approach involved the imposition of a transmembrane electrical potential (via K+ diffusion) in right-side-out PM vesicles derived from roots of two wheat (Triticum aestivum L.) cultivars (Al-sensitive Scout 66 and Al-resistant Atlas 66). We previously used this technique to characterize a voltage-dependent Ca2+ channel in the wheat root PM (J.W. Huang, D.L. Grunes, L.V. Kochian [1994] Proc Natl Acad Sci USA 91: 3473-3477). We found that Al3+ effectively blocked this PM Ca2+ channel; however, Al3+ blocked this Ca2+ channel equally well in both the Al-sensitive and -resistant cultivars. It was found that the differential genotypic sensitivity of this Ca2+ transport system to Al in intact roots versus isolated PM vesicles was due to Al-induced malate exudation localized to the root apex in Al-resistant Atlas but not in Al-sensitive Scout. Because malate can effectively chelate Al3+ in the rhizosphere and exclude it from the root apex, the differential sensitivity of Ca2+ influx to Al in intact roots of Al-resistant versus Al-sensitive wheat cultivars is probably due to the maintenance of lower Al3+ activities in the root apical rhizosphere of the resistant cultivar.  相似文献   

9.
Addition of aluminium chloride (50 μM Al) caused different effects on the transmembrane electrical potential (PD) of root cells in Al-tolerant wheat (Triticum aestivum) cv. Kadett and Al-sensitive cv. WW 20299. As changes in PD of plant cells may depend on transient fluxes of protons, potassium and/or calcium through cell membranes, the effect of Al was investigated on the cytosolic concentrations of these ions in protoplasts isolated from root tips of the same cultivars. The tetra[acetoxymethyl] esters of the fluorescent dyes bis-carboxyethyl-carboxyfluorescein, BCECF, K+-binding benzofuran isophthalate, PBFI, and the stilbene chromophore Fura 2-AM were used to determine pH, K+ and Ca2+, respectively. Changes in fluorescence ratios, directly reflecting changes in [H+], [K+] and [Ca2+] in the cytosol, were determined by photometry fluorescence microscopy. Additions and removals of Al to and from both cultivars caused hyperpolarizations and depolarizations, respectively, but only in the sensitive cv. WW 20299 did the resting PD decrease gradually. Addition of Al to the protoplasts caused rapid changes in cytosolic pH, free [K+] and [Ca2+]. In both cultivars Al caused a transient oscillating increase in cytosolic [Ca2+] for 1 or 2 min and a rapid pH-dependent change in cytosolic [K+]. At pH 5 the presence of K+ in the medium diminished the Al-induced decrease in cytosolic [K+]. Aluminium (50 μM) induced a transient increase in cytosolic [H+] (pH decreased) in both cultivars, but the cytosolic pH returned to its initial value only in the Al-tolerant cv. Kadett. In the Alsensitive cv. WW 20299, repeated additions of Al caused a gradual decline in pH. Moreover, in the presence of 1 mM KCl, pH recovered completely in both cultivars. Since only the effect on pH differed in the two cultivars, the more toxic effect of Al on the cv. WW 20299 should be related to the change in pH.  相似文献   

10.
The role of Ca2+ transport in the mechanism of Al toxicity was investigated, using a Ca2+-selective microelectrode system to study Al effects on root apical Ca2+ fluxes in two wheat (Triticum aestivum L.) cultivars: Al-tolerant Atlas 66 and Al-sensitive Scout 66. Intact 3-day-old low-salt-grown (100 micromolar CaCl2, pH 4.5) wheat seedlings were used, and it was found that both cultivars maintained similar rates of net Ca2+ uptake in the absence of Al. Addition of Al concentrations that were toxic to Scout (5-20 micromolar AlCl3) immediately and dramatically inhibited Ca2+ uptake in Scout, whereas Ca2+ transport in Atlas was relatively unaffected. The Al-induced inhibition of Ca2+ uptake in Scout 66 was rapidly reversed following removal of Al from the solution bathing the roots. Similar studies with morphologically intact root cell wall preparations indicated that the Al effects did not involve Al-Ca interactions in the cell wall. These results suggest that Al inhibits Ca2+ influx across the root plasmalemma, possibly via blockage of calcium channels. The differential effect of Al on Ca2+ transport in Al-sensitive Scout and Al-tolerant Atlas suggests that Al blockage of Ca2+ channels could play a role in the cellular mechanism of Al toxicity in higher plants.  相似文献   

11.
The effects of aluminum on the concentration-dependent kinetics of Ca2+ uptake were studied in two winter wheat (Triticum aestivum L.) cultivars, Al-tolerant Atlas 66 and Al-sensitive Scout 66. Seedlings were grown in 100 M CaCl2 solution (pH 4.5) for 3 d. Subsequently, net Ca2+ fluxes in intact roots were measured using a highly sensitive technique, employing a vibrating Ca2+-selective microelectrode. The kinetics of Ca2+ uptake into cells of the root apex, for external Ca2+ concentrations from 20 to 300 M, were found to be quite similar for both cultivars in the absence of external Al; Ca2+ transport could be described by Michaelis-Menten kinetics. When roots were exposed to solutions containing levels of Al that were toxic to Al-sensitive Scout 66 but not to Atlas 66 (5 to 20 M total Al), a strong correlation was observed between Al toxicity and Al-induced inhibition of Ca2+ absorption by root apices. For Scout 66, exposure to Al immediately and dramatically inhibited Ca2+ uptake over the entire Ca2+ concentration range used for these experiments. Kinetic analyses of the Al-Ca interactions in Scout 66 roots were consistent with competitive inhibition of Ca2+ uptake by Al. For example, exposure of Scout 66 roots to increasing Al levels (from 0 to 10 M) caused the K m for Ca2+ uptake to increase with each rise in Al concentration, from approx. 100 M in the absence of Al to approx. 300 M in the presence of 10 M Al, while having no effect on the V max. The same Al exposures had little effect on the kinetics of Ca2+ uptake into roots of Atlas 66. The results of this study indicate that Al disruption of Ca2+ transport at the root apex may play an important role in the mechanisms of Al toxicity in Al-sensitive wheat cultivars, and that differential Al tolerance may be associated with the ability of Ca2+-transport systems in cells of the root apex to resist disruption by potentially toxic levels of Al in the soil solution.We would like to thank Dr. Lionel F. Jaffe, Director of the National Vibrating Probe Facility, Marine Biological Laboratory, Woods Hole, Mass., USA, for making his calcium-selective vibrating-mi-croelectrode system available for a portion of this work. The research presented here was supported in part by USDA/NRI Competitive Grant number 91-37100-6630 to Leon Kochian. Contribution from the USDA-ARS, U.S. Plant, Soil and Nutrition Laboratory, Cornell University, Ithaca, N.Y. This research was part of the program of the Center for Root-Soil Research, Cornell University, Ithaca, N.Y. Department of Soil, Crop and Atmosphere Science, paper No. 1741.  相似文献   

12.
The object of this study was to analyze the dynamics of Al and protons in the rhizosphere of maize cultivated in a simple acid substrate, so as to allow the use of a dynamic model of the functioning of a rhizosphere consisting of an organic phase (an agarose gel) and a mineral phase (an amorphous aluminium hydroxide). Two cultivars of maize (Zea mays L.), one Al-sensitive and the other Al-tolerant, were cultivated on this substrate in the presence of different proportions of NH 4 + and NO 3 - , which served to acidify the rhizosphere to a greater or lesser extent. The state of the agarose gel and of the cell walls of the roots were monitored using an ion exchange model which had previously been calibrated for each substrate. The experiment showed that Al and protons reduce root growth and the Ca and Mg content in the root, while relative growth varies little between pH 4.0 and pH 4.5. The model showed that competition between Al and protons for the binding sites of the cell walls might account for these results. The sensitivity of the model to the rate of Al(OH)3 dissolution and to the cation exchange capacity of the culture substrate was tested by numerical simulation. When roots release protons and dissolve Al(OH)3 in the rhizosphere, there is little possibility of Al desorption by protons on the cell walls at pHs compatible with good root growth of maize, plant specie sensitive to Al and H. Furthermore, the phytotoxicity of the different forms of Al hydroxides should be considered only in taking into account the dynamics of the whole system, in particular the solubilisation of Al in the rhizosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The influence of Al exposure on long-distance Ca2+ translocation from specific root zones (root apex or mature root) to the shoot was studied in intact seedlings of winter wheat (Triticum aestivum L.) cultivars (Al-tolerant Atlas 66 and Al-sensitive Scout 66). Seedlings were grown in 100 [mu]M CaCl2 solution (pH 4.5) for 3 d. Subsequently, a divided chamber technique using 45Ca2+-labeled solutions (100 [mu]M CaCl2 with or without 5 or 20 [mu]M AlCl3, pH 4.5) was used to study Ca2+ translocation from either the terminal 5 to 10 mm of the root or a 10-mm region of intact root approximately 50 mm behind the root apex. The Al concentrations used, which were toxic to Scout 66, caused a significant inhibition of Ca2+ translocation from the apical region of Scout 66 roots. The same Al exposures had a much smaller effect on root apical Ca2+ translocation in Atlas 66. When a 10-mm region of the mature root was exposed to 45Ca2+, smaller genotypic differences in the Al effects effects on Ca2+ translocation were observed, because the degree of Al-induced inhibition of Ca2+ translocation was less than that at the root apex. Exposure of the root apex to Al inhibited root elongation by 70 to 99% in Scout 66 but had a lesser effect (less than 40% inhibition) in Atlas 66. When a mature root region was exposed to Al, root elongation was not significantly affected in either cultivar. These results demonstrate that genotypic differences in Al-induced inhibition of Ca2+ translocation and root growth are localized primarily in the root apex. The pattern of Ca2+ translocation within the intact root was mainly basipetal, with most of the absorbed Ca2+ translocated toward the shoot. A small amount of acropetal Ca2+ translocation from the mature root regions to the apex was also observed, which accounted for less than 5% of the total Ca2+ translocation within the entire root. Because Ca2+ translocation toward the root apex is limited, most of the Ca2+ needed for normal cellular function in the apex must be absorbed from the external solution. Thus, continuous Al disruption of Ca2+ absorption into cells of the root apex could alter Ca2+ nutrition and homeostasis in these cells and could play a pivotal role in the mechanisms of Al toxicity in Al-sensitive wheat cultivars.  相似文献   

14.
Summary Screening large populations of plant species for Al tolerance requires simple and rapid tests. In this study, root characteristics of 12 cultivars of triticale (X Triticosecale, Witt Mack), wheat (Triticum aestivum L.), and rye (Secale cereale L.) were measured in nutrient solution with 0 or 6 ppm Al added. Aluminum injury to roots of triticale and wheat was characterized by decreases in root length, increases in the number of roots, and in Al-sensitive Redcoat and Arthur wheats by decrease in root weight. Root length and number of roots were correlated in triticale (r=−0.73*) and in wheat (r=−0.85*). Root length was also correlated with root weight in wheat (r=0.65*); there was no relationship between the number of roots and weight. Differences in Al tolerance of cultivars of the three species were greater when the solution was adjusted to pH 4.8 only on the first day of the experiment than when pH was maintained at pH 4.8 throughout the growing period. Triticale and rye cultivars low in ability to increase solution pH gradually overcame Al toxicity by increasing the nutrient solution pH between 12 and 22 days. Aluminum sensitive triticale and wheat accumulated more Al in roots than tolerant cultivars when the solution pH was not adjusted daily; but no differences in Al accumulation were obtained between wheat cultivars at constant pH value. This study indicated that root length and number of roots can be reliably used for screening triticales for Al tolerance within 12 days of exposure to Al. Root length, Al concentration, and dry weight after 22 days of Al treatment were also reliable criteria for evaluating differential Al tolerances among triticale cultivars.  相似文献   

15.
Calba  Henri  Firdaus  Cazevieille  Patrick  Thée  Charles  Poss  Roland  Jaillard  Beno^it 《Plant and Soil》2004,260(1-2):33-46
The goals of this work were to understand the dynamics of H+, Al and Ca in the rhizosphere of maize cultivated in tropical acid soils, and to evaluate the contribution of the dissolution kinetics of the Al-hydroxides to Al dynamics. The study of the dissolution kinetics was based on a comparison between experimental and simulated data, using a model of the chemical processes in the rhizosphere. Two Oxisols, pH 5.1 and 4.6, and one Ultisol, pH 5.2, were studied. An Al-tolerant maize variety (Zea mays L.) was grown for 14 days on a 3-mm thick soil layer. The composition of the soil and the soil solution, together with the concentration of Al in the roots, were determined throughout the experiment. The results showed that root growth (i) decreased the soil solution pH, up to one pH unit, (ii) increased Al concentration in the soil solution, (iii) increased exchangeable Al, and (iv) decreased exchangeable Ca. Soil solution pH, exchangeable Al, and exchangeable Ca were closely linked. Exchangeable Al increased 1.5 – 3.0 times, due to the dissolution of easily mobilised Al components. In addition, Al accumulation in roots depended mainly on Al in the soil solution. Modelling the interactions between H+, Al, and Ca proved that the main factor determining Al in the soil solution was the kinetic reactivity of the easily mobilised Al components. These components, probably poorly crystallised Al-hydroxides, are key players in the functioning of the rhizosphere in tropical acid soils.  相似文献   

16.
A rapid hydroponic screening for aluminium tolerance in barley   总被引:9,自引:0,他引:9  
Selection and breeding of crops for aluminium (Al) tolerance is a useful approach to increase production on acid soils. This requires a rapid and reliable system to discriminate between Al-tolerant and Al-sensitive genotypes. A hydroponic system was developed to screen for Al tolerance in barley (t Hordeum vulgare L.) to overcome several problems encountered in previous screening methods. Four levels of Al (5, 10, 20, and 40 t M) in 1 mt M CaCl2 solution at pH 4.5 were used to rank lines for Al-tolerance. Each line was cultured in a different compartment to eliminate chemical and pH interactions among lines. To avoid changes in Al tolerance due to other factors such as the calcium (Ca) concentration of the solution, Al-tolerant (Atlas 66) and Al-sensitive (Scout 66) cultivars of wheat (t Triticum aestivum L.) were used as reference cultivars. Five ranks of Al tolerance from highly tolerant to highly sensitive were established by comparison with each reference. Eriochrome cyanine R staining was used for the rapid evaluation of Al tolerance. This screening system allowed classification of about 50 barley lines into five different Al tolerance groups within one week. Using this system, screening of ca. 600 barley lines from various regions of the world was conducted. Most lines were sensitive to Al, but ninety lines showed intermediate Al-tolerance. Thirty nine lines were highly sensitive to Al in solution.  相似文献   

17.
A study was conducted to examine aluminum (Al) exclusion by roots of two differentially tolerant soybean (Glycine max L. Merr.) lines, Pl-416937 (Al-tolerant) and Essex (Al-sensitive). Following exposure to 80μM Al for up to 2 h, roots were rinsed with a 10 mM potassium citrate solution and rapidly dissected to allow estimation of intracellular Al accumulation in morphologically distinct root regions. Using 10 min exposures to 300μM 15NO3 and dissection, accompanying effects on NO3 uptake were measured. With Al exposures of 20 min or 2 h, there was greater Al accumulation in all root regions of Essex than in those of Pl-416937. The genotypic difference in Al accumulation was particularly apparent at the root apex, both in the tip and in the adjacent root cap and mucilage. Exposure of roots to Al inhibited the uptake of 15NO3 to a similar extent in all root regions. The results are consistent with Al exclusion from cells in the root apical region being an important mechanism of Al tolerance.  相似文献   

18.
Root and root cell pressure-probe techniques were used to investigate the possible relationship between Al- or H+-induced alterations of the hydraulic conductivity of root cells (LPc) and whole-root water conductivity (LPr) in maize (Zea mays L.) plants. To distinguish between H+ and Al effects two varieties that differ in H+ and Al tolerance were assayed. Based on root elongation rates after 24 h in nutrient solution of pH 6.0, pH 4.5, or pH 4.5 plus 50 [mu]M Al, the variety Adour 250 was found to be H+-sensitive and Al-tolerant, whereas the variety BR 201 F was found to be H+-tolerant but Al-sensitive. No Al-induced decrease of root pressure and root cell turgor was observed in Al-sensitive BR 201 F, indicating that Al toxicity did not cause a general breakdown of membrane integrity and that ion pumping to the stele was maintained. Al reduced LPc more than LPr in Al-sensitive BR 201 F. Proton toxicity in Adour 250 affected LPr more than LPc. In this Al-tolerant variety LPc was increased by Al. Nevertheless, this positive effect on LPc did not render higher LPr values. In conclusion, there were no direct relationships between Al- or H+-induced decreases of LPr and the effects on LPc. To our knowledge, this is the first time that the influence of H+ and Al on root and root cell water relations has been directly measured by pressure-probe techniques.  相似文献   

19.
Aluminum (Al) uptake in roots of wheat nearisogenic lines having differing tolerances to aluminium toxicity was studied using roots and root segments immersed in a nutrient solution at a controlled pH and temperature. At low Al concentrations a mechanism preventing root tips from accumulating too much Al was observed in an Al-tolerant isoline and a BH1146 euploid. This mechanism was more efficient when divalent cations of calcium or magnesium were present in the nutrient medium. Al accumulation steadily increased in root tips of the Al-sensitive wheat isoline during all 24 h of incubation, and the presence of divalent cations in the medium even increased Al concentration in root tissue. However, at higher Al concentrations in the medium the mechanism preventing the root tips of Al-tolerant genotypes from accumulating too much Al was not observed, and in effect Al concentration in root tips of both Al-tolerant and Al-sensitive isolines increased. It is concluded that genetical factors are located on the long arm of chromosome 2D from the BH1146 euploid that control the mechanism preventing root apical meristems from accumulating too much Al at low Al concentrations in the medium. However, there must be other genetical factors also located on this chromosome segment that control Al detoxication in root tips of Al-tolerant lines at higher external Al concentrations.  相似文献   

20.
We investigated the role of organic acids in conferring Al tolerance in near-isogenic wheat (Triticum aestivum L.) lines differing in Al tolerance at the Al tolerance locus (Alt1). Addition of Al to nutrient solutions stimulated excretion of malic and succinic acids from roots of wheat seedlings, and Al-tolerant genotypes excreted 5- to 10-fold more malic acid than Al-sensitive genotypes. Malic acid excretion was detectable after 15 min of exposure to 200 [mu]M Al, and the amount excreted increased linearly over 24 h. The amount of malic acid excreted was dependent on the external Al concentration, and excretion was stimulated by as little as 10 [mu]M Al. Malic acid added to nutrient solutions was able to protect Al-sensitive seedlings from normally phytotoxic Al concentrations. Root apices (terminal 3-5 mm of root) were the primary source of the malic acid excreted. Root apices of Al-tolerant and Al-sensitive seedlings contained similar amounts of malic acid before and after a 2-h exposure to 200 [mu]M Al. During this treatment, Al-tolerant seedlings excreted about four times the total amount of malic acid initially present within root apices, indicating that continual synthesis of malic acid was occurring. Malic acid excretion was specifically stimulated by Al, and neither La, Fe, nor the absence of Pi was able to elicit this response. There was a consistent correlation of Al tolerance with high rates of malic acid excretion stimulated by Al in a population of seedlings segregating for Al tolerance. These data are consistent with the hypothesis that the Alt1 locus in wheat encodes an Al tolerance mechanism based on Al-stimulated excretion of malic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号