首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been postulated that life originated in a similar environment to those of deep sea hydrothermal vents. These environments are located along volcanic ridges and are characterized by extreme conditions such as unique physical properties (temperature, pressure), chemical toxicity, and absence of photosynthesis. However, numerous living organisms have been discovered in these hostile environments, including a variety of microorganisms and many animal species which live in intimate and complex symbioses with sulfo-oxidizing and methanotrophic bacteria. Recent proteomic analyses of the endosymbiont ofRiftia pachyptila and genome sequences of some free living and symbiotic bacteria have provided complementary information about the potential metabolic and genomic capacities of these organisms. The evolution of these adaptive strategies is connected with different mechanisms of genetic adaptation including horizontal gene transfer and . various structural and functional mutations. Therefore, the organisms in this environment are good models for studying the evolution of prokaryotes and eukaryotes as well as different aspects of the biology of adaptation. This review describes some current research concerning metabolic and plausible genetic adaptations of organisms in a deep sea environment, usingRiftia pachyptila as model.  相似文献   

2.
Circadian clocks are ubiquitous and are found in organisms ranging from bacteria to mammals. This ubiquity of occurrence implies adaptive significance, but to date there has been no rigorous empirical evidence to support this. It is believed that an organism possessing circadian clocks gains fitness advantage in two ways: (i) by synchronizing its behavioral and physiological processes to cyclic environmental factors (extrinsic adaptive value); (ii) by coordinating its internal metabolic processes (intrinsic adaptive value). There is preliminary circumstantial evidence to support both. Several studies using organisms living in constant environments have shown that these organisms possess functional circadian clocks, suggesting that circadian clocks may have some intrinsic adaptive value. Studies to assess the adaptive value of circadian clocks in periodic environments suggest that organisms may have a fitness advantage in those periodic environments, which closely match their own intrinsic periodicity. Furthermore, evidence from organisms living in the wild, selection studies, and studies on latitudinal clines suggest that circadian clocks may have an extrinsic adaptive value as well. In this paper, I have presented several hypotheses for the emergence of circadian clocks and have reviewed some major empirical studies suggesting adaptive significance of circadian clocks.  相似文献   

3.
Circadian clocks are ubiquitous and are found in organisms ranging from bacteria to mammals. This ubiquity of occurrence implies adaptive significance, but to date there has been no rigorous empirical evidence to support this. It is believed that an organism possessing circadian clocks gains fitness advantage in two ways: (i) by synchronizing its behavioral and physiological processes to cyclic environmental factors (extrinsic adaptive value); (ii) by coordinating its internal metabolic processes (intrinsic adaptive value). There is preliminary circumstantial evidence to support both. Several studies using organisms living in constant environments have shown that these organisms possess functional circadian clocks, suggesting that circadian clocks may have some intrinsic adaptive value. Studies to assess the adaptive value of circadian clocks in periodic environments suggest that organisms may have a fitness advantage in those periodic environments, which closely match their own intrinsic periodicity. Furthermore, evidence from organisms living in the wild, selection studies, and studies on latitudinal clines suggest that circadian clocks may have an extrinsic adaptive value as well. In this paper, I have presented several hypotheses for the emergence of circadian clocks and have reviewed some major empirical studies suggesting adaptive significance of circadian clocks.  相似文献   

4.
Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein–protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them. This review focuses on the various mannosides that can be found in nature and details their structure. It underlines their involvement in cellular interactions and finally describes the latest discoveries regarding the catalytic machinery and metabolic pathways that bacteria have developed to metabolize them.  相似文献   

5.
Persistently cold environments constitute one of our world's largest ecosystems, and microorganisms dominate the biomass and metabolic activity in these extreme environments. The stress of low temperatures on life is exacerbated in organisms that rely on photoautrophic production of organic carbon and energy sources. Phototrophic organisms must coordinate temperature-independent reactions of light absorption and photochemistry with temperature-dependent processes of electron transport and utilization of energy sources through growth and metabolism. Despite this conundrum, phototrophic microorganisms thrive in all cold ecosystems described and (together with chemoautrophs) provide the base of autotrophic production in low-temperature food webs. Psychrophilic (organisms with a requirement for low growth temperatures) and psychrotolerant (organisms tolerant of low growth temperatures) photoautotrophs rely on low-temperature acclimative and adaptive strategies that have been described for other low-temperature-adapted heterotrophic organisms, such as cold-active proteins and maintenance of membrane fluidity. In addition, photoautrophic organisms possess other strategies to balance the absorption of light and the transduction of light energy to stored chemical energy products (NADPH and ATP) with downstream consumption of photosynthetically derived energy products at low temperatures. Lastly, differential adaptive and acclimative mechanisms exist in phototrophic microorganisms residing in low-temperature environments that are exposed to constant low-light environments versus high-light- and high-UV-exposed phototrophic assemblages.  相似文献   

6.
Persistently cold environments constitute one of our world's largest ecosystems, and microorganisms dominate the biomass and metabolic activity in these extreme environments. The stress of low temperatures on life is exacerbated in organisms that rely on photoautrophic production of organic carbon and energy sources. Phototrophic organisms must coordinate temperature-independent reactions of light absorption and photochemistry with temperature-dependent processes of electron transport and utilization of energy sources through growth and metabolism. Despite this conundrum, phototrophic microorganisms thrive in all cold ecosystems described and (together with chemoautrophs) provide the base of autotrophic production in low-temperature food webs. Psychrophilic (organisms with a requirement for low growth temperatures) and psychrotolerant (organisms tolerant of low growth temperatures) photoautotrophs rely on low-temperature acclimative and adaptive strategies that have been described for other low-temperature-adapted heterotrophic organisms, such as cold-active proteins and maintenance of membrane fluidity. In addition, photoautrophic organisms possess other strategies to balance the absorption of light and the transduction of light energy to stored chemical energy products (NADPH and ATP) with downstream consumption of photosynthetically derived energy products at low temperatures. Lastly, differential adaptive and acclimative mechanisms exist in phototrophic microorganisms residing in low-temperature environments that are exposed to constant low-light environments versus high-light- and high-UV-exposed phototrophic assemblages.  相似文献   

7.
Environmental oxygen availability may play an important role in the evolution of polar marine organisms, as suggested by the physiological and biochemical strategies adopted by these organisms to acquire, deliver and scavenge oxygen. Stress conditions such as extreme temperatures increase the production of reactive oxygen species (ROS) in cells. Thus, in order to prevent cellular damage, adjustments in antioxidant defences are needed to maintain the steady-state concentration of ROS. Cold-adapted bacteria are generally acknowledged to achieve their physiological and ecological success in cold environments through structural and functional properties developed in their genomes. A short overview on the molecular adaptations of polar bacteria and in particular on the biological function of oxygen-binding proteins in Pseudoalteromonas haloplanktis TAC125, selected as a model, will be provided together with the role of oxygen and oxidative/nitrosative stress in regulating adaptive responses at cellular and molecular levels.  相似文献   

8.
The search for novel biologically active molecules has extended to the screening of organisms associated with less explored environments. In this sense, Oceans, which cover nearly the 67% of the globe, are interesting ecosystems characterized by a high biodiversity that is worth being explored. As such, marine microorganisms are highly interesting as promising sources of new bioactive compounds of potential value to humans. Some of these microorganisms are able to survive in extreme marine environments and, as a result, they produce complex molecules with unique biological interesting properties for a wide variety of industrial and biotechnological applications. Thus, different marine microorganisms (fungi, myxomycetes, bacteria, and microalgae) producing compounds with antioxidant, antibacterial, apoptotic, antitumoral and antiviral activities have been already isolated. This review compiles and discusses the discovery of bioactive molecules from marine microorganisms reported from 2018 onwards. Moreover, it highlights the huge potential of marine microorganisms for obtaining highly valuable bioactive compounds.  相似文献   

9.
Saline and hypersaline environments make up the largest ecosystem on earth and the organisms living in such water-restricted environments have developed unique ways to cope with high salinity. As such these organisms not only carry significant industrial potential in a world where freshwater supplies are rapidly diminishing, but they also shed light upon the origins and extremes of life. One largely overlooked and potentially important feature of many salt-loving organisms is their ability to produce fructans, fructose polymers widely found in various mesophilic Eubacteria and plants, with potential functions as storage carbohydrates, aiding stress tolerance, and acting as virulence factors or signaling molecules. Intriguingly, within the whole archaeal domain of life, Archaea possessing putative fructan biosynthetic enzymes were found to belong to the extremely halophilic class of Halobacteria only, indicating a strong, yet unexplored link between the fructan syndrome and salinity. In fact, this link may indeed lead to novel strategies in fighting the global salinization problem. Hence this review explores the unknown world of fructanogenic salt-loving organisms, where water scarcity is the main stress factor for life. Within this scope, prokaryotes and plants of the saline world are discussed in detail, with special emphasis on their salt adaptation mechanisms, the potential roles of fructans and fructosyltransferase enzymes in adaptation and survival as well as future aspects for all fructanogenic salt-loving domains of life.  相似文献   

10.
鲸豚类作为哺乳动物长期演化中较为特殊的一支,它们所有的生命活动都在水中完成,所以它们在身体结构、生理机能以及生态习性等方面都发展形成了适用于水中生活的完善的适应策略。大部分鲸豚类动物生活在海洋中,只有少部分生活在淡水里,但不管是生活在高渗环境中的海洋鲸类还是生活在低渗环境中的淡水鲸类,维持水盐平衡以及渗透压的内稳态是它们所面临的一个共同问题。鲸豚类究竟是通过怎样的渗透调节机制来实现对不同渗透环境的适应呢?它们在身体结构、生理调节和分子机制上发展了哪些独特的适应策略?本文对近一个世纪以来有关鲸豚类渗透调节的研究成果进行了系统的归纳总结,并尝试从水盐来源、代谢途径、肾脏和皮肤的生理结构、水盐代谢的内分泌调节以及渗透调节的分子机制等几个方面对鲸类动物的渗透调节机制进行全面阐述,并就未来该领域的研究方向及亟需深入研究的科学问题进行了探讨。  相似文献   

11.
Microbial communities in oil-contaminated seawater   总被引:14,自引:0,他引:14  
Although diverse bacteria capable of degrading petroleum hydrocarbons have been isolated and characterized, the vast majority of hydrocarbon-degrading bacteria, including anaerobes, could remain undiscovered, as a large fraction of bacteria inhabiting marine environments are uncultivable. Using culture-independent rRNA approaches, changes in the structure of microbial communities have been analyzed in marine environments contaminated by a real oil spill and in micro- or mesocosms that mimic such environments. Alcanivorax and Cycloclasticus of the gamma-Proteobacteria were identified as two key organisms with major roles in the degradation of petroleum hydrocarbons. Alcanivorax is responsible for alkane biodegradation, whereas Cycloclasticus degrades various aromatic hydrocarbons. This information will be useful to develop in situ bioremediation strategies for the clean-up of marine oil spills.  相似文献   

12.
Circadian (∼24 h) clock regulated biological rhythms have been identified in a wide range of organisms from prokaryotic unicellular cyanobacteria to higher mammals. These rhythms regulate an enormous variety of processes including gene expression, metabolic processes, activity and reproduction. Given the widespread occurrence of circadian systems it is not surprising that extensive efforts have been directed at understanding the adaptive significance of circadian rhythms. In this review we discuss the approaches and findings that have resulted. In studies on organisms in their natural environments, some species show adaptations in their circadian systems that correlate with living at different latitudes, such as clines in circadian clock properties. Additionally, some species show plasticity in their circadian systems suggested to match the demands of their physical and social environment. A number of experiments, both in the field and in the laboratory, have examined the effects of having a circadian system that does not resonate with the organism's environment. We conclude that the results of these studies suggest that having a circadian system that matches the oscillating environment is adaptive.  相似文献   

13.
Many microbes can be cultured as single-species communities. Often, these colonies are controlled and maintained via the secretion of metabolites. Such metabolites have been an invaluable resource for the discovery of therapeutics (e.g. penicillin, taxol, rapamycin, epothilone). In this article, written for a special issue on imaging mass spectrometry, we show that MALDI-imaging mass spectrometry can be adapted to observe, in a spatial manner, the metabolic exchange patterns of a diverse array of microbes, including thermophilic and mesophilic fungi, cyanobacteria, marine and terrestrial actinobacteria, and pathogenic bacteria. Dependent on media conditions, on average and based on manual analysis, we observed 11.3 molecules associated with each microbial IMS experiment, which was split nearly 50:50 between secreted and colony-associated molecules. The spatial distributions of these metabolic exchange factors are related to the biological and ecological functions of the organisms. This work establishes that MALDI-based IMS can be used as a general tool to study a diverse array of microbes. Furthermore the article forwards the notion of the IMS platform as a window to discover previously unreported molecules by monitoring the metabolic exchange patterns of organisms when grown on agar substrates.  相似文献   

14.
The discovery of piezophiles (previously referred to as barophiles) prompted researchers to investigate the survival strategies they employ in high-pressure environments. There have been innovative high-pressure studies on biological processes applying modern techniques of genetics and molecular biology in bacteria and yeasts as model organisms. Recent advanced studies in this field have shown unexpected outcomes in microbial growth, physiology and survival when living cells are subjected to high hydrostatic pressure. The effects are conceptually dependent on the sign and magnitude of volume changes associated with any chemical reaction in the cells. Nevertheless, it is difficult to explain the pressure effects on complex metabolic networks based on a simple volume law. The challenges in piezophysiology are to discover whether the physiological responses of living cells to high pressure are relevant to their growth and to identify the critical factors in cell viability and lethality under high pressure from the general and organism-specific viewpoints.  相似文献   

15.
The function of microbial interactions is to enable microorganisms to survive by establishing a homeostasis between microbial neighbors and local environments. A microorganism can respond to environmental stimuli using metabolic exchange-the transfer of molecular factors, including small molecules and proteins. Microbial interactions not only influence the survival of the microbes but also have roles in morphological and developmental processes of the organisms themselves and their neighbors. This, in turn, shapes the entire habitat of these organisms. Here we highlight our current understanding of metabolic exchange as well as the emergence of new technologies that are allowing us to eavesdrop on microbial conversations comprising dozens to hundreds of secreted metabolites that control the behavior, survival and differentiation of members of the community. The goal of the rapidly advancing field studying multifactorial metabolic exchange is to devise a microbial 'Rosetta stone' in order to understand the language by which microbial interactions are negotiated and, ultimately, to control the outcome of these conversations.  相似文献   

16.
17.
The cytoplasmic membrane of bacteria and archaea determine to a large extent the composition of the cytoplasm. Since the ion and in particular the proton and/or the sodium ion electrochemical gradients across the membranes are crucial for the bioenergetic conditions of these microorganisms, strategies are needed to restrict the permeation of these ions across their cytoplasmic membrane. The proton and sodium permeabilities of all biological membranes increase with the temperature. Psychrophilic and mesophilic bacteria, and mesophilic, (hyper)thermophilic and halophilic archaea are capable of adjusting the lipid composition of their membranes in such a way that the proton permeability at the respective growth temperature remains low and constant (homeo-proton permeability). Thermophilic bacteria, however, have more difficulties to restrict the proton permeation across their membrane at high temperatures and these organisms have to rely on the less permeable sodium ions for maintaining a high sodium-motive force for driving their energy requiring membrane-bound processes. Transport of solutes across the bacterial and archaeal membrane is mainly catalyzed by primary ATP driven transport systems or by proton or sodium motive force driven secondary transport systems. Unlike most bacteria, hyperthermophilic bacteria and archaea prefer primary ATP-driven uptake systems for their carbon and energy sources. Several high-affinity ABC transporters for sugars from hyperthermophiles have been identified and characterized. The activities of these ABC transporters allow these organisms to thrive in their nutrient-poor environments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Green algae are major components of biological soil crusts in alpine habitats. Together with cyanobacteria, fungi and lichens, green algae form a pioneer community important for the organisms that will succeed them. In their high altitudinal habitat these algae are exposed to harsh and strongly fluctuating environmental conditions, mainly intense irradiation, including ultraviolet radiation, and lack of water leading to desiccation. Therefore, green algae surviving in these environments must have evolved with either avoidance or protective strategies, as well as repair mechanisms for damage. In this review we have highlighted these mechanisms, which include photoprotection, photochemical quenching, and high osmotic values to avoid water loss, and in some groups flexibility of secondary cell walls to maintain turgor pressure even in water-limited situations. These highly specialized green algae will serve as good model organisms to study desiccation tolerance or photoprotective mechanisms, due to their natural capacity to withstand unfavorable conditions. We point out the urgent need for modern phylogenetic approaches in characterizing these organisms, and molecular methods for analyzing the metabolic changes involved in their adaptive strategies.  相似文献   

19.
Interest in understanding prokaryotic biotransformation of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that have been isolated from different environments and that possess different metabolic capabilities. This has occurred in addition to the continuation of in-depth comprehensive characterizations of previously isolated organisms, such as Mycobacterium vanbaalenii PYR-1. New metabolites derived from prokaryotic biodegradation of four- and five-ring PAHs have been characterized, our knowledge of the enzymes involved in these transformations has been advanced and HMW PAH biodegradation pathways have been further developed, expanded upon and refined. At the same time, investigation of prokaryotic consortia has furthered our understanding of the capabilities of microorganisms functioning as communities during HMW PAH biodegradation.  相似文献   

20.
The development of new methods, including genomics, which can even be applied to unculturable microorganisms, has significantly increased our knowledge about bacterial pathogenesis and symbiosis and, in consequence, is profoundly modifying our views on the evolution and the genetic and physiological basis of bacteria-host interactions. The presentations at this symposium revealed conceptual links between bacterial pathogenesis and symbiosis. The close co-operation of experts in both fields will result in significant synergy and new insights into basic mechanisms of bacteria-host interactions and their evolution. The meeting provided fascinating news about the genetic and metabolic consequences that the change in their lifestyle had for bacteria that developed from free-living to permanent host-associated organisms exemplified by intracellular pathogens or symbionts. In addition, surprising similarities but also striking differences between the strategies involved in the establishment of a symbiotic versus a parasitic lifestyle can be noted. In the long run, the characterization of such differences might lead to lifestyle prediction or to an evaluation of the pathogenic potential of newly isolated bacteria via the definition of genetic and/or metabolic signatures characteristic for pathogenic or symbiotic organisms. Moreover, it is expected that these investigations will lead to new strategies for the treatment or prevention of bacterial infections, or the avoidance of pathogen transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号