首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The enzymatic hydrolysis of cellobiose and cellulose by the cell-free culture filtrate of Trichoderma reesei QM 9414 was investigated. The concentrations of cellobiose and glucose were measured as a function of time for different initial concentrations of cellobiose. It was not possible to describe these concentration variations by a model which considers only the cellobiase hydrolysis with competitive and noncompetitive substrate and product inhibition; it is necessary that the endo--1.4-glucanase with competitive product inhibition is also taken into account.The enzymatic hydrolysis of cellulose (Avicel) was described with a mathematical model by using the results of the decomposition of cellobiose by the same enzyme mixture.the identified model parameters are presented. A sensitivity analysis of the parameter was carried out also.  相似文献   

3.
The kinetics of enzymatic hydrolysis of different lignocellulosic materials (wheat straw, newspaper and microcrystalline cellulose Avicel PH 101) was studied using the cellulase complexes from Trichoderma reesei QM 9414 and its mutants M 5, M 6, MHC 15 and MHC 22. The maximum yields of hydrolysis were obtained with wheat straw partially delignified with 1% NaOH as substrate, and using the enzyme from the mutants T. reesei M 6 and MHC 22. The possibility of simultaneous enzymatic hydrolysis and ethanol fermentation of wheat straw using the enzyme complex from M 6 and yeasts of the genus Candida and Torulopsis was also investigated. A good conversion of liberated glucose and cellobiose to ethanol was obtained, however, xylose was not fermented.  相似文献   

4.
The rates of enzymatic hydrolysis of pretreated rice straw and bagasse have been studied and compared with the hydrolysis rates of microcrystalline cellulose powder (MCCP) and Solka Floc. The effects of particle size reduction and enzyme loading on the rates of hydrolysis of rice straw and bagasse were also studied. It was found that the rates of hydrolysis of pretreated rice straw and bagasse are much higher than that of MCCP and Solka Floc. For both rice straw and bagasse, particle size reduction had very little effect in enhancing the rate of hydrolysis. Lignin present at <10% did not seem to hinder the accessibility of the enzyme to the cellulose surface. An enzyme loading > 40 Ug?1 had no effect on the hydrolysis rate of rice straw or bagasse.  相似文献   

5.
The cellulase activity in cell-free broths from the thermophilic, ethanol-producing anaerobic bacterium Clostridium thermocellum is examined on both dilute-acid-pretreated mixed hardwood (90% maple, 10% birch) and Avicel. Experiments were conducted in vitro in order to distinguish properties of the cellulase from properties of the organism and to evaluate the effectiveness of C. thermocellum cellulase in the hydrolysis of a naturally occurring, lignin-containing substrate. The results obtained establish that essentially quantitative hydrolysis of cellulose from pretreated mixed hardwood is possible using this enzyme system. Pretreatment with 1% H(2)SO(4) and a 9-s residence time at 220, 210, 200, and 180 degrees C allowed yields after enzymatic hydrolysis (percentage of glucan solubilized/ glucan potentially solubilized) of 97.8, 86.1, 82.0, and 34.6%, respectively. Enzymatic hydrolysis of mixed hardwood with no pretreatment resulted in a yield of 10.1%. Hydrolysis yields of >95% were obtained from approximately 0.6 g/L mixed hardwood pretreated at 220 degrees C in 7 h at broth strengths of 60 and 80% (v/v) and in approximately 48 h with 33% broth. Hydrolysis of pretreated mixed hardwood is compared to hydrolysis of Avicel, a pure microcrystalline cellulose studied previously. The initial rate of Avicel hydrolysis saturates with respect to enzyme, whereas the initial rate of hydrolysis of pretreated wood is proportional to the amount of enzyme present. Initial hydrolysis rates for pretreated wood and Avicel at 0.6 g/L are greater for wood at low broth dilutions (1.25: 1 to 5 :1) by up to 2.7-fold and greater for Avicel at high broth dilutions (5 : 1 to 50 : 1) by up to 4.3-fold. Maximum rates of hydrolysis are achieved at <2 g substrate/L for both pretreated wood and Avicel. The substrate concentration at one-half the maximum observed rate for C. thermocellum broths is smaller for pretreated mixed hardwood than for Avicel and decreases with increasing broth dilution for both substrates. An initial activity per volume broth of approximately 11 mumol soluble glucose equivalent produced/L broth/min is observed for mixed hardwood pretreated at 220 degrees C and for Avicel at high broth dilutions; the initial activity per volume broth for Avicel is lower at low broth dilutions. The results indicate that pretreated wood is hydrolyzed at rates comparable to Avicel under many conditions and at rates significantly faster than Avicel under several conditions.  相似文献   

6.
Moderate loadings of cellulase enzyme supplemented with beta-glucosidase were applied to solids produced by ammonia fiber expansion (AFEX), ammonia recycle (ARP), controlled pH, dilute sulfuric acid, lime, and sulfur dioxide pretreatments to better understand factors that control glucose and xylose release following 24, 48, and 72 h of hydrolysis and define promising routes to reducing enzyme demands. Glucose removal was higher from all pretreatments than from Avicel cellulose at lower enzyme loadings, but sugar release was a bit lower for solids prepared by dilute sulfuric acid in the Sunds system and by controlled pH pretreatment than from Avicel at higher protein loadings. Inhibition by cellobiose was observed to depend on the type of substrate and pretreatment and hydrolysis times, with a corresponding impact of beta-glucosidase supplementation. Furthermore, for the first time, xylobiose and higher xylooligomers were shown to inhibit enzymatic hydrolysis of pure glucan, pure xylan, and pretreated corn stover, and xylose, xylobiose, and xylotriose were shown to have progressively greater effects on hydrolysis rates. Consistent with this, addition of xylanase and beta-xylosidase improved performance significantly. For a combined mass loading of cellulase and beta-glucosidase of 16.1 mg/g original glucan (about 7.5 FPU/g), glucose release from pretreated solids ranged from 50% to75% of the theoretical maximum and was greater for all pretreatments at all protein loadings compared to pure Avicel cellulose except for solids from controlled pH pretreatment and from dilute acid pretreatment by the Sunds pilot unit. The fraction of xylose released from pretreated solids was always less than for glucose, with the upper limit being about 60% of the maximum for ARP and the Sunds dilute acid pretreatments at a very high protein mass loading of 116 mg/g glucan (about 60 FPU).  相似文献   

7.
Most cellulosic substances contain appreciable amounts of cellulose and hemicellulose, which on enzymatic hydrolysis mainly yield a mixture of glucose, cellobiose, and xylose. In this paper, studies on the mechanisms of hydrolysis of bagasse (a complex native cellulosic waste left after extraction of juice from cane sugar) by the cellulase enzyme components are described in light of their adsorption characteristics. Simultaneous adsorption of exo- and endoglucanases on hydrolyzable cellulosics is the causative factor of the hydrolysis that follows immediately after. It supports the postulate of synergistic enzyme action proposed by Eriksson. Xylanase pretreatment enhanced the hydrolysis of bagasse owing to the creation of more accessible cellulosic regions that are readily acted upon by exo- and endoglucanases. The synergistic action of the purified exoglucanase, endoglucanase, and xylanse has been found to be most effective for hydrolysis of bagasse but not for pure cellulose. Significant quantities of glucose are produced in beta-glucosidase-free cellulase action on bagasse. Individual and combined action of the purified cellulase components on hydrolysis of native and delignified bagasse are discussed in respect to the release of sugars in the hydrolysate.  相似文献   

8.
A saccharification of cellulosic material using culture filtrate from the stationary phase of a culture of Thermomonospora sp. produced primarily cellobiose up to levels inhibitory to further saccharification, while the use of whole broth resulted in the production of glucose as well. Glucose production was enhanced and continued throughout the saccharification (24–36 hr) by several additions of cellobiase activity in the form of culture solids. Using Solka-Floc as substrate, the “difference sugar” level (total soluble sugar minus glucose) rapidly rose to the same relatively stable concentration under various hydrolysis conditions, which was independent of the total sugar and glucose concentrations. A rapid hydrolusis rate was observed initially during saccharification, followed by a much slower rate of sugar production. Repeated centrifugation of the reaction mixture and replacement of the supernatant with fresh enzyme solution resulted each time in the reinitiation of a rapid hydrolysis rate. Saccharifications using A vicel microcrystalline cellulose, acid-swollen cellulose, and cotton as substrates were also studied. A modified method of making phosphoric-acid swollen cellulose is described. Saccharification of this substrate by culture filtrate and sequential additions of culture solids resulted in an inverse relationship between the attained glucose concentration and cellobiose-cellotriose concentrations.  相似文献   

9.
beta-Glucosidase is a key enzyme in the hydrolysis of cellulose to D-glucose. beta-Glucosidase was purified from cultures of Trichoderma reesei QM 9414 grown on wheat straw as carbon source. The enzyme hydrolyzed cellobiose and aryl beta-glucosides. The double-reciprocal plots of initial velocity vs. substrate concentration showed substrate inhibition with cellobiose and salicin. However, when p-nitrophenyl beta-D-glucopyranoside was the substrate no inhibition was observed. The corresponding kinetic parameters were: K = 1.09 +/- 0.2 mM and V = 2.09 +/- 0.52 mumol.min-1.mg-1 for salicin; K = 1.22 +/- 0.3 mM and V = 1.14 +/- 0.21 mumol.min-1.mg-1 for cellobiose; K = 0.19 +/- 0.02 mM and V = 29.67 +/- 3.25 mumol.min-1.mg-1 for p-nitrophenyl beta-D-glucopyranoside. Studies of inhibition by products and by alternative product supported an Ordered Uni Bi mechanism for the reaction catalyzed by beta-glucosidase on p-nitrophenyl beta-D-glucopyranoside as substrate. Alternative substrates as salicin and cellobiose, a substrate analog such as maltose and a product analog such as fructose were competitive inhibitors in the p-nitrophenyl beta-D-glucopyranoside hydrolysis.  相似文献   

10.
Microcrystalline cellulose (Avicel) was subjected to three different pretreatments (acid, alkaline, and organosolv) before exposure to a mixture of cellulases (Celluclast). Addition of beta-glucosidase, to avoid the well-known inhibition of cellulase by cellobiose, markedly accelerated cellulose hydrolysis up to a ratio of activity units (beta-glucosidase/cellulase) of 20. All pretreatment protocols of Avicel were found to slightly increase its degree of crystallinity in comparison with the untreated control. Adsorption of both cellulase and beta-glucosidase on cellulose is significant and also strongly depends on the wall material of the reactor. The conversion-time behavior of all four states of Avicel was found to be very similar. Jamming of adjacent cellulase enzymes when adsorbed on microcrystalline cellulose surface is evident at higher concentrations of enzyme, beyond 400 U/L cellulase/8 kU/L beta-glucosidase. Jamming explains the observed and well-known dramatically slowing rate of cellulose hydrolysis at high degrees of conversion. In contrast to the enzyme concentration, neither the method of pretreatment nor the presence or absence of presumed fractal kinetics has an effect on the calculated jamming parameter for cellulose hydrolysis.  相似文献   

11.
Microcrystalline cellulose (10 g/L Avicel) was hydrolysed by two major cellulases, cellobiohydrolase I (CBH I) and endoglucanase II (EG II), of Trichoderma reesei. Two types of experiments were performed, and in both cases the enzymes were added alone and together, in equimolar mixtures. In time course studies the reaction time was varied between 3 min and 48 h at constant temperature (40 degrees C) and enzyme loading (0.16 micromol/g Avicel). In isotherm studies the enzyme loading was varied in the range of 0.08-2.56 micromol/g at 4 degrees C and 90 min. Adsorption of the enzymes and production of soluble sugars were followed by FPLC and HPLC, respectively. Adsorption started quickly (50% of maximum achieved after 3 min) but was not completed before 60-90 min. For CBH I a linear relationship was observed between the production of soluble sugars and adsorption, showing that the average activity of the bound CBH I molecules does not change with increasing saturation. For EG II the corresponding curve levelled off which is explained by initial hydrolysis of loose ends on Avicel. The enzymes competed for binding sites, binding of EG II was considerably affected by CBH I, especially at high concentration. CBH I produced more soluble sugars than EG II, except at conversions below 1%. At 40 degrees C when the enzymes were added together they produced 27-45% more soluble sugars than the sum of what they produced alone, i.e. synergistic action was observed (the final conversion after 48 h of hydrolysis was 3, 6, and 13% for EG II, CBH I, and their mixture, respectively). At 4 degrees C, on the other hand, when the conversion was below 2.5%, almost no synergism could be observed. Molar proportions of the produced sugars were rather stable for CBH I (11-15%, 82-89%, and <6% for glucose, cellobiose, and cellotriose, respectively), while it varied considerably with both time and enzyme concentration for EG II. The observed stable but high glucose to cellobiose ratio for CBH I indicates that the processivity for this enzyme is not perfect. EG II produced significant amounts of glucose, cellobiose, and cellotriose, which are not the expected products of a typical endoglucanase activity on a solid substrate. We explain this by hypothesizing that EG II may show processivity due to its extended substrate binding site and the presence of its cellulose binding domain.  相似文献   

12.
Two endoglucanases with processive cellulase activities, produced from Fomitopsis palustris grown on 2% microcrystalline cellulose (Avicel), were purified to homogeneity by anion-exchange and gel filtration column chromatography systems. SDS-PAGE analysis indicated that the molecular masses of the purified enzymes were 47 kDa and 35 kDa, respectively. The amino acid sequence analysis of the 47-kDa protein (EG47) showed a sequence similarity with fungal glycoside hydrolase family 5 endoglucanase from the white-rot fungus Phanerochaete chrysosporium. N-terminal and internal amino acid sequences of the 35-kDa protein (EG35), however, had no homology with any other glycosylhydrolases, although the enzyme had high specific activity against carboxymethyl cellulose, which is a typical substrate for endoglucanases. The initial rate of Avicel hydrolysis by EG35 was relatively fast for 48 h, and the amount of soluble reducing sugar released after 96 h was 100 microg/ml. Although EG47 also hydrolyzed Avicel, the hydrolysis rate was lower than that of EG35. Thin layer chromatography analysis of the hydrolysis products released from Avicel indicated that the main product was cellobiose, suggesting that the brown-rot fungus possesses processive EGs capable of degrading crystalline cellulose.  相似文献   

13.
Initial hydrolysis rates were examined for mixed hardwood flour pretreated with 1% sulfuric acid for 9 s at 220 °C (PTW220) and Avicel. Linear rates were observed for fractional conversion relative to the theoretical up to 0.2 for PTW220 and 0.4 for Avicel. Initial rates were essentially unaffected by the presence of growth medium components over a range of pH values. Avicel-hydrolyzing activity was inhibited linearly by ethanol, with a 50% rate reduction at 8 wt.% ethanol. Rate saturation with either substrate or enzyme was observed in a manner qualitatively consistent with previously reported adsorption data. Although somewhat less reactive than Avicel at very low enzyme loadings, much higher reaction rates were observed for PTW220 at moderate and high enzyme loading because of its higher capacity to bind cellulase. At equal subtrate concentrations (as potential glucose) and fractional substrate coverage of 0.09, the initial rate of pretreated wood hydrolysis exceeded that of Avicel by 15-fold. For fractional substrate coverage values up to 0.09 (the maximum value achieved for PTW220), the initial rate was proportional to adsorbed enzyme for PTW220. However, the rate per adsorbed enzyme declined sharply with increasing fractional coverage for Avicel hydrolysis.  相似文献   

14.
An extracellular, 700,000-Mr multiprotein complex that catalyzed the hydrolysis of crystalline cellulose (Avicel) was isolated from cultures of Clostridium sp. strain C7, a mesophile from freshwater sediment. In addition to cellulose (Avicel, ball-milled filter paper), the multiprotein complex hydrolyzed carboxymethylcellulose, cellodextrins, xylan, and xylooligosaccharides. Hydrolysis of cellulose or cellotetraose by the complex yielded cellobiose as the main product. Cellopentaose or cellohexaose was hydrolyzed by the complex to cellotriose or cellotetraose, respectively, in addition to cellobiose. Xylobiose was the main product of xylan hydrolysis, and xylobiose and xylotriose were the major products of xylooligosaccharide hydrolysis. Activity (Avicelase) resulting in hydrolysis of crystalline cellulose required Ca2+ and a reducing agent. The multiprotein complex had temperature optima for Avicelase, carboxymethylcellulase, and xylanase activities at 45, 55, and 55 degrees C, respectively, and pH optima at 5.6 to 5.8, 5.5, and 6.55, respectively. Electron microscopy of the 700,000-Mr enzyme complex revealed particles relatively uniform in size (12 to 15 nm wide) and apparently composed of subunit structures. Elution of strain C7 concentrated culture fluid from Sephacryl S-300 columns yielded an A280 peak in the 130,000-Mr region. Pooled fractions from the 130,000-Mr peak had carboxymethylcellulase activity but lacked Avicelase activity. Except for the inability to hydrolyze cellulose, the 130,000-Mr preparation had a substrate specificity identical to that of the 700,000-Mr protein complex. A comparison by immunoblotting techniques of proteins in the 130,000- and 700,000-Mr preparations, indicated that the two enzyme preparations had cross-reacting antigenic determinants.  相似文献   

15.
Summary Paecilomyces inflatus isolated from municipal waste compost was found to have cellulolytic activity in several solid and liquid media. This study was done to reveal the multifarious effects of municipal waste compost on endoglucanase activity of P. inflatus. The highest enzyme activities under the conditions of solid-state fermentation were measured in authentic compost samples compared with wood, straw and bran substrates. In surface liquid cultures glucose, cellobiose, xylan, Avicel cellulose, carboxymethylcellulose (CM-cellulose), starch and citrus pectin were used as carbon sources. All carbon sources supported the growth of P. inflatus. However, only CM-cellulose, cellobiose and pectin noticeably stimulated endoglucanase (EG) activity. Further stimulation of EG activity was obtained in cultures containing 1% CM-cellulose as a carbon source by supplementation with low-molecular mass aromatic compounds vanillin, veratric acid and benzoic acid, and with soil humic acid (SHA). SHA and veratric acid were found to be the most efficient elicitors of the cellulolytic activity. P. inflatus was able to utilize nitrate and ammonium as pure nitrogen sources in media containing cellulose.  相似文献   

16.
Steam-exploded aspen has been examined as a candidate feedstock for both cellulose production and enzymatic hydrolysis of wood. Batch and fed-batch cultivation methods were evaluated and compared with previous experiments using ball-milled, crystalline cellulose (Solka Floe). Batch cultivation of Trichoderma reesei Rut C-30 on 9 wt% water-washed aspen yielded enzyme productivities and activities comparable to those obtained on Solka Floe (40 FP IU/L-h; 7. 5 FP IU/mL). Fed-batch cultivation of Rut C-30 resulted in higher enzyme productivities and tilers than batch cultivation (50 FP IU/L-h; 15 FP IU/mL). However, the overall enzyme production performance was lower than on Solka Floe at comparable cellulose feeding rates and concentrations. This may be due to the accumulation of steam explosion by-products and lignin in the fermentor.The hydroiysis of water-washed steam-exploded aspen was performed at different enzyme loadings and wood concentrations. Glucose production, using 10 and 15wt% suspension, showed that while glucose concentration increased with wood load, the yield of glucose derived from cellulose decreased. With 10wt% suspensions, it was possible to obtain a cellous conversion to glucose above 95%. Low cellulose levels in the hydrolyzates indicated that the filter paper activity ratios (approximately 1.5), a significant result since the fungus was grown exclusively on wood. mIt also suggested that the observed yield decrease is more likely to be caused by glucose than cellobiose inhibition of the enzymes.  相似文献   

17.
The enzymatic saccharification of three different feedstocks, rice straw, bagasse and silvergrass, which had been pretreated with different dilute acid concentrations, was studied to verify how enzymatic saccharification was affected by the lignin composition of the raw materials. There was a quantitatively inverse correlation between lignin content and enzymatic digestibility after pretreatment with 1%, 2% and 4% sulfuric acid. The lignin accounted for about 18.8–21.8% of pretreated rice straw, which was less than the 23.1–26.5% of pretreated bagasse and the 21.5–24.1% of pretreated silvergrass. The maximum glucose yield achieved, under an enzyme loading 6.5 FPU g?1 DM for 72 h, was close to 0.8 g glucose/g glucan from the enzymatic hydrolysis of the pretreated rice straw; this was twice that from bagasse and silvergrass. A decrease in initial rate of glucose production was observed in all cases when the raw materials underwent enzymatic saccharification with 4% sulfuric acid pretreatment. It is suggested that the higher acid concentration led to an inhibition of β-glucosidase activity. Fourier transform infrared (FTIR) spectroscopy further indicated the chemical properties of the rice straw and silvergrass become more hydrophilic after pretreatment using 2% of sulfuric acid, but the pretreated bagasse tended to become more hydrophobic. The hydrophilic nature of the pretreated solid residues may increase the inhibitive effects of lignin on the cellulase and this could become very important for raw materials such as silvergrass that contain more lignin.  相似文献   

18.
Achievement of efficient enzymatic degradation of cellulose to glucose is one of the main prerequisites and one of the main challenges in the biological conversion of lignocellulosic biomass to liquid fuels and other valuable products. The specific inhibitory interferences by cellobiose and glucose on enzyme-catalyzed cellulose hydrolysis reactions impose significant limitations on the efficiency of lignocellulose conversion — especially at high-biomass dry matter conditions. To provide the base for selecting the optimal reactor conditions, this paper reviews the reaction kinetics, mechanisms, and significance of this product inhibition, notably the cellobiose and glucose inhibition, on enzymatic cellulose hydrolysis. Particular emphasis is put on the distinct complexity of cellulose as a substrate, the multi-enzymatic nature of the cellulolytic degradation, and the particular features of cellulase inhibition mechanisms and kinetics. The data show that new strategies that place the bioreactor design at the center stage are required to alleviate the product inhibition and in turn to enhance the efficiency of enzymatic cellulose hydrolysis. Accomplishment of the enzymatic hydrolysis at medium substrate concentration in separate hydrolysis reactors that allow continuous glucose removal is proposed to be the way forward for obtaining feasible enzymatic degradation in lignocellulose processing.  相似文献   

19.
The production of sugars by enzymatic hydrolysis of cellulose is a multistep process which includes conversion of the intermediate cellobiose to glucose by β-glucosidase. Aside from its role as an intermediate, cellobiose inhibits the endoglucanase components of typical cellulase enzyme systems. Because these enzyme systems often contain insufficient concentrations of β-glucosidase to prevent accumulation of inhibitory cellobiose, this research investigated the use of supplemental immobilized β-glucosidase to increase yield of glucose. Immobilized β-glucosidase from Aspergillus phoenicis was produced by sorption at controlled-pore alumina with about 90% activity retention. The product lost only about 10% of the original activity during an on-stream reaction period of 500 hr with cellobiose as substrate; maximum activity occurred near pH 3.5 and the apparent activation energy was about 11 kcal/mol. The immobilized β-glucosidase was used together with Trichoderma reesei cellulase to hydrolyze cellulosic materials, such as Solka Floc, corn stove and exploded wood. Increased yields of glucose and greater conversions of cellobiose of glucose were observed when the reaction systems contained supplemental immobilized β-glucosidase.  相似文献   

20.
Multi-stage and single-stage enzymatic hydrolysis of cellulose (Avicel PH-101) were conducted to investigate individual factors that affect the rate-reducing kinetics of enzymatic hydrolysis. Understanding factors affecting enzymatic hydrolysis of Avicel will help improve hydrolysis of various biomasses. Product inhibition, enzyme deactivation, and the changes of substrate are potential factors that can affect the hydrolysis efficiency of Avicel. Multi-stage enzymatic hydrolysis resulted in 36.9% and 25.4% higher carbohydrate conversion as compared to a single-stage enzymatic hydrolysis with an enzyme loading of 5 and 20 FPU/g in a 96 h reaction. However, a decline in carbohydrate conversion of 1.6% and 2.6% was observed through each stage with 5 and 20 FPU/g, respectively. This indicated that the substrate became more recalcitrant as hydrolysis progressed. The decreased reactivity was not due to crystallinity because no significant change in crystallinity was detected by X-ray diffraction. Product inhibition was significant at low enzyme loading, while it was marginal at high enzyme loading. Therefore, product inhibition can only partially explain this decreased conversion. Another important factor, enzyme deactivation, contributed to 20.3% and 25.4% decrease in the total carbohydrate conversion of 96 h hydrolysis with 5 and 20 FPU/g, respectively. This work shows that an important reason for the decreased Avicel digestibility is the effect of enzyme blockage, which refers to the enzymes that irreversibly adsorb on accessible sites of substrate. About 45.3% and 63.2% of the total decreased conversion at the end of the 8th stage with 5 and 20 FPU/g, respectively, was due to the presence of irreversibly adsorbed enzymes. This blockage of active sites by enzymes has been speculated by other researchers, but this article shows further evidence of this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号