首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We have previously demonstrated that blue light induces the phosphorylation of a 15-kDa protein in crude membrane fractions of Neurospora crassa mycelia. Here we report the isolation and characterization of a mutant (?psp; phosphorylation of small proteins) that is completely defective for phosphorylation of that protein, as assayed in both crude membrane and soluble fractions. This mutation defines a unique locus that maps to linkage group VR between al-3 and his-6. To elucidate the photobiological significance of the phosphorylation of the protein, we analyzed known photobiological phenomena and discovered that the positioning of beaks on the perithecia, defined as perithecial polarity, was light-dependent in the wild type. In the psp mutant, beaks were phototropic as in the wild type, but their position was random. In a wc-1 mutant, however, beaks were positioned at random and were not phototropic. Thus light-induced perithecial polarity and phototropism of perithecial beaks are controlled differently. A psp; wc-1 double mutant showed the same phenotype as that of wc-1 with respect to these two photomorphogenetic characters. These results indicate that the wc-1 gene is epistatic to psp in the light-signal transduction pathway that controls both phototropism and perithecial polarity.  相似文献   

2.
We have previously demonstrated that blue light induces the phosphorylation of a 15-kDa protein in crude membrane fractions of Neurospora crassa mycelia. Here we report the isolation and characterization of a mutant ( psp; phosphorylation of small proteins) that is completely defective for phosphorylation of that protein, as assayed in both crude membrane and soluble fractions. This mutation defines a unique locus that maps to linkage group VR between al-3 and his-6. To elucidate the photobiological significance of the phosphorylation of the protein, we analyzed known photobiological phenomena and discovered that the positioning of beaks on the perithecia, defined as perithecial polarity, was light-dependent in the wild type. In the psp mutant, beaks were phototropic as in the wild type, but their position was random. In a wc-1 mutant, however, beaks were positioned at random and were not phototropic. Thus light-induced perithecial polarity and phototropism of perithecial beaks are controlled differently. A psp; wc-1 double mutant showed the same phenotype as that of wc-1 with respect to these two photomorphogenetic characters. These results indicate that the wc-1 gene is epistatic to psp in the light-signal transduction pathway that controls both phototropism and perithecial polarity. Received: 30 January 1997 / Accepted: 30 July 1997  相似文献   

3.
4.
5.
6.
7.
Iigusa H  Yoshida Y  Hasunuma K 《FEBS letters》2005,579(18):4012-4016
Previously, we found that intracellular reactive oxygen species (ROS) affect photomorphogenesis in Neurospora crassa. In this study, we investigated the physiological roles of ROS in the response to light and found that the exposure of mycelia to air was important for the light-induced carotenogenesis. Mycelia treated with a high concentration of O(2) gas and H(2)O(2) to release ROS showed an enhancement of light-induced carotenoid accumulation and the expression of gene related to light-inducible carotenogenesis. These results suggested that stimuli caused by the exposure of the mycelia to air containing O(2) gas triggered the light-induced carotenoid synthesis.  相似文献   

8.
9.
10.
con-10 and con-6 are two of the conidiation (con) genes of Neurospora crassa that were identified based on their preferential expression during macroconidiophore development. They are also regulated by several other environmental stimuli independent of development, including a transient induction by light. We identified an allele of vivid (vvd) in a mutant screen designed to obtain strains with altered expression of con-10. vvd mutants display enhanced carotenoid pigmentation in response to light. In addition, con-10 and con-6 show a heightened response to photoinduction. We tested the function of the light-responsive circadian clock in the vvd mutant and found no major defect in the circadian rhythm of conidiation or light regulation of a key clock component, frequency (frq). We conclude that vvd is primarily involved in a process of light-dependent gene repression, called light adaptation. Although a number of gene products are known to control light induction in fungi, vvd is the first gene shown to have a role in adaptation to constant light.  相似文献   

11.
12.
Li L  Lu S  Cosman KM  Earle ED  Garvin DF  O'Neill J 《Phytochemistry》2006,67(12):1177-1184
The cauliflower (Brassica oleracea L. var. botrytis) Or gene is a rare carotenoid gene mutation that confers a high level of beta-carotene accumulation in various tissues of the plant, turning them orange. To investigate the biochemical basis of Or-induced carotenogenesis, we examined the carotenoid biosynthesis by evaluating phytoene accumulation in the presence of norflurazon, an effective inhibitor of phytoene desaturase. Calli were generated from young seedlings of wild type and Or mutant plants. While the calli derived from wild type seedlings showed a pale green color, the calli derived from Or seedlings exhibited intense orange color, showing the Or mutant phenotype. Concomitantly, the Or calli accumulated significantly more carotenoids than the wild type controls. Upon treatment with norflurazon, both the wild type and Or calli synthesized significant amounts of phytoene. The phytoene accumulated at comparable levels and no major differences in carotenogenic gene expression were observed between the wild type and Or calli. These results suggest that Or-induced beta-carotene accumulation does not result from an increased capacity of carotenoid biosynthesis.  相似文献   

13.
Gerhard Sandmann 《Phytochemistry》2008,69(17):2886-2890
The Neurospora crassa mutant YLO exhibits a yellow phenotype instead of the red-orange pigmentation of the wild type. Recently, it was shown that the mutant YLO is defective in a specific aldehyde dehydrogenase which catalyses the last step of carotenogenesis to the formation of neurosporaxanthin [Estrada, A.F., Youssar, L., Scherzinger, D., Al-Babili, S., Avalos, J., 2008. The ylo-1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol. Microbiol. 69, 1207-1220]. Since different carotenoid compositions between wild type and YLO have been reported in earlier publications, the carotenoids of YLO were analyzed and unknown carotenoids identified. Fractionation of carotenoid extracts from YLO revealed in the less polar fraction two major carotenoids of low polarity which were found only in trace amounts in the wild type. Both carotenoids could be hydrolyzed with KOH to more polar products indicating the presence of fatty acid esters. The fatty acid moiety was identified as myristic acid by gas chromatography. Optical and mass spectra as well as co-chromatography with a synthesized authentic standard identified the free alcohols as 4′-apolycopene-4′-ol and 4′-apo-γ-carotene-4′-ol which assigns the dominating carotenoids in the YLO mutant as 4′-apolycopene-4′-myristate and 4′-apo-γ-carotene-4′-myristate. We can attribute the accumulation of these two carotenoids in YLO to the substantial mutation of the neurosporaxanthin-forming aldehyde dehydrogenase. However, the aldehyde intermediates 4′-apo-γ-carotene-4′-al and 4′-apo-lycopene-4′-al do not accumulate substantially but are reduced instead to the corresponding alcohols, 4′-apolycopene-4′-ol and 4′-apo-γ-carotene-4′-ol, and both further esterified with mainly myristic acid yielding 4′-apolycopene-4′-myristate and 4′-apo-γ-carotene-4′-myristate.  相似文献   

14.
A colour mutant of the unicellular green alga Chlorococcum sp. was obtained by visual colour detection method on plates with medium containing sodium azide. The growth of the mutant MA-1 was more susceptible to azide compared with the wild type, whereas the total secondary carotenoid (SC)synthesis was more resistant to the inhibitor. The azide concentration that inhibited SC formation by 50% (I50) was ten times higher than that required for the wild type. The mutant was stable over several consecutive subculturings in the absence of azide. The indoor and outdoor studies showed that the mutant could synthesise more than 2-fold of the total SC and astaxanthin of the wild type. The mutant MA-1 could be a natural source of SC and astaxanthin. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
16.
17.
Translesion synthesis (TLS) is a DNA damage tolerance mechanism in which DNA lesions are bypassed by specific polymerases. To investigate the role of TLS activities in ultraviolet light-induced somatic mutations, we analyzed Arabidopsis (Arabidopsis thaliana) disruptants of AtREV3, AtREV1, and/or AtPOLH genes that encode TLS-type polymerases. The mutation frequency in rev3-1 or rev1-1 mutants decreased compared with that in the wild type, suggesting that AtPolζ and AtRev1 perform mutagenic bypass events, whereas the mutation frequency in the polh-1 mutant increased, suggesting that AtPolη performs nonmutagenic bypass events with respect to ultraviolet light-induced lesions. The rev3-1 rev1-1 double mutant showed almost the same mutation frequency as the rev1-1 single mutant. The increased mutation frequency found in polh-1 was completely suppressed in the rev3-1 polh-1 double mutant, indicating that AtPolζ is responsible for the increased mutations found in polh-1. In summary, these results suggest that AtPolζ and AtRev1 are involved in the same (error-prone) TLS pathway that is independent from the other (error-free) TLS pathway mediated by AtPolη.  相似文献   

18.
19.
We examined the ability of Chinese hamster ovary (CHO) cell mutants defective in glycosaminoglycan synthesis to metabolize 125I-labeled thrombospondin (TSP). Wild type CHO cells bound and degraded 125I-TSP with kinetics similar to those reported for endothelial cells. Both binding and degradation were saturable (half-saturation at 20 micrograms/ml). When the concentration of labeled TSP was 1-5 micrograms/ml, mutant 745, defective in xylosyltransferase, and mutant 761, defective in galactosyltransferase I, bound and degraded 6- to 16-fold less TSP than wild type; mutant 803, which specifically lacks heparan sulfate chains, bound and degraded 5-fold less TSP than wild type; and mutant 677, which lacks heparan sulfate and has increased levels of chondroitin sulfate, bound and degraded 2-fold less TSP than wild type. Binding and degradation of TSP by the mutants were not saturable at TSP concentrations up to 100 micrograms/ml. Bound TSP was localized by immunofluorescence to punctate structures on wild type and, to a lesser extent, 677 cells. Heparitinase pretreatment of wild type cells caused a 2- to 3-fold decrease in binding and degradation, whereas chondroitinase pretreatment had no effect. Chondroitinase pretreatment of the 677 mutant (deficient heparan sulfate and excess chondroitin sulfate) caused a 2-fold decrease in binding and an 8-fold decrease in turnover, whereas heparitinase pretreatment had no effect. Treatment of wild type cells with both heparitinase and chondroitinase resulted in a 6- to 8-fold decrease in binding and turnover. These results indicate that cell surface proteoglycans mediate metabolism of TSP by CHO cells and that the primary effectors of TSP metabolism are heparan sulfate proteoglycans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号