首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 835 毫秒
1.
2.
Expression of the pea plastocyanin gene ( PetE ) is regulated by light in both pea and transgenic tobacco plants. However, the PetE promoter with the 5' untranslated leader region does not direct light-regulated expression of the GUS reporter gene in transgenic tobacco. This suggested that sequences downstream of the translation start of the PetE gene are required for light-regulated expression. To investigate this possibility the expression of a series of chimeric gene constructs in transgenic tobacco plants was examined to assess the contributions of the promoter, the 5' untranslated leader region, the coding region and the 3' region of the PetE gene to light-regulated expression. Both the coding region and the 5' untranslated leader region of the PetE gene were found to be required for full light regulation. Full light regulation of chimeric gene constructs containing the cauliflower mosaic virus (CaMV) 35S promoter required the deletion of CaMV 5' leader and polylinker sequences from the constructs. The presence of CaMV and polylinker sequences at the 5' end of the PetE leader masked the light regulation directed by the transcribed region of the pea PetE gene.  相似文献   

3.
4.
Various mutant screens have been undertaken to identify constituents involved in the transmission of signals from the plastid to the nucleus. Many of these screens have been performed using carotenoid-deficient plants grown in the presence of norflurazon (NF), an inhibitor of phytoene desaturase. NF-treated plants are bleached and suppress the expression of nuclear genes encoding chloroplast proteins. Several genomes uncoupled (gun) mutants have been isolated that de-repress the expression of these nuclear genes. In the present study, a genetic screen has been established that circumvents severe photo-oxidative stress in NF-treated plants. Under these modified screening conditions, happy on norflurazon (hon) mutants have been identified that, like gun mutants, de-repress expression of the Lhcb gene, encoding a light-harvesting chlorophyll protein, but, in contrast to wild-type and gun mutants, are green in the presence of NF. hon mutations disturb plastid protein homeostasis, thereby activating plastid signaling and inducing stress acclimatization. Rather than defining constituents of a retrograde signaling pathway specifically associated with the NF-induced suppression of nuclear gene expression, as proposed for gun, hon mutations affect Lhcb expression more indirectly prior to initiation of plastid signaling in NF-treated seedlings. They pre-condition seedlings by inducing stress acclimatization, thereby attenuating the impact of a subsequent NF treatment.  相似文献   

5.
6.
The single-copy PetC gene encoding the chloroplast Rieske FeS protein of Arabidopsis thaliana consists of five exons interrupted by four introns and encodes a protein of 229 amino acid residues with extensive sequence similarity to the chloroplast Rieske proteins of other higher plants. The N-terminal 50 amino acid residues constitute a presequence for targeting to the chloroplast and the remaining 179 amino acid residues make up the mature protein. Three of the introns are in identical positions in the PetC gene of Chlamydomonas reinhardtii, suggesting that they are of ancient origin. RNA-blot hybridisation showed that the gene was expressed in shoots, but not roots, and was light regulated and repressed by sucrose. The expression of chimeric genes consisting of PetC promoter fragments fused to the beta-glucuronidase (GUS) reporter gene was examined in A. thaliana and tobacco. In A. thaliana, GUS activity was detected in leaves, stems, flowers and siliques, but not in roots, and showed a strong correlation with the presence of chloroplasts. In transgenic tobacco, low levels of GUS activity were also detected in light-exposed roots. GUS activity in transgenic tobacco seedlings was light regulated and was decreased by norflurazon in the light suggesting regulation of PetC expression by plastid signals.  相似文献   

7.
8.
Saeed M  Duke SH 《Plant physiology》1990,93(1):131-140
Photobleaching of pea (Pisum sativum L.) seedling leaves by treatment with norflurazon (San 9789) and 7 days of continuous white light caused a 76- to 85-fold increase in the activity of the primary α-amylase, a largely apoplastic enzyme, over normally greening seedlings. Levels of chlorophyll were near zero and levels of plastid marker enzyme activities were very low in norflurazon-treated seedlings, indicating severe photooxidative damage to plastids. As levels of norflurazon or fluence rates were lowered, decreasing photobleaching of tissues, α-amylase activity decreased. Levels of leaf β-amylase and starch debranching enzyme changed very little in norflurazon-treated seedlings. Infiltration extraction of leaves of norflurazon-treated and normally greening seedlings indicated that at least 57 and 62%, respectively, of α-amylase activity was in the apoplast. α-Amylase activity recovered from the apoplast of photobleached leaves of norflurazon-treated seedlings was 18-fold higher than that for green leaves. Inhibitors of photosynthesis (DCMU and atrazine) and an inhibitor of chlorophyll accumulation that does not cause photooxidation of plastid components (tentoxin) had little effect on levels of α-amylase activity, indicating norflurazon-caused loss of chlorophyll and lack of photosynthesis did not cause the large induction in α-amylase activity. An inhibitor of both abscisic acid and gibberellin synthesis (paclobutrazol [PP333]) and an analog of norflurazon which inhibits photosynthesis but not carotenoid synthesis (San 9785) caused only moderate (about five-fold) increases in α-amylase activity. Lincomycin and chloramphenicol increased α-amylase activity in light grown seedings to the same magnitude as norflurazon, indicating that the effect of norflurazon is probably through the destruction of plastid ribosomes. It is proposed that chloroplasts produce a negative signal for the regulation of the apoplastic α-amylase in pea.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号