首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Islet transplantation has become a viable clinical treatment, but is still compromised by long-term graft failure. Exendin-4, a glucagon-like peptide 1 receptor agonist, has in clinical studies been shown to improve insulin secretion in islet transplanted patients. However, little is known about the effect of exendin-4 on other metabolic parameters. We therefore aimed to determine what influence exendin-4 would have on revascularized minimal human islet grafts in a state of graft failure in terms of glucose metabolism, body weight, lipid levels and graft survival. Introducing the bilateral, subcapsular islet transplantation model, we first transplanted diabetic mice with a murine graft under the left kidney capsule sufficient to restore normoglycemia. After a convalescent period, we performed a second transplantation under the right kidney capsule with a minimal human islet graft and allowed for a second recovery. We then performed a left-sided nephrectomy, and immediately started treatment with exendin-4 with a low (20μg/kg/day) or high (200μg/kg/day) dose, or saline subcutaneously twice daily for 15 days. Blood was sampled, blood glucose and body weight monitored. The transplanted human islet grafts were collected at study end point and analyzed. We found that exendin-4 exerts its effect on failing human islet grafts in a bell-shaped dose-response curve. Both doses of exendin-4 equally and significantly reduced blood glucose. Glucagon-like peptide 1 (GLP-1), C-peptide and pro-insulin were conversely increased. In the course of the treatment, body weight and cholesterol levels were not affected. However, immunohistochemistry revealed an increase in beta cell nuclei count and reduced TUNEL staining only in the group treated with a low dose of exendin-4 compared to the high dose and control. Collectively, these results suggest that exendin-4 has a potential rescue effect on failing, revascularized human islets in terms of lowering blood glucose, maintaining beta cell numbers, and improving metabolic parameters during hyperglycemic stress.  相似文献   

2.
Perturbation of endoplasmic reticulum (ER) homeostasis impairs insulin biosynthesis, beta cell survival, and glucose homeostasis. We show that a murine model of diabetes is associated with the development of ER stress in beta cells and that treatment with the GLP-1R agonist exendin-4 significantly reduced biochemical markers of islet ER stress in vivo. Exendin-4 attenuated translational downregulation of insulin and improved cell survival in purified rat beta cells and in INS-1 cells following induction of ER stress in vitro. GLP-1R agonists significantly potentiated the induction of ATF-4 by ER stress and accelerated recovery from ER stress-mediated translational repression in INS-1 beta cells in a PKA-dependent manner. The effects of exendin-4 on the induction of ATF-4 were mediated via enhancement of ER stress-stimulated ATF-4 translation. Moreover, exendin-4 reduced ER stress-associated beta cell death in a PKA-dependent manner. These findings demonstrate that GLP-1R signaling directly modulates the ER stress response leading to promotion of beta cell adaptation and survival.  相似文献   

3.
Islet transplantation can reverse hyperglycaemia in Type 1 diabetes patients. One problem in islet transplantation is a loss of beta cell mass as well as blunted glucagon responses from the grafted islets. It has been suggested that alpha cell loss is associated with close contact of the alpha cells with the implantation organ. In the present study we made use of microencapsulation, where transplanted islets are not in direct contact with the host implantation site. After transplantation, the number of glucagon cells stained per microencapsulated islet section was increased whereas the number of insulin cells stained was decreased. DNA content of the islets was reduced, as was insulin content, whereas glucagon content was unchanged. This indicates that cell number in transplanted microencapsulated islets diminishes, which can be accounted for by loss of beta cells. However, in contrast to previous studies using non-encapsulated islets, alpha cell number seems to be maintained.  相似文献   

4.
Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis   总被引:30,自引:0,他引:30  
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and augments beta cell mass via activation of beta cell proliferation and islet neogenesis. We examined whether GLP-1 receptor signaling modifies the cellular susceptibility to apoptosis. Mice administered streptozotocin (STZ), an agent known to induce beta cell apoptosis, exhibit sustained improvement in glycemic control and increased levels of plasma insulin with concomitant administration of the GLP-1 agonist exendin-4 (Ex-4). Blood glucose remained significantly lower for weeks after cessation of exendin-4. STZ induced beta cell apoptosis, which was significantly reduced by co-administration of Ex-4. Conversely, mice with a targeted disruption of the GLP-1 receptor gene exhibited increased beta cell apoptosis after STZ administration. Exendin-4 directly reduced cytokine-induced apoptosis in purified rat beta cells exposed to interleukin 1beta, tumor necrosis fator alpha, and interferon gamma in vitro. Furthermore, Ex-4-treated BHK-GLP-1R cells exhibited significantly increased cell viability, reduced caspase activity, and decreased cleavage of beta-catenin after treatment with cycloheximide in vitro. These findings demonstrate that GLP-1 receptor signaling directly modifies the susceptibility to apoptotic injury, and provides a new potential mechanism linking GLP-1 receptor activation to preservation or enhancement of beta cell mass in vivo.  相似文献   

5.
6.
The mechanisms by which exendin-4 and selenium exert their antidiabetic actions are still unclear. Here, we investigated the effects of exendin-4 or selenium administration on the expression of glucagon-like peptide-1 receptor (GLP-1R), insulin receptor substrate-1 (IRS-1), and preproinsulin in the pancreas of diabetic rats. Diabetes was induced by streptozotocin administration. Diabetic rats were injected intraperitoneally with 0.03 μg exendin-4/kg body weight/daily or treated with 5 ppm selenium in drinking water for a period of 4 weeks. GLP-1R and IRS-1 levels were decreased while the level of preproinsulin messenger RNA (mRNA) was increased in the pancreas of diabetic untreated rats, as compared to that in control rats. Treatment of diabetic rats with exendin-4 increased protein and mRNA levels of GLP-1R, and IRS-1, and the mRNA level of preproinsulin in the pancreas, as compared to their levels in diabetic untreated rats. Selenium treatment of diabetic rats increased the pancreatic mRNA levels of GLP-1R, IRS-1, and preproinsulin. Exendin-4 or selenium treatment of diabetic rats also increased the numbers of pancreatic islets and GLP-1R molecules in the pancreas. Therefore, exendin-4 and selenium may exert their antidiabetic effects by increasing GLP-1R, IRS-1, and preproinsulin expression in the pancreas and by increasing the number of pancreatic islets.  相似文献   

7.
The insulinotropic hormone GLP-1 (glucagon-like peptide-1) is a new therapeutic agent that preserves or restores pancreatic beta cell mass. We report that GLP-1 and its agonist, exendin-4 (Exd4), induce Wnt signaling in pancreatic beta cells, both isolated islets, and in INS-1 cells. Basal and GLP-1 agonist-induced proliferation of beta cells requires active Wnt signaling. Cyclin D1 and c-Myc, determinants of cell proliferation, are up-regulated by Exd4. Basal endogenous Wnt signaling activity depends on Wnt frizzled receptors and the protein kinases Akt and GSK3beta but not cAMP-dependent protein kinase. In contrast, GLP-1 agonists enhance Wnt signaling via GLP-1 receptor-mediated activation of Akt and beta cell independent of GSK3beta. Inhibition of Wnt signaling by small interfering RNAs to beta-catenin or a dominant-negative TCF7L2 decreases both basal and Exd4-induced beta cell proliferation. Wnt signaling appears to mediate GLP-1-induced beta cell proliferation raising possibilities for novel treatments of diabetes.  相似文献   

8.
A role for glucagon-like peptide 1 (GLP-1) has been suggested in stimulating beta-cell lipolysis via elevation of cAMP and activation of protein kinase A, which in turn may activate hormone-sensitive lipase (HSL), thereby contributing to fatty acid generation (FFA) from intracellular triglyceride stores. FFAs may then be metabolized to a lipid signal, which is required for optimal glucose-stimulated insulin secretion. Since HSL is expressed in islet beta-cells, this effect could contribute to the stimulation of insulin secretion by GLP-1, provided that a lipid signal of importance for insulin secretion is generated. To examine this hypothesis, we have studied the acute effect of GLP-1 on isolated mouse islets from normal mice and from mice with high-fat diet induced insulin resistance. We found, however, that although GLP-1 (100 nM) markedly potentiated glucose-stimulated insulin secretion from islets of both feeding groups, the peptide was not able to stimulate islet palmitate oxidation or increase lipolysis measured as glycerol release. This indicates that a lipid signal does not contribute to the acute stimulation of insulin secretion by GLP-1. To test whether lipolysis might be involved in the islet effects of long-term GLP-1 action, mice from the two feeding groups were chronically treated with exendin-4, a peptide that lowers blood glucose by interacting with GLP-1 receptors, in order to stimulate insulin secretion, for 16 days before isolation of the islets. The insulinotropic effects of GLP-1 and forskolin were exaggerated in isolated islets from exendin-4 treated mice given a high-fat diet, with a augmented palmitate oxidation as well as islet lipolysis at high glucose levels in these islets. Exendin-4 treatment had less impact on mice fed a normal diet. From these results we conclude that while GLP-1 does not seem to induce beta-cell lipolysis acutely in mouse islets, the peptide affects beta-cell fat metabolism after long-term adaptation to GLP-1 receptor stimulation.  相似文献   

9.
Diabetes is a major complication of chronic Glucocorticoids (GCs) treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1) and 2 (Tph2), leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells.  相似文献   

10.
Recent studies have demonstrated that human islet allograft transplantation can be a successful therapeutic option in the treatment of patients with Type I diabetes. However, this impressive recent advance is accompanied by a very important constraint. There is a critical paucity of pancreatic islets or pancreatic beta cells for islet transplantation to become a large-scale therapeutic option in patients with diabetes. This has prompted many laboratories around the world to invigorate their efforts in finding ways for increasing the availability of beta cells or beta cell surrogates that potentially could be transplanted into patients with diabetes. The number of studies analyzing the mechanisms that govern beta cell proliferation and growth in physiological and pathological conditions has increased exponentially during the last decade. These studies exploring the role of growth factors, intracellular signaling molecules and cell cycle regulators constitute the substrate for future strategies aimed at expanding human beta cells in vitro and/or in vivo after transplantation. In this review, we describe the current knowledge on the effects of several beta cell growth factors that have been shown to increase beta cell proliferation and expand beta cell mass in vitro and/or in vivo and that they could be potentially deployed in an effort to increase the number of patients transplanted with islets. Furthermore, we also analyze in this review recent studies deciphering the relevance of these specific islet growth factors as physiological and pathophysiological regulators of beta cell proliferation and islet growth.  相似文献   

11.
Glucagon-like peptide 1 receptor (GLP-1R) is highly expressed in pancreatic islets, especially on β-cells. Therefore, a properly labeled ligand that binds to GLP-1R could be used for in vivo pancreatic islet imaging. Because native GLP-1 is degraded rapidly by dipeptidyl peptidase-IV (DPP-IV), a more stable agonist of GLP-1 such as Exendin-4 is a preferred imaging agent. In this study, DO3A-VS-Cys(40)-Exendin-4 was prepared through the conjugation of DO3A-VS with Cys(40)-Exendin-4. The in vitro binding affinity of DO3A-VS-Cys(40)-Exendin-4 was evaluated in INS-1 cells, which overexpress GLP-1R. After (64)Cu labeling, biodistribution studies and microPET imaging of (64)Cu-DO3A-VS-Cys(40)-Exendin-4 were performed on both subcutaneous INS-1 tumors and islet transplantation models. The subcutaneous INS-1 tumor was clearly visualized with microPET imaging after the injection of (64)Cu-DO3A-VS-Cys(40)-Exendin-4. GLP-1R positive organs, such as pancreas and lung, showed high uptake. Tumor uptake was saturable, reduced dramatically by a 20-fold excess of unlabeled Exendin-4. In the intraportal islet transplantation models, (64)Cu-DO3A-VS-Cys(40)-Exendin-4 demonstrated almost two times higher uptake compared with normal mice. (64)Cu-DO3A-VS-Cys(40)-Exendin-4 demonstrated persistent and specific uptake in the mouse pancreas, the subcutaneous insulinoma mouse model, and the intraportal human islet transplantation mouse model. This novel PET probe may be suitable for in vivo pancreatic islets imaging in the human.  相似文献   

12.
Glucagon-like peptide-1 receptor (GLP-1R) is closely associated with the onset of diabetes and its complications. However, its roles in diabetic retinopathy are unknown. Retinal pigment epithelial (RPE) cells are a crucial component of the outer blood–retina barrier and their death is related to the progression of diabetic retinopathy. Thus, we examined the pathophysiological role of GLP-1R in RPE cell apoptosis. We found that GLP-1R expression was lower in the isolated neuroretina and RPE cells of streptozotocin-treated rats than in vehicle-treated rats. High-glucose treatment also decreased GLP-1R expression in a human RPE cell line (ARPE-19 cells). GLP-1R was silenced in ARPE-19 cells, in order to elucidate the pathophysiological roles of GLP-1R. This increased intracellular reactive oxygen species (ROS) generation and activated p53-mediated Bax promoter and endoplasmic reticulum (ER) stress signaling. We also found that GLP-1R knockdown-mediated p53 expression was regulated by ER stress. Interestingly, antioxidant treatment and peroxiredoxin 1 (Prx1) overexpression attenuated GLP-1R knockdown-induced ER stress signaling and p53 expression. Finally, to confirm that GLP-1R activation has protective effects, ARPE-19 cells were treated with exendin-4, a synthetic GLP-1R agonist. This attenuated high-glucose-induced ROS generation, ER stress signaling, and p53 expression. Collectively, these results indicated that hyperglycemia decreases GLP-1R expression in RPE cells. Such a decrease generates intracellular ROS, which increases ER stress-mediated p53 expression, and subsequently causes apoptosis by increasing Bax promoter activity. Our data suggested that regulation of GLP-1R expression is a promising approach for the treatment of diabetic retinopathy.  相似文献   

13.
14.
Clinical studies have demonstrated that islet transplantation may be a useful procedure to replace beta cell function in patients with Type 1 diabetes. Islet transplantation faces many challenges, including complications associated with the procedure itself, the toxicity of immunosuppression regimens, and to the loss of islet function and insulin-independence with time. Despite the current successes, and residual challenges, these studies have pointed out an enormous scarcity of islet tissue that precludes the use of islet transplantation in a clinical setting on a wider scale. To address this problem, many research groups are trying to identify different islet growth factors and intracellular molecules capable of improving islet graft survival and function, therefore reducing the number of islets needed for successful transplantation. Among these growth factors, hepatocyte growth factor (HGF), a factor known to improve transplantation of a variety of organs/cells, has shown promising results in increasing islet graft survival and reducing the number of islets needed for successful transplantation in four different rodent models of islet transplantation. Protein kinase B (PKB)/Akt, a pro-survival intracellular signaling molecule is known to be activated in the beta cell by several different growth factors, including HGF. PKB/Akt has also shown promising results for improving human islet graft survival and function in a minimal islet mass model of islet transplantation in diabetic SCID mice. Increasing our knowledge on how HGF, PKB/Akt and other emerging molecules work for improving islet transplantation may provide substrate for future therapeutic approaches aimed at increasing the number of patients in which beta cell function can be successfully replaced.  相似文献   

15.
Fetal pancreatic tissue has been suggested as a possible cell source for islet replacement therapy in type 1 diabetes mellitus. This tissue consists of a small amount of beta-cells, but a raft of immature and/or progenitor cells which nonetheless have the potential to proliferate and differentiate into functional insulin-producing cells. Freshly isolated fetal islet-like cell clusters are poorly responsive to glucose challenge, compared with adult islets. Upon exposure to appropriate growth factors and microenvironments, both the expansion and differentiation of fetal islet-like cell clusters can be enhanced. In this study, we investigated the role of exendin-4, a long-acting analogue of glucagon-like peptide 1 in the promotion of functional maturation of transplanted fetal islet-like cell clusters in vivo. Both blood glucose levels and body weights of transplanted diabetic mice treated with exendin-4 improved significantly compared with the transplanted group not subjected to exendin-4 treatment during the 3-month post-transplantation period. In addition, blood glucose levels on formal glucose challenge were also significantly improved by the end of the experiments. In the exendin-4-treated group, there were revascularization and insulin-producing cells as evidenced by positive immunostaining of the Lectins Bandeiraea simplicifolia and insulin, respectively, in the graft bearing kidney. These data indicate that in vivo exendin-4 treatment may enhance the growth and differentiation of fetal mice islet-like cell clusters, thus promoting the functional maturation of the graft after transplantation.  相似文献   

16.

Background

Pancreatic islets are known to contain low level of antioxidants that renders them vulnerable to oxidative stress. Nrf2 is the master regulator of numerous genes, encoding antioxidant, detoxifying, and cytoprotective molecules. Activation of Nrf2 pathway induces up-regulation of numerous genes encoding antioxidant and phase II detoxifying enzymes and related proteins. However, little is known regarding the role of this pathway in human islet cells. The aim was to investigate the effect of Nrf2 activator (dh404, CDDO-9,11-dihydro-trifluoroethyl amide) on human islet cells.

Methods

Human islets were obtained from cadaveric donors. After dh404 treatment, Nrf2 translocation, mRNA expression, and protein abundance of its key target gene products were examined. The proportion of dh404-treated or non-treated viable islet beta cells was analyzed using flowcytemetry. The cytoprotective effects against oxidative stress and production of inflammatory mediators, and in vivo islet function after transplantation were determined.

Results

Nrf2 nuclear translocation was confirmed by con-focal microscope within 2 hours after treatment, which was associated with a dose-dependent increase in mRNA expression of anti-oxidants, including NQO1, HO-1, and GCLC. Enhanced HO-1 expression in dh404 treated islets was confirmed by Western Blot assay. Islet function after transplantation (2000 IEQ/mouse) to diabetic nude mice was not affected with or without dh404 treatment. After induction of oxidative stress with hydrogen peroxide (200 μM) the proportion of dh404-treated viable islet cells was significantly higher in the dh404-treated than untreated islets (74% vs.57%; P<0.05). Dh404 significantly decreased production of cytokines/chemokines including IL-1β, IL-6, IFN-γ and MCP-1.

Conclusion

Treatment of human pancreatic islets with the potent synthetic Nrf2 activator, dh404, significantly increased expression of the key anti-oxidants enzymes, decreased inflammatory mediators in islets and conferred protection against oxidative stress in beta cells.  相似文献   

17.
The cross-talk between beta cells and endothelium plays a key role in islet physiopathology and in the revascularization process after islet transplantation. However, the molecular mechanisms involved in this cross-talk are not fully elucidated. Extracellular vesicles (EVs) are secreted membrane nanoparticles involved in inter-cellular communication through the transfer of proteins and nucleic acids. The aims of this study were: 1) isolation and characterization of EVs from human islets; 2) evaluation of the pro-angiogenic effect of islet-derived EVs on human islet endothelial cells (IECs). EVs were isolated by ultracentrifugation from conditioned medium of human islets and characterized by nanotrack analysis (Nanosight), FACS, western blot, bioanalyzer, mRNA/microRNA RT-PCR array. On IECs, we evaluated EV-induced insulin mRNA transfer, proliferation, resistance to apoptosis, in vitro angiogenesis, migration, gene and protein profiling. EVs sized 236±54 nm, expressed different surface molecules and islet-specific proteins (insulin, C-peptide, GLP1R) and carried several mRNAs (VEGFa, eNOS) and microRNAs (miR-27b, miR-126, miR-130 and miR-296) involved in beta cell function, insulin secretion and angiogenesis. Purified EVs were internalized into IECs inducing insulin mRNA expression, protection from apoptosis and enhancement of angiogenesis. Human islets release biologically active EVs able to shuttle specific mRNAs and microRNAs (miRNAs) into target endothelial cells. These results suggest a putative role for islet-derived EVs in beta cell-endothelium cross-talk and in the neoangiogenesis process which is critical for engraftment of transplanted islets.  相似文献   

18.
Substitution of pancreatic islets is a potential therapy to treat diabetes and it depends on reconstitution of islet’s capillary network. In this study, we addressed the question whether stabilization of Glucagon-Like-Peptide-1 (GLP-1) by inhibiting Dipeptidyl Peptidase-IV (DPP-IV) increases β-cell mass by modulating vascularization. Mouse or porcine donor islets were implanted under kidney capsule of diabetic mice treated with DPP-IV inhibitor sitagliptin. Grafts were analyzed for insulin production, β-cell proliferation and vascularization. In addition, the effect of sitagliptin on sprouting and Vascular Endothelial Growth Factor (VEGF)-A expression was examined ex vivo. The cAMP response element-binding (CREB) and VEGF-A/ Vascular Endothelial Growth Factor Receptor (VEGFR)-2 signaling pathway leading to islet vascularization was explored. Sitagliptin increased mean insulin content of islet grafts and area of insulin-positive tissue as well as β-cell proliferation. Interestingly, sitagliptin treatment also markedly increased endothelial cell proliferation, microvessel density and blood flow. Finally, GLP-1 (7-36) stimulated sprouting and VEGF expression, which was significantly enhanced by sitagliptin- mediated inhibition of DPP-IV. Our in vivo data demonstrate that sitagliptin treatment phosphorylated CREB and induced islet vascularization through VEGF-A/VEGFR-2 signaling pathway. This study paves a new pathway for improvement of islet transplantation in treating diabetes mellitus.  相似文献   

19.
Islet transplantation is a promising potential therapy for patients with type 1 diabetes. The outcome of islet transplantation depends on the transplantation of a sufficient amount of β-cell mass. However, the initial loss of islets after transplantation is problematic. We hypothesized the hyperglycemic status of the recipient may negatively affect graft survival. Therefore, in the present study, we evaluated the effect of insulin treatment on islet transplantation involving a suboptimal amount of islets in Akita mice, which is a diabetes model mouse with an Insulin 2 gene missense mutation. Fifty islets were transplanted under the left kidney capsule of the recipient mouse with or without insulin treatment. For insulin treatment, sustained-release insulin implants were implanted subcutaneously into recipient mice 2 weeks before transplantation and maintained for 4 weeks. Islet transplantation without insulin treatment did not reverse hyperglycemia. In contrast, the group that received transplants in combination with insulin treatment exhibited improved fasting blood glucose levels until 18 weeks after transplantation, even after insulin treatment was discontinued. The group that underwent islet transplantation in combination with insulin treatment had better glucose tolerance than the group that did not undergo insulin treatment. Insulin treatment improved graft survival from the acute phase (i.e., 1 day after transplantation) to the chronic phase (i.e., 18 weeks after transplantation). Islet apoptosis increased with increasing glucose concentration in the medium or blood in both the in vitro culture and in vivo transplantation experiments. Expression profile analysis of grafts indicated that genes related to immune response, chemotaxis, and inflammatory response were specifically upregulated when islets were transplanted into mice with hyperglycemia compared to those with normoglycemia. Thus, the results demonstrate that insulin treatment protects islets from the initial rapid loss that is usually observed after transplantation and positively affects the outcome of islet transplantation in Akita mice.  相似文献   

20.
Viral infection is one of the important factors for the pathogenesis of type 1 diabetes. Particularly, in fulminant type 1 diabetes, rapid β-cell destruction is suggested to be triggered by viral infection. Recently, glucagon-like peptide 1 (GLP-1) receptor agonists have been reported to have direct beneficial effects on β-cells, such as anti-apoptotic effect, increasing β-cell mass, and improvement of β-cell function. However, their effects on β-cell destruction induced by viral infections have not been elucidated. In this study, we used an encephalomyocarditis virus (EMCV)-induced diabetic model mouse to show that a GLP-1 receptor agonist, exendin-4, prevents β-cell destruction. Nine-week-old male DBA/2 mice were intraperitoneally injected with EMCV (200 plaque forming units (PFU) mouse−1). Low (20 nmol kg−1 d−1) or high (40 nmol kg−1 d−1) doses of exendin-4 were administered for 10 d, starting from 2 d before the infection, and the rate of diabetic onset was evaluated. In addition, the number of infiltrating macrophage per islet and the ratio of β-cell area to islet area were determined. The effects of exendin-4 on infected β-cells and macrophages were investigated by using MIN6 and RAW264 mouse macrophages. The incidence of diabetes was significantly lower in the high-dose exendin-4-treated group than in the control group. Furthermore, the β-cell area was significantly more preserved in the high-dose exendin-4-treated group than in the control. In addition, the number of macrophages infiltrating into the islets was significantly less in the high-dose exendin-4-treated group than in the control group. In vitro, exendin-4 reduced β-cell apoptosis, and tumor necrosis factor α (TNFα), interleukin β (IL-β), and inducible nitric oxide synthase (iNOS) production of infected or lipopolysaccharide (LPS)-stimulated macrophages. These results suggested that exendin-4 limits β-cell destruction by protecting β cells and reducing the inflammatory response of macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号