首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Elaborate analyses of the status of gene mutations in neurofibromatosis type 1 (NF1) are still difficult nowadays due to the large gene sizes, broad mutation spectrum, and the various effects of mutations on mRNA splicing. These problems cannot be solved simply by sequencing the entire coding region using next-generation sequencing (NGS). We recently developed a new strategy, named combined long amplicon sequencing (CoLAS), which is a method for simultaneously analysing the whole genomic DNA region and, also, the full-length cDNA of the disease-causative gene with long-range PCR-based NGS. In this study, CoLAS was specifically arranged for NF1 genetic analysis, then applied to 20 patients (five previously reported and 15 newly recruited patients, including suspicious cases) for optimising the method and to verify its efficacy and benefits. Among new cases, CoLAS detected not only 10 mutations, including three unreported mutations and one mosaic mutation, but also various splicing abnormalities and allelic expression ratios quantitatively. In addition, heterozygous mapping by polymorphisms, including introns, showed copy number monitoring of the entire NF1 gene region was possible in the majority of patients tested. Moreover, it was shown that, when a chromosomal level microdeletion was suspected from heterozygous mapping, it could be detected directly by breakpoint-specific long PCR. In conclusion, CoLAS not simply detect the causative mutation but accurately elucidated the entire structure of the NF1 gene, its mRNA expression, and also the splicing status, which reinforces its high usefulness in the gene analysis of NF1.  相似文献   

2.
3.
HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5) viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences) and genotypic (e.g., population sequencing linked to bioinformatic algorithms) assays are the most widely used. Although several next-generation sequencing (NGS) platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences), Illumina®, and Ion Torrent™ (Life Technologies). Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels) and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used), compared to Trofile (80%) and population sequencing (70%). In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.  相似文献   

4.
5.
Multiple RNA splicing sites exist within human immunodeficiency virus type 1 (HIV-1) genomic RNA, and these sites enable the synthesis of many mRNAs for each of several viral proteins. We evaluated the biological significance of the alternatively spliced mRNA species during productive HIV-1 infections of peripheral blood lymphocytes and human T-cell lines to determine the potential role of alternative RNA splicing in the regulation of HIV-1 replication and infection. First, we used a semiquantitative polymerase chain reaction of cDNAs that were radiolabeled for gel analysis to determine the relative abundance of the diverse array of alternatively spliced HIV-1 mRNAs. The predominant rev, tat, vpr, and env RNAs contained a minimum of noncoding sequence, but the predominant nef mRNAs were incompletely spliced and invariably included noncoding exons. Second, the effect of altered RNA processing was measured following mutagenesis of the major 5' splice donor and several cryptic, constitutive, and competing 3' splice acceptor motifs of HIV-1NL4-3. Mutations that ablated constitutive splice sites led to the activation of new cryptic sites; some of these preserved biological function. Mutations that ablated competing splice acceptor sites caused marked alterations in the pool of virus-derived mRNAs and, in some instances, in virus infectivity and/or the profile of virus proteins. The redundant RNA splicing signals in the HIV-1 genome and alternatively spliced mRNAs provides a mechanism for regulating the relative proportions of HIV-1 proteins and, in some cases, viral infectivity.  相似文献   

6.
7.
Next-generation sequencing (NGS) technologies enable new insights into the diversity of virus populations within their hosts. Diversity estimation is currently restricted to single-nucleotide variants or to local fragments of no more than a few hundred nucleotides defined by the length of sequence reads. To study complex heterogeneous virus populations comprehensively, novel methods are required that allow for complete reconstruction of the individual viral haplotypes. Here, we show that assembly of whole viral genomes of ∼8600 nucleotides length is feasible from mixtures of heterogeneous HIV-1 strains derived from defined combinations of cloned virus strains and from clinical samples of an HIV-1 superinfected individual. Haplotype reconstruction was achieved using optimized experimental protocols and computational methods for amplification, sequencing and assembly. We comparatively assessed the performance of the three NGS platforms 454 Life Sciences/Roche, Illumina and Pacific Biosciences for this task. Our results prove and delineate the feasibility of NGS-based full-length viral haplotype reconstruction and provide new tools for studying evolution and pathogenesis of viruses.  相似文献   

8.
9.
10.
Barta A  Kalyna M  Reddy AS 《The Plant cell》2010,22(9):2926-2929
Growing interest in alternative splicing in plants and the extensive sequencing of new plant genomes necessitate more precise definition and classification of genes coding for splicing factors. SR proteins are a family of RNA binding proteins, which function as essential factors for constitutive and alternative splicing. We propose a unified nomenclature for plant SR proteins, taking into account the newly revised nomenclature of the mammalian SR proteins and a number of plant-specific properties of the plant proteins. We identify six subfamilies of SR proteins in Arabidopsis thaliana and rice (Oryza sativa), three of which are plant specific. The proposed subdivision of plant SR proteins into different subfamilies will allow grouping of paralogous proteins and simple assignment of newly discovered SR orthologs from other plant species and will promote functional comparisons in diverse plant species.  相似文献   

11.
12.
J Zhu  A Mayeda  A R Krainer 《Molecular cell》2001,8(6):1351-1361
SR proteins recognize exonic splicing enhancer (ESE) elements and promote exon use, whereas certain hnRNP proteins bind to exonic splicing silencer (ESS) elements and block exon recognition. We investigated how ESS3 in HIV-1 tat exon 3 blocks splicing promoted by one SR protein (SC35) but not another (SF2/ASF). hnRNP A1 mediates silencing by binding initially to a required high-affinity site in ESS3, which then promotes further hnRNP A1 association with the upstream region of the exon. Both SC35 and SF2/ASF recognize upstream ESE motifs, but only SF2/ASF prevents secondary hnRNP A1 binding, presumably by blocking its cooperative propagation along the exon. The differential antagonism between a negative and two positive regulators exemplifies how inclusion of an alternative exon can be modulated.  相似文献   

13.
14.
Human immunodeficiency virus type 1 (HIV-1) exonic splicing silencers (ESSs) inhibit production of certain spliced viral RNAs by repressing alternative splicing of the viral precursor RNA. Several HIV-1 ESSs interfere with spliceosome assembly by binding cellular hnRNP A/B proteins. Here, we have further characterized the mechanism of splicing repression using a representative HIV-1 hnRNP A/B-dependent ESS, ESSV, which regulates splicing at the vpr 3' splice site. We show that hnRNP A/B proteins bound to ESSV are necessary to inhibit E complex assembly by competing with the binding of U2AF65 to the polypyrimidine tracts of repressed 3' splice sites. We further show evidence suggesting that U1 snRNP binds the 5' splice site despite an almost complete block of splicing by ESSV. Possible splicing-independent functions of U1 snRNP-5' splice site interactions during virus replication are discussed.  相似文献   

15.
16.
完整基因结构的预测是当前生命科学研究的一个重要基础课题,其中一个关键环节是剪接位点和各种可变剪接事件的精确识别.基于转录组测序(RNA-seq)数据,识别剪接位点和可变剪接事件是近几年随着新一代测序技术发展起来的新技术策略和方法.本工作基于黑腹果蝇睾丸RNA-seq数据,使用TopHat软件成功识别出39718个果蝇剪接位点,其中有10584个新剪接位点.同时,基于剪接位点的不同组合,针对各类型可变剪接特征开发出计算识别算法,成功识别了8477个可变剪接事件(其中新识别的可变剪接事件3922个),包括可变供体位点、可变受体位点、内含子保留和外显子缺失4种类型.RT-PCR实验验证了2个果蝇基因上新识别的可变剪接事件,发现了全新的剪接异构体.进一步表明,RNA-seq数据可有效应用于识别剪接位点和可变剪接事件,为深入揭示剪接机制及可变剪接生物学功能提供新思路和新手段.  相似文献   

17.
M Caputi  A Mayeda  A R Krainer    A M Zahler 《The EMBO journal》1999,18(14):4060-4067
Splicing of the human immunodeficiency virus type 1 (HIV-1) pre-mRNA must be inefficient to provide a pool of unspliced messages which encode viral proteins and serve as genomes for new virions. Negative cis-regulatory elements (exonic splicing silencers or ESSs) are necessary for HIV-1 splicing inhibition. We demonstrate that heterogeneous nuclear ribonucleoproteins (hnRNPs) of the A and B group are trans-acting factors required for the function of the tat exon 2 ESS. Depletion of hnRNP A/B proteins from HeLa cell nuclear extract activates splicing of tat exon 2 pre-mRNA substrate. Splicing inhibition is restored by addition of recombinant hnRNP A/B proteins to the depleted extract. A high-affinity hnRNP A1-binding sequence can substitute functionally for the ESS in tat exon 2. These results demonstrate that hnRNP A/B proteins are required for repression of HIV-1 splicing.  相似文献   

18.
19.
Background Tissue-specific alternative pre-mRNA splicing is a widely used mechanism for gene regulation and the generation of different protein isoforms, but relatively little is known about the factors and mechanisms that mediate this process. Tissue-specific RNA-binding proteins could mediate alternative pre-mRNA splicing. In Drosophila melanogaster, the RNA-binding protein encoded by the elav (embryonic lethal abnormal visual system) gene is a candidate for such a role. The ELAV protein is expressed exclusively in neurons, and is important for the formation and maintenance of the nervous system.Results In this study, photoreceptor neurons genetically depleted of ELAV, and elav-null central nervous system neurons, were analyzed immunocytochemically for the expression of neural proteins. In both situations, the lack of ELAV corresponded with a decrease in the immunohistochemical signal of the neural-specific isoform of Neuroglian, which is generated by alternative splicing. Furthermore, when ELAV was expressed ectopically in cells that normally express only the non-neural isoform of Neuroglian, we observed the generation of the neural isoform of Neuroglian.ConclusionsDrosophila ELAV promotes the generation of the neuron-specific isoform of Neuroglian by the regulation of pre-mRNA splicing. The findings reported in this paper demonstrate that ELAV is necessary, and the ectopic expression of ELAV in imaginal disc cells is sufficient, to mediate neuron-specific alternative splicing.  相似文献   

20.
Regulation of alternative splicing by reversible protein phosphorylation   总被引:3,自引:0,他引:3  
The vast majority of human protein-coding genes are subject to alternative splicing, which allows the generation of more than one protein isoform from a single gene. Cells can change alternative splicing patterns in response to a signal, which creates protein variants with different biological properties. The selection of alternative splice sites is governed by the dynamic formation of protein complexes on the processed pre-mRNA. A unique set of these splicing regulatory proteins assembles on different pre-mRNAs, generating a "splicing" or "messenger ribonucleoprotein code" that determines exon recognition. By influencing protein/protein and protein/RNA interactions, reversible protein phosphorylation modulates the assembly of regulatory proteins on pre-mRNA and therefore contributes to the splicing code. Studies of the serine/arginine-rich protein class of regulators identified different kinases and protein phosphatase 1 as the molecules that control reversible phosphorylation, which controls not only splice site selection, but also the localization of serine/arginine-rich proteins and mRNA export. The involvement of protein phosphatase 1 explains why second messengers like cAMP and ceramide that control the activity of this phosphatase influence alternative splicing. The emerging mechanistic links between splicing regulatory proteins and known signal transduction pathways now allow in detail the understanding how cellular signals modulate gene expression by influencing alternative splicing. This knowledge can be applied to human diseases that are caused by the selection of wrong splice sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号