首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The experimental objective was to evaluate how continuous infusion of oxytocin during the anticipated period of luteolysis in cattle would influence secretion of progesterone, oestradiol and 13,14-dihydro-15-keto-prostaglandin F-2 alpha (PGFM). In Exp. I, 6 non-lactating Holstein cows were infused with saline or oxytocin (20 IU/h, i.v.) from Day 13 to Day 20 of an oestrous cycle in a cross-over experimental design (Day 0 = oestrus). During saline cycles, concentrations of progesterone decreased from 11.0 +/- 2.0 ng/ml on Day 14 to 2.0 +/- 1.3 ng/ml on Day 23; however, during oxytocin cycles, luteolysis was delayed and progesterone secretion remained near 11 ng/ml until after Day 22 (P less than 0.05). Interoestrous interval was 1.6 days longer in oxytocin than in saline cycles (P = 0.07). Baseline PGFM and amplitude and frequency of PGFM peaks in blood samples collected hourly on Day 18 did not differ between saline and oxytocin cycles. In Exp. II, 7 non-lactating Holstein cows were infused with saline or oxytocin from Day 13 to Day 25 after oestrus in a cross-over experimental design. Secretion of progesterone decreased from 6.8 +/- 0.7 ng/ml on Day 16 to less than 2 ng/ml on Day 22 of saline cycles; however, during oxytocin cycles, luteolysis did not occur until after Day 25 (P less than 0.05). Interoestrous interval was 5.9 days longer for oxytocin than for saline cycles (P less than 0.05). In blood samples taken every 2 h from Day 17 to Day 23, PGFM peak amplitude was higher (P less than 0.05) in saline (142.1 +/- 25.1 pg/ml) than in oxytocin cycles (109.8 +/- 15.2 pg/ml). Nevertheless, pulsatile secretion of PGFM was detected during 6 of 7 oxytocin cycles. In both experiments, the anticipated rise in serum oestradiol concentrations before oestrus, around Days 18-20, was observed during saline cycles, but during oxytocin cycles, concentrations of oestradiol remained at basal levels until after oxytocin infusion was discontinued. We concluded that continuous infusion of oxytocin caused extended oestrous cycles, prolonged the secretion of progesterone, and reduced the amplitude of PGFM pulses. Moreover, when oxytocin was infused, pulsatile secretion of PGFM was not abolished, but oestrogen secretion did not increase until oxytocin infusion stopped.  相似文献   

2.
In Exp. I oxytocin (60 micrograms/100 kg/day) was infused into the jugular vein of 3 heifers on Days 14-22, 15-18 and 16-19 of the oestrous cycle respectively. In Exp. II 5 heifers were infused with 12 micrograms oxytocin/100 kg/day from Day 15 of the oestrous cycle until clear signs of oestrus. Blood samples were taken from the contralateral jugular vein at 2-h intervals from the start of the infusion. The oestrous cycle before and after treatment served as the controls for each animal. Blood samples were taken less frequently during the control cycles. In Exp. III 3 heifers were infused with 12 micrograms oxytocin/100 kg/day for 50 h before expected oestrus and slaughtered 30-40 min after the end of infusion for determination of oxytocin receptor amounts in the endometrium. Three other heifers slaughtered at the same days of the cycle served as controls. Peripheral concentrations of oxytocin during infusion ranged between 155 and 641 pg/ml in Exp. I and 18 and 25 pg/ml in Exp. II. In 4 our of 8 heifers of Exps I and II, one high pulse of 15-keto-13,14-dihydro-prostaglandin F-2 alpha (PGFM) appeared soon after the start of oxytocin infusion followed by some irregular pulses. The first PGFM pulse was accompanied by a transient (10-14 h) decrease of blood progesterone concentration. High regular pulses of PGFM in all heifers examined were measured between Days 17 and 19 during spontaneous luteolysis. No change in length of the oestrous cycle or secretion patterns of progesterone, PGFM and LH was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Hypoprolactinaemia was induced by bromocriptine (CB154; 100 mg/day) which decreased circulating prolactin by 40% (P less than 0.06), but did not affect conceptus survival at Day 25 when administered on Days 10-16 when compared to saline:ethanol-treated control gilts. Bromocriptine or vehicle was administered to cyclic gilts on Days 10-11, oestradiol valerate was injected on Day 11 and uterine flushings were collected on Day 12. Total recoverable protein and uteroferrin in uterine flushings were not affected by treatment. However, leucine aminopeptidase activity (P less than 0.02) and total recoverable Ca2+, Na+, K+ and Cl- (P less than 0.05) were decreased in uterine flushings of gilts that received bromocriptine, suggesting that hypoprolactinaemia decreased general secretory activity of the endometrial epithelium and modulated ionic changes, respectively, in the uterine environment of pigs. Subcutaneous administration of pig prolactin (1 mg/12 h) increased (P less than 0.001) serum prolactin 4.5-fold. The interaction between hyperprolactinaemia and progesterone, without oestrogen, on components of uterine flushings were determined using gilts that received progesterone (200 mg/day) and prolactin or saline on Days 4-14 after ovariectomy on Day 4. On Day 15, there were no differences (P greater than 0.05) in any of the uterine secretory components measured. Hyperprolactinaemia (1 mg pig prolactin on Days 6-11) enhanced overall uterine secretory response on Day 12 to oestradiol (5 mg) administered on Day 11 compared to gilts that received 1 ml saline on Days 6-11 of the oestrous cycle. Total recoverable protein and leucine aminopeptidase activity were greater (P less than 0.05) for oestradiol-treated gilts, but effects of prolactin were not significant. Total recoverable glucose (P less than 0.01), PGF-2 alpha (P less than 0.02), uteroferrin (P less than 0.01) and specific activity of uteroferrin (P less than 0.001) were increased by prolactin and oestradiol, but not oestradiol alone. Calcium (P less than 0.05), chloride (P less than 0.05) and potassium (P less than 0.01) were increased in response to oestradiol. These results indicate an interaction between oestradiol and prolactin, but not progesterone and prolactin, which enhances secretion of some products of the pig uterine endometrium.  相似文献   

4.
Fifteen ovariectomized ewes were treated with implants (s.c.) creating circulating luteal progesterone concentrations of 1.6 +/- 0.1 ng ml-1 serum. Ten days later, progesterone implants were removed from five ewes which were then infused with saline for 64 h (0.154 mol NaCl l-1, 20 ml h-1, i.v.). Ewes with progesterone implants remaining were infused with saline (n = 5) or naloxone (0.5 mg kg-1 h-1, n = 5) in saline for 64 h. At 36 h of infusion, all ewes were injected with oestradiol (20 micrograms in 1 ml groundnut oil, i.m.). During the first 36 h of infusion, serum luteinizing hormone (LH) concentrations were similar in ewes infused with saline after progesterone withdrawal and ewes infused with naloxone, but with progesterone implants remaining (1.23 +/- 0.11 and 1.28 +/- 0.23 ng ml-1 serum, respectively, mean +/- SEM, P greater than 0.05). These values exceeded circulating LH concentrations during the first 36 h of saline infusion of ewes with progesterone implants remaining (0.59 +/- 0.09 ng ml-1 serum, P less than 0.05). The data suggested that progesterone suppression of tonic LH secretion, before oestradiol injection, was completely antagonized by naloxone. After oestradiol injection, circulating LH concentrations decreased for about 10 h in ewes of all groups. A surge in circulating LH concentrations peaked 24 h after oestradiol injection in ewes infused with saline after progesterone withdrawal (8.16 +/- 3.18 ng LH ml-1 serum).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Two experiments were carried out to monitor influences on the uterine electromyographic activity (EMG) in cyclic gilts with chronic uterine EMG electrodes. In Exp. 1 the EMG was recorded continuously from Day -1 for 24 days and was evaluated for frequency, duration and amplitude. Progesterone and oestradiol in peripheral plasma were measured daily. As high amounts of oestrogens are characteristic for boar semen, in Exp. 2 the influence of seminal oestrogens on uterine contractions at Day 0 (first day of standing reflex) was investigated in gilts with chronic intrauterine catheters. They were infused with 10 ml saline (N = 4) or saline with physiological amounts of oestrogens (5 micrograms oestradiol + 2 micrograms oestrone + 4.5 micrograms oestrone sulphate; N = 4). Sham-treated gilts (infusion catheters, no infusion; N = 5) served as controls. The EMG was recorded for 2 h before and 9 h after infusion. In Exp. 1 the maximal amplitude (2040 +/- 98 microV) and duration (32 +/- 1.7 sec) but the lowest frequency (15.8 +/- 2.1 contractions/h) were found on Day 0. With decreasing oestrogen and increasing progesterone concentrations the frequency increased continuously until Day 5 (63.5 +/- 1.0 contractions/h) while the amplitude (183 +/- 13 microV) and duration (3.3 +/- 0.7 sec) decreased. During Days 6-13 the EMG activity was not detectable. The reverse pattern was found from the onset of luteolysis until the following Day 0. On Day 0 a significant correlation between oestradiol and the duration (r = 0.81; P less than 0.01; n = 10) but not the frequency was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Blood samples were collected simultaneously from the jugular and utero-ovarian veins of 13 gilts from Days 11 through 16 of the oestrous cycle. A luteolytic dose (10 mg) of PGF-2 alpha was given on Day 12 to facilitate the natural occurrence of luteolysis and standardize the associated decrease in concentrations of progesterone. The mean interval from PGF to oestrus was 5.5 +/- 0.7 days (mean oestrous cycle length = 17.5 +/- 0.7 days). Mean concentrations, pulse amplitudes and pulse frequencies of oestradiol and progesterone were greater (P less than 0.05) in the utero-ovarian than jugular vein. Secretory profiles of LH and FSH were similar (P greater than 0.05) in plasma collected simultaneously from both veins. Based on these data, temporal relationships among hormonal patterns of FSH and LH in the jugular vein and oestradiol and progesterone in the utero-ovarian vein were examined. Concentrations of progesterone declined (P less than 0.05) between Days 12 and 14, while all secretory variables for oestradiol increased (P less than 0.05) from Day 12 through 16 of the oestrous cycle. The pulsatile secretion of FSH remained relatively constant during the experiment. However, both pulse amplitude and mean concentration tended (P less than 0.2) to be lower on Day 16 compared with Day 12. The episodic secretion of LH shifted from a pattern characterized by high-amplitude, low-frequency pulses to one dominated by numerous pulses of diminishing magnitude between Days 13 and 14. From Days 14 to 16 of the oestrous cycle, 91% of all oestradiol pulses were temporally associated with gonadotrophin pulses composed of both FSH and LH episodes. However, pulses of oestradiol (52%) not associated with an episode of LH and/or FSH were observed on Days 12 and 13. These data demonstrate that during the follicular phase of the pig oestrous cycle substantial oestradiol production occurred coincident with luteolysis and before the shift in the episodic secretion of LH. The pool of follicles which ovulated was probably the source of this early increase in the secretion of oestradiol. Therefore, we propose that factors in addition to FSH and LH are involved in the initial selection of follicles destined to ovulate during the early stages of the follicular phase of the pig oestrous cycle. In contrast, high-frequency, low-amplitude pulses composed of LH and FSH were the predominant endocrine signal associated with oestradiol secretion during the second half of the oestrous cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Basal adenylate cyclase values for corpora lutea (CL) removed from cyclic gilts on Days 3, 8, 13 and 18 were 178 +/- 61, 450 +/- 46, 220 +/- 25 and 208 +/- 18 pmol cAMP formed/min/mg protein, respectively. Basal activity was significantly elevated on Day 8 (P less than 0.001). LH-stimulatable adenylate cyclase values for CL from Days 3, 8, 13 and 18 were 242 +/- 83, 598 +/- 84, 261 +/- 27 and 205 +/- 17 pmol cAMP formed/min/mg protein respectively. Serum progesterone concentrations of 12 gilts bled every 2 days through one complete oestrous cycle ranged from 1.1 to 26.9 ng/ml with highest values between Days 8 and 12. The decline in serum progesterone concentrations was coincident with the decrease in basal adenylate cyclase activity. There was no LH-stimulatable adenylate cyclase activity present in the CL at the specific times of the oestrous cycle examined. We conclude that progesterone secretion by the pig CL is apparently dependent on basal activity of adenylate cyclase.  相似文献   

8.
Ewes were sampled during the mid-late luteal phase of the oestrous cycle. Hypophysial portal and jugular venous blood samples were collected at 5-10 min intervals for a minimum of 3 h, before i.v. infusions of saline (12 ml/h; N = 6) or naloxone (40 mg/h; N = 6) for 2 h. During the 2-h saline infusion 2/6 sheep exhibited a GnRH/LH pulse; 3/6 saline infused ewes did not show a pulse during the 6-8-h portal blood sampling period. In contrast, large amplitude GnRH/LH pulses were observed during naloxone treatment in 5/6 ewes. The mean (+/- s.e.m.) amplitude of the LH secretory episodes during the naloxone infusion (1.07 +/- 0.11 ng/ml) was significantly (P less than 0.05) greater than that before the infusion in the same sheep (0.54 +/- 0.15 ng/ml). Naloxone significantly (P less than 0.005) increased the mean GnRH pulse amplitude in the 5/6 responding ewes from a pre-infusion value of 0.99 +/- 0.22 pg/min to 4.39 +/- 1.10 pg/min during infusion. This episodic GnRH secretory rate during naloxone treatment was also significantly (P less than 0.05) greater than in the saline-infused sheep (1.53 +/- 0.28 pg/min). Plasma FSH and prolactin concentrations did not change in response to the opiate antagonist. Perturbation of the endogenous opioid peptide system in the ewe by naloxone therefore increases the secretion of hypothalamic GnRH into the hypophysial portal vasculature. The response is characterized by a large-amplitude GnRH pulse which, in turn, causes a large-amplitude pulse of LH to be released by the pituitary gland.  相似文献   

9.
Plasma prolactin concentrations were determined by radioimmunoassay during oestrous cycles and around the time of oestrus in different types of primitive gilts: Vietnamese, Zlotnicka and wild-boar X domestic pig hybrids. The animals were bled without stress from an indwelling arterial catheter. The following results were obtained: (1) in all gilts the main prolactin peak was observed at Day 15 or 16 of the oestrous cycle; (2) Vietnamese and hybrid gilts showed a second smaller prolactin surge after (Day 2) or before (Day 17) oestrus; (3) base levels of prolactin during the oestrous cycle were 14.8 +/- 0.93 ng/ml (Vietnamese gilts), 13.2 +/- 1.05 ng/ml (Zlotnicka gilts) and 15.6 +/- 2.01 ng/ml (hybrid gilts). The 15-16-day prolactin peaks reached maximum values of 36.4, 43.4 and 56.5 ng/ml respectively.  相似文献   

10.
Henderson and McNatty (Prostaglandins 9:779, 1975) proposed that LH from the preovulatory LH surge attached to receptors on luteal cells and that this attachment might protect the early corpus luteum from PGF2alpha induced luteolysis. To test this hypothesis, experiments were performed on heifers at day 10-12 of the cycle. Both jugular veins were catheterized and infusions of either saline (0.64 ml/min) or LH-NIH-B9 (10 microgram/min; 0.64 ml/min) were given. Saline infusions were from 0-12 h; LH infusions were for 10 h and were preceded by a 2 h saline infusion. All animals were given 25 mg PGF2alpha im at 6 h (6 h into the saline infusion and 4 h into the LH infusion). Blood samples were taken at 0.5 h, 1 h and 4 h intervals from 0-12h, 13-18 h and 12-42 h respectively. Serum was assayed for LH and progesterone by radioimmunoassay methods. Two animals received saline and two received LH in each experiment. Each treatment was replicated 6 times. LH infusion resulted in a mean serum LH of 75 ng/ml compared to 0.90 ng/ml in saline infused animals. This elevation of LH did not alter PGF2alpha induced luteolysis as indicated by decline in serum progesterone. This experiment does not support the hypothesis that the newly formed corpus luteum is resistant to PGF2alpha because of protection afforded by the proestrus LH surge.  相似文献   

11.
In our previous study we have demonstrated that treatment of endometrial explants with LH increased 13,14-dihydro-15-ketoprostaglandin F(2alpha) (PGFM) accumulation in pigs. This was particularly visible on Days 14-16 of the estrous cycle. Action of gonadotropin in porcine endometrium appears to be mediated by LH/hCG receptors whose number is dependent on the day of the estrous cycle. In the current study i.v. infusion (1 hour) of hCG (200 IU) performed on Days 10 (n=4) and 12-14 (n=4) of the porcine estrous cycle did not affect plasma PGFM (ng/ml+/-SEM) concentrations. In contrast, administration of hCG on Days 15-17 produced, depending on plasma PGFM level before the infusion period, three different types of response: I. plasma PGFM surge of amplitude 0.62+/-0.15 was observed when the mean basal pre-infusion PGFM plasma level was 0.23+/-0.05 (n=6 gilts); II. the delayed PGFM surge of amplitude 0.62+/-0.15 was determined when basal pre-infusion PGFM level was 0.80+/-0.20 (n=6); and III. lack of PGFM response to hCG was found when basal pre-infusion PGFM level was 1.09+/-0.61 (n=6). Concentrations of plasma PGFM before and after saline infusion did not differ on Days 12-14 and 16 of the estrous cycle. In the next experiment blood samples were collected every 1 hour on Days 12-19 of the estrous cycle to determine concentrations of LH, PGFM and progesterone in four gilts. In particular gilts, plasma peaks of LH closely preceded surges of PGFM in 72.7, 84.6, 75.0 and 66.6 percent, respectively. The highest PGFM surges followed a decline in plasma progesterone concentration. We conclude that the increased PGF(2alpha) metabolite production after hCG infusion during the late luteal phase of the estrous cycle as well as the relationship between plasma LH and PGFM peaks suggest the LH involvement in the elevation of endometrial PGF(2alpha) secretion in pigs, and, in consequence, induction of luteolysis.  相似文献   

12.
The vasoconstrictor activity of the ovarian vascular bed in vitro was investigated during the oestrous cycle and early pregnancy. Gilts were killed during the follicular phase (Days 20 to +1; N = 5) or luteal phase (Days 11 to 13; N = 4) of the oestrous cycle, or on Day 13 of pregnancy (N = 5). Immediately before death, a sample of vena cava blood was obtained for determination of progesterone and oestrogen (oestrone and oestradiol-17 beta) concentrations. One ovary was removed, cannulated, perfused in vitro, and subjected to 10-min infusions of saline (vehicle control) and noradrenaline. Vasoconstriction was provoked by electrical stimulation at the end of each infusion. Ovaries from luteal-phase gilts exhibited greater (P less than 0.01) vasoconstriction than did ovaries from follicular-phase and pregnant gilts at the end of saline and noradrenaline infusions. The oestrogen to progesterone ratio was less (P less than 0.01) for luteal-phase and pregnant than for follicular-phase gilts. Vasoconstriction was negatively correlated (r = -0.99, P less than 0.01) with the oestrogen to progesterone ratio in systemic blood of gilts during the oestrous cycle but not during early pregnancy (r = +0.39, P greater than 0.10), possibly due to an effect of the conceptuses.  相似文献   

13.
The present experiment was designed to determine if and how exogenous ACTH replicates the effects of stressors to delay the preovulatory LH surge in sheep. Twenty-four hours after oestrous synchronisation with prostaglandin in the breeding season, groups of 8-9 intact ewes were injected with 50 microg oestradiol benzoate (0 h) followed 8 h later by 3 injections of saline or GnRH (500 ng each, i.v.) at 2 h intervals (controls). Two further groups received an additional 'late' injection of ACTH (0.8 mg i.m.) 7.5 h after oestradiol, i.e., 0.5 h before the first saline or GnRH challenge. To examine if the duration of prior exposure to ACTH was important, another group of ewes was given ACTH 'early', i.e. 2.5 h before the first GnRH injection. The first GnRH injection produced a maximum LH response of 1.9+/-0.4 ng/ml which was significantly (p < 0.01) enhanced after the second and third GnRH challenge (7.1+/-1.5 ng/ml and 7.0+/-1.7 ng/ml, respectively; 'self-priming'). Late ACTH did not affect the LH response after the first GnRH challenge (1.9+/-0.4 vs. 1.8+/-0.3 ng/ml; p > 0.05) but decreased maximum LH concentrations after the second GnRH to 35% (7.1+/-1.5 vs. 4.6+/-1.1 ng/ml; p = 0.07) and to 40% after the third GnRH (7.0+/-1.7 vs. 4.0+/-0.8 ng/ml; p = 0.05). When ACTH was given early, 4.5 h before the second GnRH, there was no effect on this LH response suggesting that the effect decreases with time after ACTH administration. Concerning the oestradiol-induced LH surge, exogenous GnRH alone delayed the onset time (20.5+/-2.0 vs. 27.8+/-2.1 h; p > 0.05) and reduced the duration of the surge (8.5+/-0.9 vs. 6.7+/-0.6 h; p > 0.05). The onset of the LH surge was observed within 40 h after oestradiol on 29 out of 34 occasions in the saline +/- GnRH treated ewes compared to 11 out of 34 occasions (p < 0.05) when ACTH was also given, either late or early. In those ewes that did not have an LH surge by the end of sampling, plasma progesterone concentrations during the following oestrous cycle increased 2 days later suggesting a delay, not a complete blockade of the LH surge. In conclusion, we have revealed for the first time that ACTH reduces the GnRH self-priming effect in vivo and delays the LH surge, at least partially by direct effects at the pituitary gland.  相似文献   

14.
The aim of this study was to determine the effect of intrauterine Escherichia coli infusion on the patterns of plasma LH, prolactin, progesterone, androstenedione, testosterone, oestrone, oestradiol-17beta, cortisol and 13,14-dihydro-15-keto-prostaglandin F2alpha (PGFM) in gilts during the oestrous cycle. On day 4 of the oestrous cycle (day 0), 25 mL of saline or 25 mL of Escherichia coli suspension, containing 10(7) colony forming units x mL(-1), was infused once into the each uterine horn in group I or II respectively. The control gilts developed a new oestrous cycle at the expected time but not bacteria-treated. Endometritis and vaginal discharge developed in all gilts after Escherichia coli infusion. The administration of Escherichia coli resulted in a reduction of plasma levels of LH, prolactin, oestrone and oestradiol-17beta (P < 0.05-0.001), mainly on days 15-18 after treatment (expected perioestrous period). During this time, the plasma androstenedione level was elevated (P < 0.05-0.001) after bacteria infusion. In the gilts receiving bacteria, progesterone concentration decreased from day 8 after treatment and was low until the end of the study (P < 0.05-0.001). On days 8-12 after bacteria administration, the level of PGFM was higher (P < 0.001) than that found in the control group. These results suggest that the developing inflammatory process of the endometrium in gilts following Escherichia coli infusion significantly affects the pituitary-ovarian axis function as well as prostaglandin production leading to anoestrus.  相似文献   

15.
Fourteen gilts that had displayed one or more estrous cycles of 18-22 days (onset of estrus = Day 0) and four ovariectomized (OVX) gilts were treated with naloxone (NAL), an opiate antagonist, at 1 mg/kg body weight in saline i.v. Intact gilts were treated during either the luteal phase (L, Day 10-11; n = 7), early follicular phase (EF, Day 15-17; n = 3), or late follicular phase (LF, Day 18-19; n = 4) of the estrous cycle. Blood was collected at 15-min intervals for 2 h before and 4 h after NAL treatment. Serum luteinizing hormone (LH) concentrations for L gilts averaged 0.65 +/- 0.04 ng/ml during the pretreatment period and increased to an average of 1.3 +/- 0.1 ng/ml (p less than 0.05) during the first 60 min after NAL treatment. Serum prolactin (PRL) concentrations for L gilts averaged 4.8 +/- 0.2 ng/ml during the pretreatment period and increased to an average of 6.3 +/- 0.3 ng/ml (p less than 0.05) during the first 60 min after NAL treatment. Serum PRL concentrations averaged 8.6 +/- 0.7 ng/ml and 7.6 +/- 0.6 ng/ml in EF and LF gilts, respectively, prior to NAL treatment, and decreased (p less than 0.05) to an average of 4.1 +/- 0.2 ng/ml and 5.6 +/- 0.4 ng/ml in EF and LF gilts, respectively, during the fourth h after NAL. Naloxone treatment failed to alter serum LH concentrations in EF, LF, or OVX gilts and PRL concentrations in OVX gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study was conducted to determine whether progesterone inhibits luteinizing hormone (LH) secretion in female pigs by a direct action on the pituitary gland. Eight ovariectomized, hypophysial stalk-transected gilts were given 1-microgram pulses of gonadotropin-releasing hormone iv every 45 min from Day 0 to 12. On Days 5-12, each of four gilts received either progesterone or oil vehicle im at 12-hr intervals. Serum progesterone concentrations in steroid-treated gilts reached 70 +/- 6.8 ng/ml (mean +/- SE) by Day 8 and remained elevated thereafter, whereas serum progesterone concentrations in oil-treated controls were less than 1 ng/ml for the entire study. Daily serum LH concentrations were not different between gilts treated with progesterone or oil. The 1-microgram pulses of gonadotropin-releasing hormone reliably evoked pulses of LH in both treatment groups. The LH pulse frequency and amplitude, assessed from samples collected every 15 min for 6 hr on Day 12, were similar for progesterone- and oil-treated gilts. These results provide evidence that progesterone does not act at the pituitary gland to alter LH secretion in pigs.  相似文献   

17.
Blood samples were collected every 15 min for 6 h during the follicular (1 day before oestrus), and early (Days +1 to +3), mid- (Days +4 to +8), and full (Days +9 to +14) luteal phases of the oestrous cycle. Serum concentrations of immunoactive LH were measured by radioimmunoassay. The biological activity of serum LH was determined by an in-vitro bioassay that uses LH-induced testosterone production from mouse interstitial cells as an endpoint. Only ovine and bovine LH and hCG had appreciable activity in this bioassay. The temporal pattern of secretion of bioactive LH paralleled the secretory pattern of immunoactive LH at all stages of the ovine oestrous cycle. However, the secretory pattern itself varied regularly through the oestrous cycle. The frequency of secretory excursions of LH was highest during the follicular phase (6.2 +/- 0.9 pulses/6 h) and was progressively reduced through the luteal phase (1.1 +/- 0.1 pulses/6 h during full luteal phase). Conversely, amplitude of secretory excursions of immunoactive LH was low during the follicular phase (0.79 +/- 0.08 ng/ml) and significantly (P less than 0.05) increased during the mid- and full luteal phases (1.49 +/- 0.10 and 2.37 +/- 0.20 ng/ml, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Henderson and McNatty (Prostaglandins 9:779, 1975) proposed that LH from the preovulatory LH surge attached to receptors on luteal cells and that this attachment might protect the early corpus luteum from PGF induced luteolysis. To test this hypothesis, experiments were performed on heifers at day 10–12 of the cycle. Both jugular veins were catheterized and infusions of either saline (0.64 ml/min) or LH-NIH-B9 (10 μg/min; 0.64 ml/min) were given. Saline infusions were from 0–12 h; LH infusions were for 10 h and were preceded by a 2 h saline infusion. All animals were given 25 mg PGF im at 6 h (6 h into the saline infusion and 4 h into the LH infusion). Blood samples were taken at 0.5 h, 1 h and 4 h intervals from 0–12, 13–18 h and 22–24 h respectively. Serum was assayed for LH and progesterone by radioimmunoassay methods. Two animals received saline and two received LH in each experiment. Eact treatment was replicated 6 times. LH infusion resulted in a mean serum LH of 57 ng/ml compared to 0.90 ng/ml in saline infused animals. This elevation of LH did not alter PGF induced luteolysis as indicated by decline in serum progesterone. This experiment does not support the hypothesis that the newly formed corpus luteum is resistant to PGF because of protection afforded by the protestrus LH surge.  相似文献   

19.
Occupied and unoccupied LH receptors in corpora lutea, and LH and progesterone concentrations in circulating plasma, were measured in non-pregnant gilts that had been treated with oestradiol-17 beta benzoate to prolong luteal function. Oestradiol benzoate (5 mg, administered on Day 12 after oestrus) delayed luteal regression and the decline in LH receptor levels at luteolysis and raised unoccupied receptor levels from 11.8 +/- 1.14 fmol/mg protein on Days 10--15 after oestrus to 31.8 +/- 3.26 fmol/mg protein on Days 15--21. There was no simultaneous rise in occupied receptor levels and occupancy decreased from 29.8 +/- 3.01 to 11.5 +/- 1.26%. Basal plasma LH concentrations were unchanged by oestradiol, but mean corpus luteum weight and plasma progesterone concentrations were slightly reduced. Oestradiol benzoate on Day 12 caused a similar increase in unoccupied receptor levels in gilts hysterectomized on Days 6--9 after oestrus, from 17.0 +/- 5.83 to 34.5 +/- 6.00 fmol/mg protein, determined on Days 15--18. Plasma concentrations of LH and progesterone were unchanged by oestradiol. Unoccupied receptor levels in corpora lutea and plasma LH and progesterone were unaltered by hysterectomy in untreated gilts. Occupied receptor levels were not influenced by hysterectomy or oestradiol. It is concluded that oestradiol-17 beta raises luteal LH receptor levels by a mechanism independent of the uterus.  相似文献   

20.
Oxytocin was administered to Dorset and Shropshire ewes in one experiment and to Dorset ewes in a further 4 experiments. In Exp. 1, concentrations of plasma progesterone and lengths of the oestrous cycle in ewes given oxytocin subcutaneously twice a day on Days 0-3, 2-5, 4-7, 6-9, 8-11, 10-13, 12-15 or 14-17 were similar to those of control ewes. In Exp. 2, intraluteal infusions of oxytocin from Day 2 to Day 9 after oestrus had no effect on concentration of progesterone, weight of CL collected on Day 9 or length of the oestrous cycle. In Exp. 3, intraluteal infusions of oxytocin on Days 10-15 after oestrus had no effect on weight of CL collected on Day 15. In Exp. 4, s.c. injections of oxytocin on Days 3-6 after oestrus had no effect on weight of CL collected on Day 9, concentrations of progesterone or length of the oestrous cycle. In Exp. 5, s.c. injections of oxytocin twice a day did not affect the maintenance and outcome of pregnancy in lactating and nonlactating ewes. Exogenous oxytocin, therefore, does not appear to affect luteal function at any stage of the ovine oestrous cycle although oxytocin has been reported by others to alter ovine CL function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号