首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We investigated the ability of intraportal transplanted islets to release insulin and glucagon after stimulation with arginine. Furthermore, the islet volume and hormone content of the recipient pancreas were analyzed. Three months after syngeneic portal islet transplantation the liver of STZ-diabetic rats was perfused in vitro in the presence of different arginine concentrations. Transplanted islets preserve their functional integrity for at least three months indicated by a stimulus adequate insulin release and contribute substantially to the observed amelioration of the diabetic state. The islet and B-cell volume as well as the insulin and glucagon content of the recipient pancreas are still markedly decreased three months after islet transplantation when compared with healthy controls.  相似文献   

2.
Background aimsCo-transplantation of islets with mesenchymal stem cells (MSCs) has been shown to improve graft outcome in mice, which has been partially attributed to the effects of MSCs on revascularization and preservation of islet morphology. Microencapsulation of islets provides an isolated-graft model of islet transplantation that is non-vascularized and prevents islet aggregation to preserve islet morphology. The aim of this study was to investigate whether MSCs could improve graft outcome in a microencapsulated/isolated-graft model of islet transplantation.MethodsMouse islets and kidney MSCs were co-encapsulated in alginate, and their function was assessed in vitro. A minimal mass of 350 syngeneic islets encapsulated alone or co-encapsulated with MSCs (islet+MSC) were transplanted intraperitoneally into diabetic mice, and blood glucose concentrations were monitored. Capsules were recovered 6 weeks after transplantation, and islet function was assessed.ResultsIslets co-encapsulated with MSCs in vitro had increased glucose-stimulated insulin secretion and content. The average blood glucose concentration of transplanted mice was significantly lower by 3 weeks in the islet+MSC group. By week 6, 71% of the co-encapsulated group were cured compared with 16% of the islet-alone group. Capsules recovered at 6 weeks had greater glucose-stimulated insulin secretion and insulin content in the islet+MSC group.ConclusionsMSCs improved the efficacy of microencapsulated islet transplantation. Using an isolated-graft model, we were able to eliminate the impact of MSC-mediated enhancement of revascularization and preservation of islet morphology and demonstrate that the improvement in insulin secretion and content is sustained in vivo and can significantly improve graft outcome.  相似文献   

3.
4.
Streptozotocin (70 mg/kg) was administered intravenously to female Syrian hamsters. The hamsters received insulin (5U/animal/day). Insulin treatment was withdrawn 3 days before sacrifice in one group, while another group was maintained on insulin until sacrifice. Ten to 14 days following streptozotocin administration the animals were killed, and the pancreatic islets isolated and subsequently dispersed. Islet DNA content was decreased while the glucagon content was elevated by streptozotocin treatment. The glucagon secretory responsiveness of the dispersed alpha cells of control animals was stimulated by glucopenia and decreased by glucose. Alpha cells of streptozotocin hamsters were not only suppressed but were actually stimulated by high glucose concentrations. Treatment with insulin in vivo but not in vitro, resulted in a restoration of the alpha cells responsiveness to glucose suppression. Dispersed alpha cells from control and streptozotocin treated animals were stimulated by arginine. Basal and total glucagon secretion was greatest in dispersed alpha cells from streptozotocin treated animals. We concluded: that the paradoxical response of alpha cells to glucose noted in diabetes is not due to short term insulin deprivation or the lack of morphologic contact with beta cells; that the alpha cells require and insulin stimulated islet metabolite and extra islet materials to respond appropriately to glucose; and that the alpha cells response to arginine is mediated independently of glucose regulation.  相似文献   

5.
Background aimsWe recently showed that co-transplantation of mesenchymal stromal cells (MSCs) improves islet function and revascularization in vivo. Pre-transplant islet culture is associated with the loss of islet cells. MSCs may enhance islet cell survival or function by direct cell contact mechanisms and soluble mediators. We investigated the capacity of MSCs to improve islet cell survival or β-cell function in vitro using direct and indirect contact islet-MSC configurations. We also investigated whether pre-culturing islets with MSCs improves islet transplantation outcome.MethodsThe effect of pre-culturing islets with MSCs on islet function in vitro was investigated by measuring glucose-stimulated insulin secretion. The endothelial cell density of fresh islets and islets cultured with or without MSCs was determined by immunohistochemistry. The efficacy of transplanted islets was tested in vivo using a syngeneic streptozotocin-diabetic minimal islet mass model. Graft function was investigated by monitoring blood glucose concentrations.ResultsIndirect islet-MSC co-culture configurations did not improve islet function in vitro. Pre-culturing islets using a direct contact MSC monolayer configuration improved glucose-stimulated insulin secretion in vitro, which correlated with superior islet graft function in vivo. MSC pre-culture had no effect on islet endothelial cell number in vitro or in vivo.ConclusionsPre-culturing islets with MSCs using a direct contact configuration maintains functional β-cell mass in vitro and the capacity of cultured islets to reverse hyperglycemia in diabetic mice.  相似文献   

6.
Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia following the destruction of the insulin-producing beta cells of the pancreatic islets of Langerhans by the body's own immune system. Although routine insulin injections can provide diabetic patients with their daily insulin requirements, this treatment is not always effective in maintaining normal glucose levels. A true "cure" is considered possible only through replacement of the beta cell mass, by pancreas transplantation, islet implantation, or implantation of nonendocrine cells modified to secrete insulin. With the recent success of islet implantation to reverse T1D, this procedure has become a welcome therapy for T1D patients. Unfortunately, this procedure is hampered by the limited number of transplantation quality pancreata available for the harvesting of islets. This shortage has sparked great interest in finding a replacement for organ donation, primarily the possible use of stem cell-derived islets starting with stem cells, or alternatively the harvesting of nonhuman islets. This review focuses on progress with growing islets in the laboratory from stem cells and a comparison between this developing technology and the current use of islets harvested from nonhuman sources.  相似文献   

7.
Nesfatin-1 is a novel anorexigenic regulatory peptide. The peptide is the N-terminal part of nucleobindin 2 (NUCB2) and is expressed in brain areas regulating feeding. Outside the brain, nesfatin-1 expression has been reported in adipocytes, gastric endocrine cells and islet cells. We studied NUCB2 expression in human and rodent islets using immunocytochemistry, in situ hybridization and western blot. Furthermore, we investigated the potential influence of nesfatin-1 on secretion of insulin and glucagon in vitro and in vivo in mice and in INS-1 (832/13) cells. The impact of type 2 diabetes (T2D) and glucolipotoxicity on NUCB2 gene expression in human islets and its relationship to insulin secretory capacity and islet gene expression was studied using microarray. Nesfatin-1 immunoreactivity (IR) was abundant in human and rodent beta cells but absent in alpha, delta, PP and ghrelin cells. Importantly, in situ hybridization showed that NUCB2 mRNA is expressed in human and rat islets. Western blot analysis showed that nesfatin-1 IR represented full length NUCB2 in rodent islets. Human islet NUCB2 mRNA was reduced in T2D subjects but upregulated after culture in glucolipotoxic conditions. Furthermore, a positive correlation between NUCB2 and glucagon and insulin gene expression, as well as insulin secretory capacity, was evident. Nesfatin-1 enhanced glucagon secretion but had no effect on insulin secretion from mouse islets or INS-1 (832/13) cells. On the other hand, nesfatin-1 caused a small increase in insulin secretion and reduced glucose during IVGTT in mice. We conclude that nesfatin-1 is a novel glucagon-stimulatory peptide expressed in the beta cell and that its expression is decreased in T2D islets.  相似文献   

8.
Barriers to the use of islet transplantation as a practical treatment for diabetes include the limited number of available donor pancreata. This project was designed to determine whether the size of the islet could influence the success rate of islet transplantations in rats. Islets from adult rats were divided into two groups containing small (diameter <125 microm) or large (diameter >150 microm) islets. An average pancreas yielded three times more small islets than large. Smaller islets were approximately 20% more viable, with large islets containing a scattered pattern of necrotic and apoptotic cells or central core cell death. Small islets in culture consumed twice as much oxygen as large islets when normalized for the same islet equivalents. In static incubation, small islets released three times more insulin under basal conditions than did large islets. During exposure to high glucose conditions, the small islets released four times more insulin than the same islet equivalencies of large islets, and five times more insulin was released by the small islets in response to glucose and depolarization with K+. Most importantly, the small islets were far superior to large islets when transplanted into diabetic animals. When marginal islet equivalencies were used for renal subcapsular transplantation, large islets failed to produce euglycemia in any recipient rats, whereas small islets were successful 80% of the time. The results indicate that small islets are superior to large islets in in vitro testing and for transplantation into the kidney capsule of diabetic rats.  相似文献   

9.
Abstract

Since the advent of islet transplantation, there has been a significant emphasis on the importance of islet purity despite an inevitable associated loss of islet mass during the purification process. One of the key elements of the 'Edmonton Protocol' for islet transplantation published in 2000 was an emphasis on the need for sequential transplants of highly purified islets (averaging 24% beta cell purity) and the close correlation between the numbers of islets transplanted and the success of the procedure. However, the emphasis on islet purity may warrant further consideration as auto transplantation of non-purified islets currently provides the most successful insulin independence rates within the field of islet transplantation. While the role of auto and allo immunity could contribute to the differences in the success rates it is clear that within the clinical setting, significant acinar and ductal contamination is well tolerated. However, one could go further and hypothesize that extra-insular tissue including acinar tissue, ductal tissue, peri-pancreatic lymph nodes and vascular tissue actually confer an advantage to islet survival/function and may even contribute to the insulin secreting capacity of the graft post transplant. As such this review will assess the influence of extra-insular pancreatic tissue on the results of islet transplantation based on published evidence and will also explore the possibility that non-islet pancreatic cells are capable of differentiating into a beta cell phenotype in vivo contributing to an ongoing regeneration of endocrine mass during the period following transplantation.  相似文献   

10.
During type 1 diabetes, most beta cells die by immune processes. However, the precise fate and characteristics of beta cells and islet autoimmunity after onset are unclear. Here, the extent of beta cell survival was determined in the non-obese diabetic (NOD) mouse during increasing duration of disease and correlated with insulitis. Pancreata from female NOD mice at diagnosis and at 1, 2, 3 and 4 weeks thereafter were analysed immunohistochemically for insulin, glucagon and somatostatin cells and glucose transporter-2 (glut2) and correlated with the degree of insulitis and islet immune cell phenotypes. Insulitis, although variable, persisted after diabetes and declined with increasing duration of disease. During this period, beta cells also declined sharply whereas glucagon and somatostatin cells increased, with occasional islet cells co-expressing insulin and glucagon. Glut2 was absent in insulin-containing cells from 1 week onwards. CD4 and CD8 T cells and macrophages persisted until 4 weeks, in islets with residual beta cells or extensive insulitis. We conclude that after diabetes onset, some beta cells survive for extended periods, with continuing autoimmunity and expansion of glucagon and somatostatin cells. The absence of glut2 in several insulin-positive cells suggests that some beta cells may be unresponsive to glucose.  相似文献   

11.
To clarify the cytoprotective effect of glucagon-like peptide-1 receptor (GLP-1R) signaling in conditions of glucose toxicity in vivo, we performed murine isogenic islet transplantation with and without exendin-4 treatment. When a suboptimal number of islets (150) were transplanted into streptozotocin-induced diabetic mice, exendin-4 treatment contributed to the restoration of normoglycemia. When 50 islets expressing enhanced green fluorescent protein (EGFP) were transplanted, exendin-4 treatment reversed loss of both the number and mass of islet grafts one and 3 days after transplantation. TUNEL staining revealed that exendin-4 treatment reduced the number of apoptotic beta cells during the early posttransplant phase, indicating that GLP-1R signaling exerts its cytoprotective effect on pancreatic beta cells by inhibiting their apoptosis. This beneficial effect might be used both to ameliorate type 2 diabetes and to improve engraftment rates in clinical islet transplantation.  相似文献   

12.
Recent studies have demonstrated that human islet allograft transplantation can be a successful therapeutic option in the treatment of patients with Type I diabetes. However, this impressive recent advance is accompanied by a very important constraint. There is a critical paucity of pancreatic islets or pancreatic beta cells for islet transplantation to become a large-scale therapeutic option in patients with diabetes. This has prompted many laboratories around the world to invigorate their efforts in finding ways for increasing the availability of beta cells or beta cell surrogates that potentially could be transplanted into patients with diabetes. The number of studies analyzing the mechanisms that govern beta cell proliferation and growth in physiological and pathological conditions has increased exponentially during the last decade. These studies exploring the role of growth factors, intracellular signaling molecules and cell cycle regulators constitute the substrate for future strategies aimed at expanding human beta cells in vitro and/or in vivo after transplantation. In this review, we describe the current knowledge on the effects of several beta cell growth factors that have been shown to increase beta cell proliferation and expand beta cell mass in vitro and/or in vivo and that they could be potentially deployed in an effort to increase the number of patients transplanted with islets. Furthermore, we also analyze in this review recent studies deciphering the relevance of these specific islet growth factors as physiological and pathophysiological regulators of beta cell proliferation and islet growth.  相似文献   

13.
14.
To analyze cell lineage in the pancreatic islets, we have irreversibly tagged all the progeny of cells through the activity of Cre recombinase. Adult glucagon alpha and insulin beta cells are shown to derive from cells that have never transcribed insulin or glucagon, respectively. Also, the beta-cell progenitors, but not alpha-cell progenitors, transcribe the pancreatic polypeptide (PP) gene. Finally, the homeodomain gene PDX1, which is expressed by adult beta-cells, is also expressed by alpha-cell progenitors. Thus the islet alpha- and beta-cell lineages appear to arise independently during ontogeny, probably from a common precursor.  相似文献   

15.
The recent success of pancreatic islet transplantation has generated considerable enthusiasm. To better understand the quality and characteristics of human islets used for transplantation, we performed detailed analysis of islet architecture and composition using confocal laser scanning microscopy. Human islets from six separate isolations provided by three different islet isolation centers were compared with isolated mouse and non-human primate islets. As expected from histological sections of murine pancreas, in isolated murine islets alpha and delta cells resided at the periphery of the beta-cell core. However, human islets were markedly different in that alpha, beta, and delta cells were dispersed throughout the islet. This pattern of cell distribution was present in all human islet preparations and islets of various sizes and was also seen in histological sections of human pancreas. The architecture of isolated non-human primate islets was very similar to that of human islets. Using an image analysis program, we calculated the volume of alpha, beta, and delta cells. In contrast to murine islets, we found that populations of islet cell types varied considerably in human islets. The results indicate that human islets not only are quite heterogeneous in terms of cell composition but also have a substantially different architecture from widely studied murine islets.  相似文献   

16.
Although it is agreed that autoimmune destruction of pancreatic islets in diabetic BB rats is rapid, reports of endocrine cell content of islets from BB diabetic rats at the time of onset of diabetes vary considerably. Because of the rapid onset of the disease (hours) and the attendant changes in islet morphology and insulin secretion, it was the aim of this study to compare islet beta-cell numbers to other islet endocrine cells as close to the time of onset of hyperglycemia as possible (within 12 h). As it has been reported that hyperglycemia renders the beta cell insensitive to glucose, the early effects of different levels of insulin therapy (well-controlled vs. poorly controlled glycemia) on islet morphology and insulin secretion were examined. When measured within 12 h of onset, insulin content of BB diabetic islets, measured by morphometric analysis or pancreatic extraction, was 60% of insulin content of control islets. Despite significant amounts of insulin remaining in the pancreas, 1-day diabetic rats exhibited fasting hyperglycemia and were glucose intolerant. The insulin response from the isolated perfused pancreas to glucose and the glucose-dependent insulinotropic hormone, gastric inhibitory polypeptide (GIP), was reduced by 95%. Islet content of other endocrine peptides, glucagon, somatostatin, and pancreatic polypeptide, was normal at onset and at 2 weeks post onset. A group of diabetic animals, maintained in a hyperglycemic state for 7 days with low doses of insulin, were compared with a group kept normoglycemic by appropriate insulin therapy. No insulin could be detected in islets of poorly controlled diabetics, while well-controlled animals had 30% of the normal islet insulin content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Insulin-producing beta cells are known to be highly susceptible to hypoxia, which is a major factor in their destruction after pancreatic islet transplantation. However, whether the glucagon-producing pancreatic islet alpha cells are sensitive to hypoxia is not known. Our objective was to compare the sensitivity of alpha and beta cells to hypoxia. Isolated rat pancreatic islets were exposed to hypoxia (1% oxygen, 94% N(2), 5% CO(2)) for 3 days. The viability of the alpha and beta cells, as well as the stimulus-specific secretion of glucagon and insulin, was evaluated. A quantitative analysis of the proportion of beta to alpha cells indicated that, under normoxic conditions, islet cells were composed mainly of beta cells (87 ± 3%) with only 13 ± 3% alpha cells. Instead, hypoxia treatment significantly increased the proportion of alpha cells (40 ± 13%) and decreased the proportion of beta cells to 60 ± 13%. Using the fluorescent TUNEL assay we found that only a few percent of beta cells and alpha cells were apoptotic in normoxia. In contrast, hypoxia induced an abundance of apoptotic beta cells (61 ± 22%) and had no effect on the level of apoptosis in alpha cells. In conclusion, this study demonstrates that hypoxia results in severe functional abnormality in both beta and alpha cells while alpha cells display significantly decreased rate of apoptosis compared to intensive apoptotic injury of beta cells. These findings have implications for the understanding of the possible role of hypoxia in the pathophysiology of diabetes.  相似文献   

18.
Pancreatic islet cell hyperplasia was studied in hamsters during one to eight weeks of cortisone treatment. Measurement of serum glucose and insulin; pancreatic insulin, glucagon, somatostatin, pancreatic polypeptide as well as islet tissue morphometry were performed. Serum glucose was highest at week 2, followed by mild to moderate hyperglycemia. Serum insulin was increasingly higher from week 1 to week 8. Pancreatic insulin was maximal at week 5 then declined through week 8 in the presence of beta cell neurosis in markedly hyperplastic islets. Pancreatic concentration of somatostatin and pancreatic polypeptide moderately increased more than the control levels; however, compared with the controls, glucagon was reduced by cortisone treatment. Effect of cortisone in the four types of islet cells is discussed, particularly on beta cell hyperplasia, which appears to be a response to decreased insulin binding to the target organs with no changes in receptor concentration.  相似文献   

19.
We have characterized, by electron probe microanalysis, rapidly frozen cultured rat islets at the level of individual secretory granules. Elemental analysis of thin, dried cryosections showed that beta granules could be distinguished by high Zn, Ca, and S, whereas non-beta (mainly alpha) granules contained elevated P and Mg. Although a single granule type predominated in a particular cell, some rebel granules were found in A cells that had the compositional fingerprint of B cell granules. Zn, which was found in millimolar concentrations in B cell granules, was considered a marker for the insulin storage complex. The data indicate that non-B islet cells in the adult pancreas may produce insulin-containing organelles and that, when glucagon and insulin are coexpressed, these hormones are packaged in separate granules.  相似文献   

20.
The scarcity of available islets is an obstacle for clinically successful islet transplantation. One solution might be to increase the efficacy of the limited islets. Isolated islets are exposed to a variety of cellular stressors, and disruption of the cell-matrix connections damages islets. We examined the effect of fibronectin, a major component of the extracellular matrix, on islet viability, mass and function, and also examined whether fibronectin-treated islets improved the results of islet transplantation. Islets cultured with fibronectin for 48 hours maintained higher cell viability (0.146 +/- 0.010 vs. 0.173 +/- 0.007 by MTT assay), and also had a greater insulin and DNA content (86.8 +/- 3.6 vs. 72.8 +/- 3.2 ng/islet and 35.2 +/- 1.4 vs. 30.0 +/- 1.5 ng/islet, respectively) than islets cultured without fibronectin (control). Absolute values of insulin secretion were higher in fibronectin-treated islets than in controls; however, the ratio of stimulated insulin secretion to basal secretion was not significantly different (206.9 +/- 23.3 vs. 191.7 +/- 20.2% when the insulin response to 16.7 mmol/l glucose was compared to that of 3.3 mmol/l glucose); the higher insulin secretion was thus mainly due to larger islet cell mass. The rats transplanted with fibronectin-treated islets had lower plasma glucose and higher plasma insulin levels within 2 weeks after transplantation, and had more favorable glucose tolerance 9 weeks after transplantation. These results indicate that cultivation with fibronectin might preserve islet cell viability, mass and insulin secretory function, which could improve glucose tolerance following islet transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号