首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Chicken primordial germ cells (PGCs) collected from thecirculating blood in embryonic vessels at stage 13–15 were inter-embryonically, homo- or hetero-sexually,transferred to the blood vessels of recipient embryosat the same stage of development. Approximately 30%of the embryos treated with hetero-sexual transfer of PGCs had abnormal gonads, showing ovotestis likeorgans. In this case, some of these reversed gonadswere considered to be dependent upon the ratio of thenumber of PGCs from donor to recipient embryos. Oneof the treated embryos possessed completely reversedorgans. Therefore, the introduction of exogenousembryonic vessels was thought to be also useful forproducing transgened gonads.  相似文献   

2.
In present study, chicken primordial germ cells (PGCs) were transferred into quail embryos to investigate the development of these germ cells in quail ovary. Briefly, 2 microl of chicken embryonic blood (stage 14) or about 100 purified circulating PGCs were transferred into quail embryo. Contribution of chicken PGCs were detected in gonads of chimeric quail embryos (stage 28) by immunocytochemical staining of cell surface antigen SSEA-1, and by in situ hybridization (ISH) with female chicken specific DNA probe. As a result, 52.0+/-43.2 (n=18) and 42.7+/-27.3 (n=17) chicken PGCs were found in the gonads of chimeric quail embryo that was injected with chicken embryonic blood (stage 14) and about 100 purified circulating PGCs, respectively. Furthermore, the ovaries of 81.8% (9/11) 12 days post incubation (dpi) chimeric quail embryos were observed with a mean of 457.6+/-237.1 female chicken PGCs-derived oogonia scattered in ovarian cortex area. In 9 out of 12 newly hatched and one week old chimeric quail chicks, on average of 2883.0+/-1924.1 primary oocytes and 3 follicles derived from chicken PGCs were found, respectively. The present results suggest that chicken female PGCs are able to migrate, colonize, proliferate and differentiate into oogonia, primary oocytes in chimeric quail ovary.  相似文献   

3.
The present study was conducted to apply an interspecies germ cell transfer technique to wild bird reproduction. Pheasant (Phasianus colchicus) primordial germ cells (PGCs) retrieved from the gonads of 7-day-old embryos were transferred to the bloodstream of 2.5-day-old chicken (Gallus gallus) embryos. Pheasant-to-chicken germline chimeras hatched from the recipient embryos, and 10 pheasants were derived from testcross reproduction of the male chimeras with female pheasants. Gonadal migration of the transferred PGCs, their involvement in spermatogenesis, and production of chimeric semen were confirmed. The phenotype of pheasant progenies derived from the interspecies transfer was identical to that of wild pheasants. The average efficiency of reproduction estimated from the percentage of pheasants to total progenies was 17.5%. In conclusion, interspecies germ cell transfer into a developing embryo can be used for wild bird reproduction, and this reproductive technology may be applicable in conserving endangered bird species.  相似文献   

4.
Germline chimeric chickens were produced by the transfer of primordial germ cells (PGCs) or blastoderm cells. The hatchability of eggs produced by transfer of exogenous PGCs is usually low. The purpose of the present study was investigated to express (3-hydroxyacyl CoA dehydrogenase) 3HADH which is a limiting enzyme in the beta-oxidation of fatty acids for hatching energy. Manipulations of both donor and recipient eggshells were as follows. A window approximately 10 mm in diameter was opened at the pointed end of the eggs at stage 12–15 days incubation. Donor PGCs, taken from the blood vessels of donor embryos from fertilized eggs at the same stage of development, were injected into the blood vessels of recipient embryos. The muscles of chicks in the eggs with transferred PGCs were removed after 20 days of incubation. A cDNA was prepared from the total RNA. The expression of 3HADH in the manipulated embryos was investigated using real-time PCR analysis. Real-time PCR analysis showed that expression of 3HADH was reduced in the muscles of manipulated embryos.  相似文献   

5.
This study was conducted to evaluate whether the sex of donor primordial germ cells (PGCs) influences production of chimeric semen from recipient hatchlings produced by interspecies transfer between pheasant (Phasianus colchicus) and chicken (Gallus gallus). Pheasant PGCs were retrieved from 7-d-old embryos and subsequently transferred into circulatory blood of 2.5-d-old (Stage 17) embryos. The sex of embryos was discerned 3 to 6 days after laying, and in preliminary study, overall rate of embryo survival after sexing was 74.6% with male-to-female ratio of 0.49 to 0.51. In Experiment 1, magnetic-activated cell sorting (MACS) using QCR1 antibody was effective for enriching the population of male and female PGCs in gonadal cells (9.2- to 12.5-fold and 10.8- to 19.5-fold increase, respectively). In Experiment 2, an increase in the number of hatchlings producing chimeric semen was detected after the homosexual transfer of male-to-male compared with that after the heterosexual transfer of female-to-male (68% to 88%). Significant increase was found in the frequency of chimeric semen production (0.96 to 1.68 times); production of pheasant progenies by artificial insemination using chimeric semen was also increased in the homosexual transfer (0 to 3 cases). In conclusion, the homosexual PGC transfer of male-to-male yielded better rate of generating pheasant progenies after test cross-reproduction than that of the heterosexual transfer of female-to-male, which could improve the efficiency of interspecies germ cell transfer system.  相似文献   

6.
A novel system has been developed to determine the origin and development of primordial germ cells (PGCs) in avian embryos directly. Approximately 700 cells were removed from the center of the area pellucida, the outer of the area pellucida, and the area opaca of the stage X blastoderm (Eyal-Giladi and Kochav, 1976; Dev Biol 49:321–337). When the cells were removed from the center of the area pellucida, the mean number of circulating PGCs per 1 μl of blood was significantly decreased to 13 (P < 0.05) in the embryo at stage 15 (Hamburger and Hamilton, 1951: J Morphol 88:49–92) as compared to intact embryos of 51. When the removed recipient cells from the center of the area pellucida were replenished with 500 donor cells, no reduction in the PGC number was observed. The removal of cells from the outer of area pellucida or from the area opaca had no effect on the number of PGCs. When another set of the manipulated embryos were cultured ex vivo to hatching and reared to sexual maturity, the absence of germ cells and the degeneration of seminiferous tubules were observed in resulting chickens derived from the blastoderm from which the cells were removed from the center of the area pellucida. Chimeric embryos produced by the male donor cells and the female recipient contained the female-derived cells at 97.2% in the whole embryo and 94.3% in the erythrocytes at 5 days of incubation. At 5–7 days of incubation, masculinization was observed in about one half of the mixed-sex embryos. The proportions of the female-derived cells in the whole embryo and in the erythrocytes were 76.5% and 80.2% at 7 days to 55.7% and 62.5% at 10 days of incubation, respectively. When the chimeras reached their sexual maturity, they were test mated to assess donor contribution to their germline. Five of six male chimeras (83%) and three of five female chimeras (60%) from male donor cells and a female recipient embryo from which 700 cells at the center of area pellucida were removed were germline chimeras. Three of the five male germline chimeras (60%) and one of the three female germline chimeras (33%) transmitted exclusively (100%) donor-derived gametes into the offspring. When embryonic cells were removed from the outer of area pellucida or area opaca, regardless of the sex combination of the donor and the recipient, the transmission of the donor-derived gametes was essentially null. The findings in the present studies demonstrated, both in vivo and in vitro, that the PGCs originate in the central part of the area pellucida and that the developmental fate to germ cell (PGCs) had been destined at stage X blastoderm in chickens. Mol. Reprod. Dev. 48:501–510, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
This study was carried out to elucidate whether primordial germ cells, obtained from embryonic blood and transferred into partially sterilized male and female recipient embryos, could differentiate into functional gametes and give rise to viable offspring. Manipulated embryos were cultured until hatching and the chicks were raised until maturity, when they were mated. When the sex of the donor primordial germ cells and the recipient embryo was the same, 15 out of 22 male chimaeric chickens (68.2%) and 10 out of 16 female chimaeric chickens (62.5%) produced donor-derived offspring. When the sex of the donor primordial germ cells and the recipient embryo was different, 4 out of 18 male chimaeric chickens (22.2%) and 2 out of 18 female chimaeric chickens (11.1%) produced donor-derived offspring. The rates of donor-derived offspring from the chimaeric chickens were 0.6-40.0% in male donor and male recipient and 0.4-34.9% in female donor and female recipient. However, the rates of donor-derived offspring from the chimaeric chickens were 0.4-0.9% in male donor and female recipient and 0.1-0.3% in female donor and male recipient. The presence of W chromosome-specific repeating sequences was detected in the sperm samples of male chimaeric chickens produced by transfer of female primordial germ cells. These results indicate that primordial germ cells isolated from embryonic blood can differentiate into functional gametes giving rise to viable offspring in the gonads of opposite-sex recipient embryos and chickens, although the efficiency was very low.  相似文献   

8.
Kim JN  Lee YM  Park TS  Jung JG  Cho BW  Lim JM  Han JY 《Theriogenology》2005,63(4):1038-1049
The developmental similarity between the chicken and pheasant (Phasianus colchicus) allows the novel biotechnologies developed in the chicken to be applied to the production of transgenic pheasants and interspecies germline chimeras. To detect pheasant primordial germ cells (PGCs) efficiently, which is important for inducing germline transmission, the ultrastructure of PGCs and their reactivity to several antibodies (2C9, QB2, anti-SSEA-1, and QCR1) and periodic acid-Schiff's solution (PAS) were examined. To obtain PGCs, blood was taken from embryos incubated for 62-72 h or from gonads from embryos incubated for 156-216 h. The PGCs collected from both sources had the typical ultrastructure of pluripotent cells: a large nucleus with a distinct nucleolus, a high ratio of nuclear to cytoplasmic volume, and a distinct cytoplasmic membrane. In comparing the morphology of PGCs collected from different sites, more mitochondria and better-developed membrane microvilli were found in gonadal PGCs than in circulating PGCs. The nucleus of gonadal PGCs was flattened and had a large eccentrically positioned nucleolus. Of the antibodies tested, only QCR1 antibody reacted with an epitope in pheasant PGCs, and no specific signal was detected to other antibodies. The temporal change in the PGC populations in the blood and gonads of embryos was examined. In blood, the population was greater (P < 0.0001) in embryos incubated for 64 h than in embryos incubated for 62 or 66-72 h (31.4 versus 5.6-16.2 microL(-1)). In embryonic gonads, the number of PGCs increased continuously from 156 to 216 h of incubation (193-2,718 cells/embryo), although the ratio of PGCs to total gonadal cells did not change significantly (0.50-0.61%). In conclusion, pheasant PGCs have typical germ cell morphology and possess the QCR1 epitope. Circulating blood and the gonads of embryos incubated for 64 and 216 h, respectively, are good sources of PGCs.  相似文献   

9.
Busulfan (1,4-butanediol dimethanesulfonate) was used to deplete endogenous germ cells for the enhanced production of chicken germline chimeras. Utilizing immunohistochemical identification of primordial gem cells (PGCs) in Stage 27 chicken embryos, two delivery formulations were compared relative to the degree of endogenous PGC depletion, a busulfan suspension (BS) and a solublized busulfan emulsion (SBE). Both busulfan treatments resulted in a significant reduction in PGCs when compared to controls. However, the SBE resulted in a more consistent and extensive depletion of PGCs than that observed with the BS treatment. Repopulation of SBE-treated embryos with exogenous PGCs resulted in a threefold increase of PGCs in Stage 27 embryos. Subsequently, germline chimeras were produced by the transfer of male gonadal PGCs from Barred Plymouth Rock embryos into untreated and SBE-treated White Leghorn embryos. Progeny testing of the presumptive chimeras with adult Barred Plymouth Rock chickens was performed to evaluate the efficiency of germline chimera production. The frequency of germline chimerism in SBE-treated recipients increased fivefold when compared to untreated recipients. The number of donor-derived offspring from the germline chimeras also increased eightfold following SBE-treatment of the recipient embryos. These results demonstrated that the administration of a busulfan emulsion into the egg yolk of unincubated eggs improved the depletion of endogenous PGCs in the embryo and enhanced the efficiency of germline chimera production.  相似文献   

10.
11.
为获得鸡原始生殖细胞(primordial germ cells,PGCs)的最佳转染效率,本研究比较不同质粒用量和不同细胞数在3种转染试剂(Lipofectamine 2000、3000和LTX&Plus Reagent)中PGCs的转染效率,利用荧光激活细胞分选技术(fluorescence activated cell sorting technology,FACS)辅助优化Lipofectamine 3000转染试剂,经FACS进一步分选获得带绿色荧光蛋白(GFP)的PGCs,继续培养3周后,移植回注到受体鸡胚中,移植3.5 d后分离性腺拍照观察。结果显示,转染试剂Lipofectamine 3000的转染效率最高,质粒、Lipofectamine 3000转染试剂和PGCs细胞数的配比为3μg:4μL:0.5×104个,转染5 h转染效率最高,达到23.4%,与现有的研究结果相比提高了2倍以上。移植回注PGCs到受体鸡胚中,荧光显微镜观察到鸡胚性腺中有GFP阳性细胞。本研究综合考虑转染试剂、质粒用量和细胞数量的影响因素以优化PGCs的转染条件,为高效制备转基因鸡及基因编辑鸡的研究奠定基础。  相似文献   

12.
Kang SJ  Sohn SH  Kang KS  Lee HC  Lee SK  Choi JW  Han JY 《Theriogenology》2011,75(4):696-706
Interspecific hybrids provide insights into fundamental genetic principles, and may prove useful for biotechnological applications and as tools for the conservation of endangered species. In the present study, interspecies hybrids were generated between the Korean ring-necked pheasant (Phasianus colchicus) and the White Leghorn chicken (Gallus gallus domesticus). We determined whether these hybrids were good recipients for the production of germline chimeric birds. PCR-based species-specific amplification and karyotype analyses showed that the hybrids inherited genetic material from both parents. Evaluation of biological function indicated that the growth rates of hybrids during the exponential phase (body weight/week) were similar to those of the pheasant but not the chicken, and that the incubation period for hatching was significantly different from that of both parents. Primordial germ cells (PGCs) of hybrids reacted with a pheasant PGC-specific antibody and circulated normally in blood vessels. The peak time of hybrid PGC migration was equivalent to that of the pheasant. In late embryonic stages, germ cells were detected by the QCR1 antibody on 15 d male gonads and were normally localized in the seminiferous cords. We examined the migration ability and developmental localization of exogenous PGCs transferred into the blood vessels of 63 h hybrid embryos. Donor-derived PGCs reacted with a donor-specific antibody were detected on 7 d gonads and the seminiferous tubules of hatchlings. Therefore, germ cell transfer into developing embryos of an interspecies hybrid can be efficiently used for the conservation of threatened animals and endangered species, and many biotechnological applications.  相似文献   

13.
Blood was collected from Stage 13 to 14 (1) chick embryos. Primordial germ cells (PGCs) were separated from blood cells by Ficoll density gradient centrifugation. One hundred Rhode Island Red PGCs per embryo were transferred to the blood stream of Stage 14 to 15 White Leghorn embryos. Also, one hundred White Leghorn PGCs per embryo were transferred to the blood stream of Stage 14 to 15 Rhode Island Red embryos. Hatched male and female chicks were raised until sexual maturity, and progeny tests were performed by mating these PGC recipients with Rhode Island Red chickens of the opposite sex. Chicks apparently derived from the transferred PGCs, based on the feather color of the chicks, were produced from all 4 possible mating combinations. The present results indicate that the germ line of PGC recipient chickens consists of 2 distinct populations of germ cells.  相似文献   

14.
The ability of primordial germ cells (PGCs) transferred from donor to recipient embryos to form functional gametes was assessed using feather colour as a phenotypic marker. Donor primordial germ cells were obtained in blood samples taken from Dwarf White Leghorn embryos, homozygous for the dominant allele at the locus for 'dominant white' plumage (I), which had been incubated for 52 h. Blood samples containing PGCs were transferred by intravascular injection to Barred Plymouth Rock embryos (ii) incubated for 53, 72 and 96 h. Of the embryos which hatched, 28 were male and 31 were female. All chicks were raised to sexual maturity and test mated with Barred Plymouth Rock fowl. All of the 3117 offspring exhibited the typical Barred Plymouth Rock phenotype; no Barred Plymouth Rock x Dwarf White Leghorn chicks were obtained. The results of this study suggest that the frequency of transmission of the donor line genotype after PGC transfer must be improved for this technique to be useful for the routine development of transgenic poultry.  相似文献   

15.
In our previous studies, we demonstrated that female primordial germ cells (PGCs) have the ability to differentiate into W chromosome-bearing (W-bearing) spermatozoa in male gonads of germline chimeric chickens. In this study, to investigate the differentiation pattern of female PGCs in male gonads in chickens, three germline chimeric chickens were generated by injecting female PGCs into the male recipient embryos. After these male chimeras reached sexual maturity, the semen samples were analyzed for detecting W-bearing cells by PCR and in situ hybridization analyses. The results indicated that the female PGCs had settled and differentiated in their testes. A histological analysis of the seminiferous tubule in those chimeras demonstrated that the W-bearing spermatogonia, spermatocytes, and round spermatids accounted for 30.8%, 32.7%, and 28.4%, respectively. However, the W-bearing elongating spermatid was markedly lower (7.7%) as compared to the W-bearing round spermatid. The W-bearing spermatozoa were hardly ever observed (0.2%). We concluded that although female PGCs in male gonads are capable of passing through the first and second meiotic division in adapting themselves to a male environment, they are hardly complete spermiogenesis.  相似文献   

16.
This study was conducted to evaluate whether immunomagnetic treatment could improve the retrieval and migration capacity of avian gonadal primordial germ cells (gPGCs) collected from gonads in 5.5-day-old chick and 5-day-old quail embryos, respectively. Collected gPGCs were loaded into a magnetic-activated cell sorter (MACS) after being conjugated with specific gPGC antibodies and either MACS-treated or non-treated cells in each species were subsequently transferred to the recipient embryos. MACS treatment significantly (P < 0.05) increased the population ratio of gPGCs in gonadal cells retrieved (0.74 to 33.4% in the chicken and 2.68 to 45.1% in the quail). This was due to decreased number of non-gPGCs in total cell population. MACS treatment further enhanced gonadal migration of gPGCs transferred in both species (10% vs. 80-85% in the chicken and 10-15% vs. 70-80% in the quail). Increase in the number of microinjected cells up to 600 cells/embryo did not eliminate such promoting effect. In conclusion, MACS treatment greatly increased the population ratio of avian gPGCs in gonadal cells, resulting improved gonadal migration in recipient embryos.  相似文献   

17.
A previous report from our laboratory documented successful production of quail (Coturnix japonica) germline chimeras by transfer of gonadal primordial germ cells (gPGCs). Subsequently, this study was designed to evaluate whether gPGCs can be maintained in vitro for extended period, and furthermore, these cultured PGCs can induce germline transmission after transfer into recipient embryos. In experiment 1, gonadal cells from the two strains (wild-type plumage (WP) and black (D) quail) were cultured in vitro for 10 days. Using antibody QCR1, we detected a continuous, significant (P = 0.0002) increase in the number of WP, but not D, PGCs. QCR1-positive WP colonies began to form after 7 days in culture. On Day 10 of culture, 803 WP PGCs were present as a result of a continuous increase, whereas no D PGC colonies could be detected and the D gonadal stroma cells were rolled up. Differences in the PGCs or the gonadal stroma cells of the two different strains might account for these differences. In experiment 2, WP PGC colonies were maintained in vitro up to Day 20 of culture, and 10- or 20-day-cultured PGCs were microinjected into dorsal aortas of 181 recipient D embryos. Thirty-five (19.3%) of the transplanted embryos hatched after incubation, and 25 (71.4%) of the hatchlings reached sexual maturity. Testcrossing of the sexually mature hatchlings resulted in three (10 days, 33.3%) and eight (20 days, 50.0%) germline chimeras respectively. This report is the first to describe successful production of germline chimera by transfer of in vitro-cultured gPGCs in quail.  相似文献   

18.
Surgical embryo transfer in the silver fox was investigated as part of a larger project concerning the conservation of endangered canine species using modern artificial reproduction techniques with the farmed fox as a model. The animals were chosen on the basis of synchrony in natural oestrus. The timing of ovulation and artificial insemination was determined by measuring electrical resistance in the vagina. Twenty-nine embryos were flushed from eight humanely killed donor females and transferred surgically into the uteri of eight recipients. One recipient female gave birth to two male pups 47 days after the transfer of four expanded blastocysts and one embryo at the 16-cell stage derived from a donor female flushed 10 days after artificial insemination.  相似文献   

19.
Immunoreactive inhibin was measured in plasma, amniotic fluid, gonads, and Wolffian bodies (mesonephros) of male and female chick embryos during the last week of their 21-day incubation period. The antiserum used was raised against bovine 31-kDa inhibin and was validated for RIA of inhibin in the chicken. Amniotic fluid concentrations of immunoreactive inhibin were relatively low and remained constant between Days 14 and 19. Plasma concentrations, in contrast, were high on Day 14 but declined steeply thereafter. Significantly higher plasma concentrations were noted in male than in female embryos and an even more pronounced sex difference was observed for the gonadal inhibin content. On Day 21, testes contained approximately 35 times more immunoreactive inhibin than ovaries. Surprisingly, inhibin contents in testes and male Wolffian bodies increased rather than decreased towards the end of the incubation period, indicating that gonadal and plasma inhibin concentrations are regulated, at least in part, independently. It is concluded that the chick embryo presents a convenient model for study of the secretion, the control, and the role of inhibin from fetal origin. The sex difference in plasma and gonadal inhibin suggests a differential role of inhibin in the development of the reproductive system of both sexes.  相似文献   

20.
The chicken embryo represents a suitable model for studying vertebrate sex determination and gonadal sex differentiation. While the basic mechanism of sex determination in birds is still unknown, gonadal morphogenesis is very similar to that in mammals, and most of the genes implicated in mammalian sex determination have avian homologues. However, in the chicken embryo, these genes show some interesting differences in structure or expression patterns to their mammalian counterparts, broadening our understanding of their functions. The novel candidate testis-determining gene in mammals, DMRT1, is also present in the chicken, and is expressed specifically in the embryonic gonads. In chicken embryos, DMRT1 is more highly expressed in the gonads and Müllerian ducts of male embryos than in those of females. Meanwhile, expression of the orphan nuclear receptor, Steroidogenic Factor 1 (SF1) is up-regulated during ovarian differentiation in the chicken embryo. This contrasts with the expression pattern of SF1 in mouse embryos, in which expression is down-regulated during female differentiation. Another orphan receptor initially implicated in mammalian sex determination, DAX1, is poorly conserved in the chicken. A chicken DAX1 homologue isolated from a urogenital ridge library lacked the unusual DNA-binding motif seen in mammals. Chicken DAX1 is autosomal, and is expressed in the embryonic gonads, showing somewhat higher expression in female compared to male gonads, as in mammals. However, expression is not down-regulated at the onset of testicular differentiation in chicken embryos, as occurs in mice. These comparative data shed light on vertebrate sex determination in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号