首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
Hemipteran chromosomes are holocentric and show regular, special behavior at meiosis. While the autosomes pair at pachytene, have synaptonemal complexes (SCs) and recombination nodules (RNs) and segregate at anaphase I, the sex chromosomes do not form an SC or RNs, divide equationally at anaphase I, and their chromatids segregate at anaphase II. Here we show that this behavior is shared by the X and Y chromosomes of Triatoma infestans and the X(1)X(2)Y chromosomes of Triatoma pallidipennis. As Rec8p is a widely occurring component of meiotic cohesin, involved in meiotic homolog segregation, we used an antibody against Rec8p of Caenorhabditis elegans for immunolocalization in these triatomines. We show that while Rec8p is colocalized with SCs in the autosomes, no Rec8p can be found by immunolabeling in the sex chromosomes at any stage of meiosis. Furthermore, Rec8p labeling is lost from autosomal bivalents prior to metaphase I. In both triatomine species the sex chromosomes conjoin with each other during prophase I, and lack any SC, but they form "fuzzy cores", which are observed with silver staining and with light and electron microscopy during pachytene. Thin, serial sectioning and electron microscopy of spermatocytes at metaphases I and II reveals differential behavior of the sex chromosomes. At metaphase I the sex chromosomes form separate entities, each surrounded by a membranous sheath. On the other hand, at metaphase II the sex chromatids are closely tied and surrounded by a shared membranous sheath. The peculiar features of meiosis in these hemipterans suggest that they depart from the standard meiotic mechanisms proposed for other organisms.  相似文献   

3.
L. Roche  G. Seluja  R. Wettstein 《Genetica》1986,71(3):213-224
The meiotic behaviour of the XY pair of the didelphid Lutreolina crassicaudata is analyzed by microspreading of spermatocytes for visualization of chromosomal axes and by three-dimensional reconstruction of spermatocyte nuclei from EM thin sections. The delay in pairing of sex chromosomes compared to autosomes and the absence of a synaptonemal complex between the axes of the X and Y chromosomes, already described for South American marsupials by three-dimensional reconstruction and for Australian species with synaptonemal complex microspreadings, is confirmed for this species. Sections demonstrate that at the diffuse stage and diplotene the dense plate occupies the region of the inner face of the nuclear envelope in contact with the XY body. Spreads show an structure similar in staining to the axes that becomes apparent simultaneously with the dense plate, called a balloon. The mechanism of XY pairing during meiotic prophase appears to be common to American and Australian marsupials as the same morphological pattern is found in all the species described. This mechanism is different from the way of pairing and segregation known for eutherian sex chromosomes.  相似文献   

4.
5.
6.
Pairing of the sex chromosomes during mammalian meiosis is characterized by the formation of a unique heterochromatin structure at the XY body. The mechanisms underlying the formation of this nuclear domain are reportedly highly conserved from marsupials to mammals. In this study, we demonstrate that in contrast to all eutherian species studied to date, partial synapsis of the heterologous sex chromosomes during pachytene stage in the horse is not associated with the formation of a typical macrochromatin domain at the XY body. While phosphorylated histone H2AX (γH2AX) and macroH2A1.2 are present as a diffuse signal over the entire macrochromatin domain in mouse pachytene spermatocytes, γH2AX, macroH2A1.2, and the cohesin subunit SMC3 are preferentially enriched at meiotic sex chromosome cores in equine spermatocytes. Moreover, although several histone modifications associated with this nuclear domain in the mouse such as H3K4me2 and ubH2A are conspicuously absent in the equine XY body, prominent RNA polymerase II foci persist at the sex chromosomes. Thus, the localization of key marker proteins and histone modifications associated with the XY body in the horse differs significantly from all other mammalian systems described. These results demonstrate that the epigenetic landscape and heterochromatinization of the equine XY body might be regulated by alternative mechanisms and that some features of XY body formation may be evolutionary divergent in the domestic horse. We propose equine spermatogenesis as a unique model system for the study of the regulatory networks leading to the epigenetic control of gene expression during XY body formation.  相似文献   

7.
In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11YF/YF), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11YF/YF and Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number of repair foci increased during oocyte development, indicating the induction of S phase-independent, de novo DNA damage. In wild type pachytene oocytes we observed meiotic silencing in two types of pseudo XY bodies, one type containing DMC1 and RAD51 foci on unsynapsed axes, and another type containing only RAD51 foci, mainly on synapsed axes. Taken together, our results indicate that in addition to asynapsis, persistent SPO11-induced DSBs are important for the initiation of MSCI and MSUC, and that SPO11-independent DNA repair foci contribute to the MSUC response in oocytes.  相似文献   

8.
9.
Some adaptations of the synaptonemal complex (SC) whole-mounting technique first used in plants permitted its application to meiotic studies in tilapia, Oreochromis niloticus. Direct observation of the chromosome pairing process and bivalent structure during the meiotic prophase of this fish species by light and electron microscopy permitted the analysis of SCs in autosomes and the possible identification of sex chromosomes. The analysis of SCs in spermatocytes of O. niloticus revealed that all 22 bivalent chromosomes completely paired, except for the occurrence of a size heteromorphism in the terminal region of the largest bivalent associated with the presence of an incompletely paired segment during the synapsis process, which may be the cytological visualization of an XX/XY sex chromosome system in this species.  相似文献   

10.
The chromosomes of the rare South American marsupial frogs Gastrotheca walkeri and G. ovifera were extensively reexamined with various banding techniques. The karyotypes of both species are distinguished by a new category of XY female symbol /XX male symbol female sex chromosomes. The unusual Y chromosomes are characterized by containing the least amount of constitutive heterochromatin in the karyotypes. This is in contrast to all previously known amphibian Y chromosomes and does not fit the evolutionary model of early XY differentiation in vertebrates. In male meiosis, the heteromorphic XY chromosomes of both species still exhibit the same pairing configurations as the autosomes. DNA flow cytometric measurements show the nuclear DNA amount of G. walkeri to be 10.90 pg. The significance of the XY/XX sex chromosomes of these marsupial frogs, the various classes of constitutive heterochromatin detected, and the data obtained from meiotic analyses are discussed in detail.  相似文献   

11.
Molecular aspects of XY body formation   总被引:1,自引:0,他引:1  
  相似文献   

12.
In mammals, the X and Y chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during prophase I in the male germline, but their status thereafter is currently unclear. An abundance of X-linked spermatogenesis genes has spawned the view that the X must be active . On the other hand, the idea that the imprinted paternal X of the early embryo may be preinactivated by MSCI suggests that silencing may persist longer . To clarify this issue, we establish a comprehensive X-expression profile during mouse spermatogenesis. Here, we discover that the X and Y occupy a novel compartment in the postmeiotic spermatid and adopt a non-Rabl configuration. We demonstrate that this postmeiotic sex chromatin (PMSC) persists throughout spermiogenesis into mature sperm and exhibits epigenetic similarity to the XY body. In the spermatid, 87% of X-linked genes remain suppressed postmeiotically, while autosomes are largely active. We conclude that chromosome-wide X silencing continues from meiosis to the end of spermiogenesis, and we discuss implications for proposed mechanisms of imprinted X-inactivation.  相似文献   

13.
Dioecy is relatively rare in plants and sex determination systems vary among such species. A good example of a plant with heteromorphic sex chromosomes is hop (Humulus lupulus). The genotypes carrying XX or XY chromosomes correspond to female and male plants, respectively. Until now no clear cytogenetic markers for the sex chromosomes of hop have been established. Here, for the first time the sex chromosomes of hop are clearly identified and characterized. The high copy sequence of hop (HSR1) has been cloned and localized on chromosomes by fluorescence in situ hybridization. The HSR1 repeat has shown subtelomeric location on autosomes with the same intensity of the signal. The signal has been present in the subtelomeric region of the long arm and in the near-centromeric region but absent in the telomeric region of the short arm of the X chromosome. At the same time the signal has been found in the telomeric region only of the long arm of the Y chromosome. This finding indicates that the sex chromosomes of hop have evolved from a pair of autosomes via ancient translocation or inversion. The observation of the meiotic configuration of the sex bivalents shows the location of a pseudoautosomal region on the long arms of X and Y chromosomes.  相似文献   

14.
Chromosomes were studied on the spermatogonial metaphase and on different stages of meiotic division in males of Eurydeme geblery Kol. and E. ventrale Kol. The set of male chromosomes of the above species involves six pairs of autosomes and an XY sex pair, which is commonly the case in Pentatomidae. In the spermatogenesis, division types are reductional for autosomes and equational for sex chromosomes in the first metaphase; but the situation is quite opposite in the second metaphase. The sex chromosomes of bugs undergo a "touch and go" pairing on the metaphase plate of the second spermatocyte, prior to segregating to opposite poles in the anaphase that follows. No constrictions occur along all the chromosomes at mitosis. This, combined with their behaviour at mitosis, may suggest that, likely as in other Hemiptera, the chromosomes are holokinetic. Nevertheless it is of interest to note that in meiosis the chromosomes behave as telocentric. This replacement of the holokinetic orientation by the telokinetic one in the meiosis of some organisms with diffuse centromere is supposed to depend on the phenomen called "construction of the kinetic activation".  相似文献   

15.
The blow flies Chrysomya putoria and C. megacephala have 2n=12 chromosomes, five metacentric pairs of autosomes and an XX/XY sex chromosome pair. There are no substantial differences in the karyotype morphology of these two species, except for the X chromosome which is subtelocentric in C. megacephala and metacentric in C. putoria and is about 1.4 times longer in C. putoria. All autosomes were characterized by the presence of a C band in the pericentromeric region; C. putoria also has an interstitial band in pair III. The sex chromosomes of both species were heterochromatic, except for a small region at the end of the long arm of the X chromosome. Ribosomal genes were detected in meiotic chromosomes by FISH and in both species the NOR was located on the sex chromosomes. These results confirm that C. putoria was the species introduced into Brazil in 1970s, and not C. chloropyga as formerly described.  相似文献   

16.
17.
Heteromorphic sex chromosomes are common in eukaryotes and largely ubiquitous in birds and mammals. The largest number of multiple sex chromosomes in vertebrates known today is found in the monotreme platypus (Ornithorhynchus anatinus, 2n?=?52) which exhibits precisely 10 sex chromosomes. Interestingly, fish, amphibians, and reptiles have sex determination mechanisms that do or do not involve morphologically differentiated sex chromosomes. Relatively few amphibian species carry heteromorphic sex chromosomes, and when present, they are frequently represented by only one pair, either XX:XY or ZZ:ZW types. Here, in contrast, with several evidences, from classical and molecular cytogenetic analyses, we found 12 sex chromosomes in a Brazilian population of the smoky jungle frog, designated as Leptodactylus pentadactylus Laurenti, 1768 (Leptodactylinae), which has a karyotype with 2n?=?22 chromosomes. Males exhibited an astonishing stable ring-shaped meiotic chain composed of six X and six Y chromosomes. The number of sex chromosomes is larger than the number of autosomes found, and these data represent the largest number of multiple sex chromosomes ever found among vertebrate species. Additionally, sequence and karyotype variation data suggest that this species may represent a complex of species, in which the chromosomal rearrangements may possibly have played an important role in the evolution process.  相似文献   

18.
The relationship between chromosomal nondisjunction and semen quality was studied in two groups of males who differ highly in their semen quality: 12 individuals with low-quality semen caused by varicocele, and 8 subjects with high-quality semen, selected from sperm donors for in vitro fertilization. Chromosomal nondisjunction was inferred from the rate of disomy found in mature sperm cells. To determine the rate of disomy, we applied fluorescence in situ hybridization using satellite-specific probes for chromosomes 1, 15, 18, X and Y. In sperm cells of males with low-quality semen, the mean rate of disomy for each of the autosomes and of hetero-disomy for the sex chromosomes (XY) was significantly higher than that observed in the high-quality semen samples: more than 15-fold higher for chromosomes 1 and 15, and 7-fold higher for chromosomes 18 and XY. Yet, the homo-disomy rate for each of the sex chromosomes (XX and YY) was almost the same in both types of semen. The large discrepancy between the low- and high-quality semen in the rate of sex chromosome hetero-disomy versus the similar rate of homo-disomy strongly suggests that the abnormal chromosomal segregation in meiocytes of males with low-quality semen resulted from chromosomal nondisjunction at the first meiotic division. The results indicate that men showing poor semen quality are at an increased risk for meiotic nondisjunction, similar to women at the end of their reproductive years. Received: 30 June 1997 / Accepted: 17 September 1997  相似文献   

19.
We describe a novel XY body protein of rat and mice pachytene spermatocytes called XY77. Biochemical characterization showed that protein XY77 (Mr 77,000; pH value 8.3) is present in meiotic but absent in postmeiotic stages of spermatogenesis. With the aid of an antibody against protein XY77 together with another specific for XY body-associated protein XY40 we also investigated the localization of these proteins in mice carrying Searle’s translocation, a reciprocal X-autosomal translocation. We show here that in these mice the distribution of both XY77 and XY40 is abnormal. Our results indicate that in Searle’s translocation alterations are not restricted to the translocated autosome, but also involve chromatin segments corresponding originally to the sex chromosomes X and Y. Received: 21 December 1996; in revised form: 1 February 1997 / Accepted: 15 February 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号