首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Evolutionary dynamics of self-incompatibility alleles in Brassica   总被引:2,自引:0,他引:2  
Uyenoyama MK 《Genetics》2000,156(1):351-359
Self-incompatibility in Brassica entails the rejection of pollen grains that express specificities held in common with the seed parent. In Brassica, pollen specificity is encoded at the multipartite S-locus, a complex region comprising many expressed genes. A number of species within the Brassicaceae express sporophytic self-incompatibility, under which individual pollen grains bear specificities determined by one or both S-haplotypes of the pollen parent. Classical genetic and nucleotide-level analyses of the S-locus have revealed a dichotomy in sequence and function among S-haplotypes; in particular, all class I haplotypes show dominance over all class II haplotypes in determination of pollen specificity. Analysis of an evolutionary model that explicitly incorporates features of the Brassica system, including the class dichotomy, indicates that class II haplotypes may invade populations at lower rates and decline to extinction at higher rates than class I haplotypes. This analysis suggests convergence to an evolutionarily persistent state characterized by the maintenance in high frequency of a single class II haplotype together with many class I haplotypes, each in low frequency. This expectation appears to be consistent with empirical observations of high frequencies of relatively few distinct recessive haplotypes.  相似文献   

2.
Self-incompatibility (SI) prevents self-fertilization by rejecting pollen from plants with the same S phenotype. The Brassica SI system is controlled sporophytically by multiple alleles at the single locus, S, and dominance relationships among S haplotypes are observed in both stigma and pollen. We have identified previously five different class-II S haplotypes in Brassica campestris. Here, we performed test-crosses between S heterozygotes and their respective parental S homozygotes for four of these class-II S haplotypes, and observed a linear dominance relationship on the pollen side. To determine how this relationship is controlled, we performed RNA gel blot analyses for six S heterozygotes and their respective parental S homozygotes using the corresponding SP11 clone as a probe. In all six S heterozygotes, SP11 derived from a dominant haplotype was predominantly expressed, and SP11 derived from a recessive haplotype was repressed. Thus, the linear dominance relationship of the SI phenotype on the pollen side is regulated by the expression of SP11.  相似文献   

3.
芸薹属的自交不亲和性是受单基因座、复等位基因控制的孢子体控制型。自交不亲和基因座位(S-locus)是由多个基因组成的复杂区域,称之为S多基因家族,其大多数成员分布于芸薹属的整个染色体组。目前已鉴定出100多个S等位基因,它们的起源分化始于一千万年前。S-座位上存在的多基因有3种:SRK,SLG和SCR/SP11;SRK和SLG在柱头中表达,SCR/SP11在雄蕊中表达。SRK蛋白在识别同类花粉的过程中起主要作用,而SLG蛋白增强了这种自交不亲和反应。SLG与SRK基因中编码S-结构域的核苷酸序列相似性程度高达85%~98%。基因转换可能是SLG和SRK的高度同源性能够得以保持的原因。SRK,SLG和SCR基因紧密相连,并表现出高水平的序列多样性。SRK与SLG基因间的距离很近,在20~25 kb之间。在柱头和花粉中,自交不亲和等位基因之间的共显性关系要比显性和隐性关系更加普遍,这是芸薹属自交不亲和性的一大特点。自交不亲和基因的进化模式存在两种假说:双基因进化模式和中性变异体进化模式;可能存在几种不同的进化方式,它们共同在自然群体中新的S等位基因进化过程中起作用。  相似文献   

4.
Tetraploid sour cherry (Prunus cerasus L.) exhibits gametophytic self-incompatibility (GSI) whereby the specificity of self-pollen rejection is controlled by alleles of the stylar and pollen specificity genes, S-RNase and SFB (S haplotype-specific F-box protein gene), respectively. As sour cherry selections can be either self-compatible (SC) or self-incompatible (SI), polyploidy per se does not result in SC. Instead the genotype-dependent loss of SI in sour cherry is due to the accumulation of non-functional S-haplotypes. The presence of two or more non-functional S-haplotypes within sour cherry 2x pollen renders that pollen SC. Two new S-haplotypes from sour cherry, S(33) and S(34), that are presumed to be contributed by the P. fruticosa species parent, the complete S-RNase and SFB sequences of a third S-haplotype, S(35), plus the presence of two previously identified sweet cherry S-haplotypes, S(14) and S(16) are described here. Genetic segregation data demonstrated that the S(16)-, S(33)-, S(34)-, and S(35)-haplotypes present in sour cherry are fully functional. This result is consistent with our previous finding that 'hetero-allelic' pollen is incompatible in sour cherry. Phylogenetic analyses of the SFB and S-RNase sequences from available Prunus species reveal that the relationships among S-haplotypes show no correspondence to known organismal relationships at any taxonomic level within Prunus, indicating that polymorphisms at the S-locus have been maintained throughout the evolution of the genus. Furthermore, the phylogenetic relationships among SFB sequences are generally incongruent with those among S-RNase sequences for the same S-haplotypes. Hypotheses compatible with these results are discussed.  相似文献   

5.
6.
Many flowering plants have evolved self-incompatibility (SI) systems to prevent inbreeding. In the Brassicaceae, SI is genetically controlled by a single polymorphic locus, termed the S-locus. Pollen rejection occurs when stigma and pollen share the same S-haplotype. Recognition of S-haplotype specificity has recently been shown to involve at least two S-locus genes, S-receptor kinase (SRK) and S-locus protein 11 or S-locus Cys-rich (SP11/SCR). SRK encodes a polymorphic membrane-spanning protein kinase, which is the sole female determinant of the S-haplotype specificity. SP11/SCR encodes a highly polymorphic Cys-rich small basic protein specifically expressed in the anther tapetum and in pollen. In cauliflower (B. oleracea), the gain-of-function approach has demonstrated that an allele of SP11/SCR encodes the male determinant of S-specificity. Here we examined the function of two alleles of SP11/SCR of B. rapa by the same approach and further established that SP11/SCR is the sole male determinant of SI in the genus Brassica sp. Our results also suggested that the 522-bp 5'-upstream region of the S9-SP11 gene used to drive the transgene contained all the regulatory elements required for the unique sporophytic/gametophytic expression observed for the native SP11 gene. Promoter deletion analyses suggested that the highly conserved 192-bp upstream region was sufficient for driving this unique expression. Furthermore, immunohistochemical analyses revealed that the protein product of the SP11 transgene was present in the tapetum and pollen, and that in pollen of late developmental stages, the SP11 protein was mainly localized in the pollen coat, a finding consistent with its expected biological role.  相似文献   

7.
A G McCubbin  X Wang  T H Kao 《Génome》2000,43(4):619-627
Solanaceous type self-incompatibility (SI) is controlled by a single polymorphic locus, termed the S-locus. The only gene at the S-locus that has been characterized thus far is the S-RNase gene, which controls pistil function, but not pollen function, in SI interactions between pistil and pollen. One approach to identifying additional genes (including the pollen S-gene, which controls pollen function in SI) at the S-locus and to study the structural organization of the S-locus is chromosome walking from the S-RNase gene. However, the presence of highly repetitive sequences in its flanking regions has made this approach difficult so far. Here, we used RNA differential display to identify pollen cDNAs of Petunia inflata, a self-incompatible solanaceous species, which exhibited restriction fragment length polymorphism (RFLP) for at least one of the three S-haplotypes (S1, S2, and S3) examined. We found that the genes corresponding to 10 groups of pollen cDNAs are genetically tightly linked to the S-RNase gene. These cDNA markers will expedite the mapping and cloning of the chromosomal region of the Solanaceae S-locus by providing multiple starting points.  相似文献   

8.
9.
10.
11.
12.
Frequency-dependent selection is a major force determining the evolutionary dynamics of alleles at the self-incompatibility locus (S-locus) in flowering plants. We introduce a general method using numerical simulations to test several alternative models of frequency-dependent selection on S-locus data from sporophytic systems, taking into account both genetic drift and observed patterns of dominance interactions among S-locus haplotypes (S-haplotypes). Using a molecular typing method, we estimated S-haplotype frequencies in a sample of 322 adult plants and of 245 offspring obtained from seeds sampled on 22 maternal plants, collected in a single population of Arabidopsis halleri (Brassicaceae). We found eight different S-haplotypes and characterized their dominance interactions by controlled pollinations. We then compared the likelihood of different models of frequency-dependent selection: we found that the observed haplotype frequencies and observed frequency changes in one generation best fitted a model with (1) the observed dominance interactions and (2) no pollen limitation. Overall, our population genetic models of frequency-dependent selection, including patterns of dominance interactions among S-haplotypes and genetic drift, can reliably predict polymorphism at the S-locus. We discuss how these approaches allow detecting additional processes influencing the evolutionary dynamics of the S-locus, such as purifying selection on linked loci.  相似文献   

13.
Gametophytic self-incompatibility (SI) in plants is a widespread mechanism preventing self-fertilization and the ensuing inbreeding depression, but it often evolves to self-compatibility. We analyze genetic mechanisms for the breakdown of gametophytic SI, incorporating a dynamic model for the evolution of inbreeding depression allowing for partial purging of nearly recessive lethal mutations by selfing, and accounting for pollen limitation and sheltered load linked to the S-locus. We consider two mechanisms for the breakdown of gametophytic SI: a nonfunctional S-allele and an unlinked modifier locus that inactivates the S-locus. We show that, under a wide range of conditions, self-compatible alleles can invade a self-incompatible population. Conditions for invasion are always less stringent for a nonfunctional S-allele than for a modifier locus. The spread of self-compatible genotypes is favored by extremely high or low selfing rates, a small number of S-alleles, and pollen limitation. Observed parameter values suggest that the maintenance of gametophytic SI is caused by a combination of high inbreeding depression in self-incompatible populations coupled with intermediate selfing rates of the self-compatible genotypes and sheltered load linked to the S-locus.  相似文献   

14.
In Brassica self-incompatibility, the recognition of self/nonself pollen grains, is controlled by the S-locus, which encodes three highly polymorphic proteins: S-locus receptor kinase (SRK), S-locus protein 11 (SP11; also designated S-locus Cys-rich protein), and S-locus glycoprotein (SLG). SP11, located in the pollen coat, determines pollen S-haplotype specificity, whereas SRK, located on the plasma membrane of stigmatic papilla cells, determines stigmatic S-haplotype specificity. SLG shares significant sequence similarity with the extracellular domain of SRK and is abundant in the stigmatic cell wall, but its function is controversial. We previously showed that SP11 binds directly to its cognate SRK with high affinity (K(d) = 0.7 nM) and induces its autophosphorylation. We also found that an SLG-like, 60-kD protein on the stigmatic membrane forms a high-affinity binding site for SP11. Here, we show that the 60-kD stigmatic membrane protein is a truncated form of SRK containing the extracellular domain, transmembrane domain, and part of the juxtamembrane domain. A transiently expressed, membrane-anchored form of SRK exhibits high-affinity binding to SP11, whereas the soluble SRK (eSRK) lacking the transmembrane domain exhibits no high-affinity binding, as is the case with SLG. The different binding affinities of the membrane-anchored SRK and soluble eSRK or SLG will be significant for the specific perception of SP11 by SRK.  相似文献   

15.
16.
The self-incompatibility system in Brassica is controlled by the S-locus, which contains S-receptor kinase (SRK) and S-locus protein 11 (SP11). SRK and SP11 control stigma and pollen S-haplotype specificity, respectively. SP11 binding to SRK induces the autophosphorylation of SRK, which triggers the signaling cascade that results in the rejection of self-pollen. The localization of SP11 protein during pollen development and pollination, however, have never been demonstrated. In this study, we examined the localization of S(8)-SP11 protein in the anther or pollinated stigma by immuno-electron microscopy. The immunostaining suggested that S(8)-SP11 was secreted from the tapetal cell into the anther locule as a cluster and translocated to the pollen surface at the early developmental stage of the anther. During the pollination process, SP11 was translocated from the pollen surface to the papilla cell, and then penetrated the cuticle layer of the papilla cell to diffuse across the pectin cellulose layer. Furthermore, SP11 protein could only penetrate the cuticle layer of the papilla cell in the presence of pollen grains, and could not penetrate on its own. This suggests that another factor from the pollen grain is needed for SP11 protein to penetrate the papilla cell wall.  相似文献   

17.
18.
Self-incompatibility (SI) is reported to play a key role in the evolution of species as it promotes their outcrossing through the recognition and rejection of self-pollen grains. In Brassica, two S-locus genes expressed in the stigma, S-locus glycoprotein (SLG) gene and S-locus receptor kinase (SRK) gene, and one expressed in the pollen, S-locus protein 11 (SP11) gene, were linked as an S haplotype. In order to analyze the evolutionary relationships of S haplotypes in Brassica, a total of 39 SRK, 37 SLG, and 58 SP11 sequences of Brassica oleracea, Brassica rapa and Brassica napus were aligned. Two phylogenetic trees with similar pattern were constructed based on the nucleotide sequences of SRK/SLG and SP11, respectively. Class I and class II alleles were clustered into two distinct groups, and alleles from different species, including all the interspecific pairs of S haplotypes, were closely related to each other. The S-locus genes identified in B. napus were intermingled in phylogenetic trees. All these observations showed that class I and class II S haplotypes diverged ahead of the species differentiation in Brassica. The evolution and the genetic diversity of S haplotypes in Brassica were discussed. Moreover, the relationships between S haplotypes and SI phenotypes in Brassica, especially in B. napus, were also discussed.  相似文献   

19.
Patterns of variation within self-incompatibility loci   总被引:3,自引:0,他引:3  
Diverse self-incompatibility (SI) mechanisms permit flowering plants to inhibit fertilization by pollen that express specificities in common with the pistil. Characteristic of at least two model systems is greatly reduced recombination across large genomic tracts surrounding the S-locus, which regulates SI. In three angiosperm families, including the Solanaceae, the gene that controls the expression of gametophytic SI in the pistil encodes a ribonuclease (S-RNase). The gene that controls pollen SI expression is currently unknown, although several candidates have recently been proposed. Although each candidate shows a high level of polymorphism and complete allelic disequilibrium with the S-RNase gene, such properties may merely reflect tight linkage to the S-locus, irrespective of any functional role in SI. We analyzed the magnitude and nature of nucleotide variation, with the objective of distinguishing likely candidates for regulators of SI from other genes embedded in the S-locus region. We studied the S-RNase gene of the Solanaceae and 48A, a candidate for the pollen gene in this system, and we also conducted a parallel analysis of the regulators of sporophytic SI in Brassica, a system in which both the pistil and pollen genes are known. Although the pattern of variation shown by the pollen gene of the Brassica system is consistent with its role as a determinant of pollen specificity, that of 48A departs from expectation. Our analysis further suggests that recombination between 48A and S-RNase may have occurred during the interval spanned by the gene genealogy, another indication that 48A may not regulate SI expression in pollen.  相似文献   

20.
基于S-核酸酶的自交不亲和性的分子机制   总被引:7,自引:0,他引:7  
自交不亲和性是一种广泛存在于显花植物中的种内生殖障碍,可以抑制近亲繁殖而促进异交。其中,以茄科、玄参科和蔷薇科为代表的配子体自交不亲和性是最常见的类型。这类自交不亲和性是由单一的多态性S-位点所控制。目前的研究发现这一位点至少包含两个自交不亲和反应特异性决定因子:花柱中的S-核酸酶和花粉中的SLF(S-Locus F-box)蛋白。该文将主要介绍并讨论基于S-核酸酶的自交不亲和性分子机制的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号