首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multiplex RT‐PCR technique has been developed for differentiation of velogenic, mesogenic and lentogenic pathotypes of Newcastle disease virus (NDV), using a set of three oligonucleotide primers designed from NDV genomic RNA (P1, P2 and P3). The primer pair P1 and P2 generated a RT‐PCR product of 204 bp, only with RNA from velogenic and mesogenic strains, whereas the P1 and P3 generated a 364 bp product only with RNA from mesogenic and lentogenic strains. Thirty four NDV strains, including some reference strains (known pathotypes), NDV field isolates and NDV vaccine strains, as well as other avian virus strains, were tested with multiplex RT‐PCR. All reference strains tested were differentiated in agreement with their intracerebral pathogenicity index (ICPI) values or with the pathotypes known in previous reports. The nucleotide sequence analysis of RT‐PCR products for four NDV strains was fully in agreement with the RT‐PCR characterisations of these strains. The RT‐PCR results of other avian RNA viruses further confirmed the reliability and specificity of this technique. However, the RT‐PCR failed to detect some other avian NDV, which may not originate from chicken. This multiplex RT‐PCR technique is simple and easy to perform. It could be applied not only to determine the origin of NDV, but also may be used diagnostically in molecular epidemiological analysis of ND and for prediction of pathotypes of NDV isolates.  相似文献   

2.
作者以3种不同毒力型的新城疫病毒(NDV)为免疫抗原,获得21株特异单克隆抗体(以下简称单抗),按其血凝抑制、溶血抑制和病毒中和能力的不同,将它们分成3组。21株单抗中有15株与所有被试的35个国内外分离的参考毒株起反应,另外6株单抗仅与部份毒株起反应。根据与上述单抗的不同反应谱,将这些NDV毒株分成7个群,同一群内的毒株在重要的流行病学和生物学特征方面一致。单抗LD_2、LC10-5只与疫苗毒株B1、La Sota及其克隆化毒株N79及1株生物学特性不明的野外分离物起反应。  相似文献   

3.
《Biologicals》2014,42(6):351-354
Newcastle disease (ND) is one of the highly pathogenic viral diseases of avian species. The disease is endemic in many developing countries where agriculture serves as the primary source of national income. Newcastle disease virus (NDV) belongs to the family Paramyxoviridae and is well characterized member among the avian paramyxovirus serotypes. The failure of vaccination is one of the major causes of NDV outbreaks in field condition. The present study gives a brief picture about the biology of NDV genome and its proteins under different conditions of temperature and pH. Our results indicate that the NDV is non-infective above 42 °C and unstable above 72 °C. The study will be useful in defining an optimum storage condition for NDV without causing any deterioration in its viability.  相似文献   

4.
Infection of poultry with highly pathogenic avian influenza virus (AIV) can be devastating in terms of flock morbidity and mortality, economic loss, and social disruption. The causative agent is confined to certain isolates of influenza A virus subtypes H5 and H7. Due to the potential of direct transfer of avian influenza to humans, continued research into rapid diagnostic tests for influenza is therefore necessary. A nucleic acid sequence-based amplification (NASBA) method was developed to detect a portion of the haemagglutinin gene of avian influenza A virus subtypes H5 and H7 irrespective of lineage. A further NASBA assay, based on the matrix gene, was able to detect examples of all known subtypes (H1-H15) of avian influenza virus. The entire nucleic acid isolation, amplification, and detection procedure was completed within 6h. The dynamic range of the three AIV assays was five to seven orders of magnitude. The assays were sensitive and highly specific, with no cross-reactivity to phylogenetically or clinically relevant viruses. The results of the three AIV NASBA assays correlated with those obtained by viral culture in embryonated fowl's eggs.  相似文献   

5.
Newcastle disease virus (NDV) is an avian paramyxovirus that causes significant economic losses to the poultry industry in most parts of the world. The susceptibility of a wide variety of avian species coupled with synanthropic bird reservoirs has contributed to the vast genomic diversity of this virus as well as diagnostic failures. Since the first panzootic in 1926, Newcastle disease (ND) became enzootic in India with recurrent outbreaks in multiple avian species. The genetic characteristics of circulating strains in India, however, are largely unknown. To understand the nature of NDV genotypes in India, we characterized two representative strains isolated 13 years apart from a chicken and a pigeon by complete genome sequence analysis and pathotyping. The viruses were characterized as velogenic by pathogenicity indices devised to distinguish these strains. The genome length was 15,186 nucleotides (nt) and consisted of six non-overlapping genes, with conserved and complementary 3' leader and 5' trailer regions, conserved gene starts, gene stops, and intergenic sequences similar to those in avian paramyxovirus 1 (APMV-1) strains. Matrix gene sequence analysis grouped the pigeon isolate with APMV-1 strains. Phylogeny based on the fusion (F), and hemagglutinin (HN) genes and complete genome sequence grouped these viruses into genotype IV. Genotype IV strains are considered to have "died out" after the first panzootic (1926-1960) of ND. But, our results suggest that there is persistence of genotype IV strains in India.  相似文献   

6.
Newcastle disease (ND) is highly contagious, economically important viral disease affecting most of avian species worldwide. Newcastle disease virus (NDV) has single stranded negative sense RNA genome which encodes for six structural and two non-structural proteins. Envelope glycoproteins i.e. hemagglutinin-neuraminidase (HN) and the fusion (F), elicit protective immune response. In this study, HN and F genes of velogenic (virulent) strain were amplified and cloned at multiple cloning sites A and B, respectively into pIRES bicistronic vector for use as bivalent DNA vaccine against ND. The recombinant plasmid was characterized for its orientation by restriction enzyme digestion and PCR. Expression of HN and F genes was assessed in transfected Vero cells at RNA level using RT-PCR in total RNA as well as protein level using IFAT, IPT and western blot using NDV specific antiserum. All these experiments confirmed that HN and F genes cloned in recombinant pIRES.nd.hn.f are functionally active. The recombinant construct is being evaluated as DNA vaccine against ND.  相似文献   

7.
In 2010 and 2011, several devastating Newcastle disease (ND) outbreaks occurred in China, affecting broilers, layers, and breeders. The CK-JSX1-201005 virus was isolated from broiler breeder flocks vaccinated with the classical ND virus (NDV) vaccine program, but laying rate decreased from 80% to 30 to 40% in the clinic. Here, we report the complete genome sequence and molecular characteristic of the CK-JSX1-201005 NDV. These findings provide additional insights into the genetic variation of NDV circulating in China and are useful for vaccine development for NDV.  相似文献   

8.
NASBA快速检测禽流感H5亚型病毒   总被引:1,自引:0,他引:1  
采用建立的依赖核酸序列的扩增(Nucleicacidsequencebasedamplification,NASBA)对禽流感病毒3株H5亚型、1株H1、H3、H6亚型、3株禽流感H9亚型、5株不同宿主来源的新城疫病毒、鸭肝炎病毒、鸭瘟病毒、SPF鸡胚尿囊液及禽流感(H9)疫苗、新城疫疫苗、传染性法氏囊病疫苗、传染性支气管炎疫苗进行检测,结果NASBA(H5试剂)仅检测到禽流感病毒H5亚型,表明方法的特异性强。采用已知禽流感病毒A/Chicken/HK/1000/97(H5N1)的鸡胚尿囊液(ELD5010-7.5/mL),经10倍连续稀释,将经典的鸡胚病原分离法和NASBA进行比较,二种方法的灵敏度相当。用A/Chicken/HK/1000/97(H5N1)病毒人工感染SPF鸡、商品鸡,采用NASBA和病原分离法同时对人工感染鸡的粪拭子、血液进行了动态检测;采集感染死亡鸡的组织脏器,共检测了101个组织脏器,两种方法的符合率为90%(87/97)。  相似文献   

9.
NASBA——一种新型禽流感病毒检测方法   总被引:8,自引:0,他引:8  
NASBA(nucleic acid sequence-based amplification)是一项持续等温的核酸扩增技术,特别适合于以RNA为模版的扩增,与其它常用禽流感病毒检测方法(病毒培养法、免疫学方法和PCR)相比,具有灵敏度高、特异性强、操作简便等特点。就NASBA的操作原理及其在禽流感病毒检测中的成功应用进行综述。NASBA不仅成为禽流感病毒检测的有力工具,而且对于其它恶性传染病的监测、检测同样具有重要价值和意义。  相似文献   

10.
Newcastle disease (ND), caused by the virulent Newcastle disease virus (NDV), is one of the most important viral diseases of birds globally, but little is currently known regarding enzootic trends of NDV in northeastern China, especially for class I viruses. Thus, we performed a surveillance study for NDV in northeastern China from 2013 to 2015. A total 755 samples from wild and domestic birds in wetlands and live bird markets (LBMs) were collected, and 10 isolates of NDV were identified. Genetic and phylogenetic analyses showed that five isolates from LBMs belong to class I subgenotype 1b, two (one from wild birds and one from LBMs) belong to the vaccine-like class II genotype II, and three (all from wild birds) belong to class II subgenotype Ib. Interestingly, the five class I isolates had epidemiological connections with viruses from southern, eastern, and southeastern China. Our findings, together with recent prevalence trends of class I and virulent class II NDV in China, suggest possible virus transmission between wild and domestic birds and the potential for an NDV epidemic in the future.  相似文献   

11.
Ge J  Deng G  Wen Z  Tian G  Wang Y  Shi J  Wang X  Li Y  Hu S  Jiang Y  Yang C  Yu K  Bu Z  Chen H 《Journal of virology》2007,81(1):150-158
H5N1 highly pathogenic avian influenza virus (HPAIV) has continued to spread and poses a significant threat to both animal and human health. Current influenza vaccine strategies have limitations that prevent their effective use for widespread inoculation of animals in the field. Vaccine strains of Newcastle disease virus (NDV), however, have been used successfully to easily vaccinate large numbers of animals. In this study, we used reverse genetics to construct a NDV that expressed an H5 subtype avian influenza virus (AIV) hemagglutinin (HA). Both a wild-type and a mutated HA open reading frame (ORF) from the HPAIV wild bird isolate, A/Bar-headed goose/Qinghai/3/2005 (H5N1), were inserted into the intergenic region between the P and M genes of the LaSota NDV vaccine strain. The recombinant viruses stably expressing the wild-type and mutant HA genes were found to be innocuous after intracerebral inoculation of 1-day-old chickens. A single dose of the recombinant viruses in chickens induced both NDV- and AIV H5-specific antibodies and completely protected chickens from challenge with a lethal dose of both velogenic NDV and homologous and heterologous H5N1 HPAIV. In addition, BALB/c mice immunized with the recombinant NDV-based vaccine produced H5 AIV-specific antibodies and were completely protected from homologous and heterologous lethal virus challenge. Our results indicate that recombinant NDV is suitable as a bivalent live attenuated vaccine against both NDV and AIV infection in poultry. The recombinant NDV vaccine may also have potential use in high-risk human individuals to control the pandemic spread of lethal avian influenza.  相似文献   

12.

Background

Newcastle disease (ND) is a highly contagious viral disease of poultry caused by pathogenic strains of the Newcastle disease virus (NDV). Live NDV vaccines are administered by drinking water, eyedrops or coarse aerosol spray. To further enhance mucosal immune responses, chitosan nanoparticles were developed for the mucosal delivery of a live NDV vaccine.

Methodology/Principal Findings

A lentogenic live-virus vaccine (strain LaSota) against NDV encapsulated in chitosan nanoparticles were developed using an ionic crosslinking method. Chitosan nanoparticles containing the lentogenic live-virus vaccine against NDV (NDV-CS-NPs) were produced with good morphology, high stability, a mean diameter of 371.1 nm, an encapsulation rate of 77% and a zeta potential of +2.84 mV. The Western blotting analysis showed that NDV structural proteins were detected in NDV-CS-NPs. The virus release assay results of NDV-CS-NPs indicated that NDV was released from NDV-CS-NPs. Chickens immunized orally or intranasally with NDV-CS-NPs were fully protected whereas one out of five chickens immunized with the LaSota live NDV vaccine and three out of five chickens immunized with the inactivated NDV vaccine were dead after challenge with the highly virulent NDV strain F48E9.

Conclusions/Significance

NDV-CS-NPs induced better protection of immunized specific pathogen free chickens compared to the live NDV vaccine strain LaSota and the inactivated NDV vaccine. This study lays a foundation for the further development of mucosal vaccines and drugs encapsulated in chitosan nanoparticles.  相似文献   

13.
Newcastle disease Virus (NDV), a member of the Paramyxoviridae family, and Influenza virus, from the Orthomyxoviridae family, are two main avian pathogens that cause serious economic problems in poultry farming. NDV strains are classified into three major pathotypes: velogenic, mesogenic, and lentogenic. Avian influenza viruses (AIV) are also divided into: low pathogenic (LPAI) and highly pathogenic (HPAI) strains. Both viruses are enveloped, single stranded, negative-sense RNA viruses which give similar symptoms ranging from sub-clinical infections to severe disease, including loss in egg production, acute respiratory syndrome, and high mortality, depending on their level of pathogenicity. This similarity hinders diagnosis when based solely on clinical and post mortem examination. Most of the currently available molecular detection methods are also pathogenspecific, so that more than one RT-PCR is then required to confirm or exclude the presence of both pathogens. To overcome this disadvantage, we have applied a One Step Duplex RT-PCR method to distinguish between those two pathogens. The main objective of the project was to develop a universal, fast, and inexpensive method which could be used in any veterinary laboratory.  相似文献   

14.
Newcastle disease (ND) is one of the most devastating poultry infections because of its worldwide distribution and accompanying economical threat. In the present study, we characterized the ND virus (NDV) K148/08 strain from wild mallard duck, with regard to safety, thermostability, immunogenicity, and protective efficacy against velogenic ND viral infection. The NDV K148/08 strain offered enhanced immunogenicity and safety relative to commercially available vaccine strains. The NDV K148/08 strain was safe in 1-day-old SPF chicks after vaccination using a coarse or cabinet-type fine sprayer. We demonstrated that the NDV K148/08 strain elicited high levels of antibody responses and provided protective efficacy against lethal NDV challenge. In addition, the thermostability of the NDV K148/08 strain was as high as that of the thermostable V4 strain. Therefore, the NDV K148/08 strain may be useful to ensure NDV vaccine performance and effectiveness in developing countries, especially in remote areas without cold chains.  相似文献   

15.
16.
研究LY株禽呼肠孤病毒(ARV)感染1日龄SPF鸡后对法氏囊发育影响,对传染性法氏囊病毒(IBDV)、禽流感病毒(AIV)、新城疫病毒(NDV)疫苗免疫诱发的抗体的影响,及对强毒株IBDV致病作用的影响。结果表明,LY株ARV感染1日龄SPF鸡可引起法氏囊萎缩和部分淋巴细胞减少,但对增重及AIV和NDV疫苗免疫后抗体滴度却没有显著影响。ARV感染可降低弱毒IBDV疫苗免疫后的抗体反应,但对随后IBDV强毒株攻毒的抵抗力却与对照鸡无显著差异。经IBDV弱毒疫苗免疫后,再接种强毒株IBDV,不会引起死亡,但却仍能显著抑制对AIV、NDV疫苗免疫后的抗体滴度。然而,对于1~7日龄经ARV感染的鸡,IBDV强毒的这种免疫抑制作用又显著低于未经ARV感染的对照鸡。  相似文献   

17.
Nucleic acid sequence-based amplification with electrochemiluminescent detection (NASBA/ECL) of avian influenza virus was compared with viral culture in embryonated chicken eggs. Virus was isolated from blood or anal swabs of chickens artificially infected with highly pathogenic avian influenza A/Chicken/Hong Kong/1000/97 (H5N1). Viral nucleic acid was detected in blood samples by NASBA/ECL immediately prior to death, whilst nucleic acid extracted from anal swabs was detected from the day following artificial infection until death. Thus, blood and/or anal swabs are a suitable source of material for the detection of avian influenza in dead birds, but anal swabs are more suitable for detection of viral genetic material in live birds. Dilution of a known viral standard was used to determine the limit of sensitivity for both NASBA/ECL and egg culture detection methods. The NASBA/ECL method was equivalent in sensitivity to egg culture. The NASBA/ECL results agreed with egg culture data in 71/94 (75.5%) tissue samples obtained from artificially infected birds.  相似文献   

18.
Newcastle disease virus (NDV) belongs to serotype 1 of the avian paramyxoviruses (APMV-1) and causes severe disease in chickens. Current live attenuated NDV vaccines are not fully satisfactory. An alternative is to use a viral vector vaccine that infects chickens but does not cause disease. APMV serotype 3 infects a wide variety of avian species but does not cause any apparent disease in chickens. In this study, we constructed a reverse-genetics system for recovery of infectious APMV-3 strain Netherlands from cloned cDNAs. Two recombinant viruses, rAPMV3-F and rAPMV3-HN, were generated expressing the NDV fusion (F) and hemagglutinin-neuraminidase (HN) proteins, respectively, from added genes. These viruses were used to immunize 2-week-old chickens by the oculonasal route in order to evaluate the contribution of each protein to the induction of NDV-specific neutralizing antibodies and protective immunity. Each virus induced high titers of NDV-specific hemagglutination inhibition and serum neutralizing antibodies, but the response to F protein was greater. Protective immunity was evaluated by challenging the immunized birds 21 days later with virulent NDV via the oculonasal, intramuscular, or intravenous route. With oculonasal or intramuscular challenge, all three recombinant viruses (rAPMV3, rAPMV3-F, and rAPMV3-HN) were protective, while all unvaccinated birds succumbed to death. These results indicated that rAPMV3 alone can provide cross-protection against NDV challenge. However, with intravenous challenge, birds immunized with rAPMV3 were not protected, whereas birds immunized with rAPMV3-F alone or in combination with rAPMV3-HN were completely protected, and birds immunized with rAPMV3-HN alone were partially protected. These results indicate that the NDV F and HN proteins are independent neutralization and protective antigens, but the contribution by F is greater. rAMPV3 represents an avirulent vaccine vector that can be used against NDV and other poultry pathogens.  相似文献   

19.

Background

Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens.

Methodology/Principal Finding

Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1.

Conclusion and Significance

Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals.  相似文献   

20.
在重组禽痘病毒中表达多个禽类病原的主要免疫原基因是构建多价基因工程疫苗的前提,但相关研究很少。在表达传染性喉气管炎病毒(ILTV)gB基因重组禽痘病毒的转移载体的基础上,构建了含有ILTV gB基因和新城疫病毒(NDV)F基因的重组禽痘病毒转移载体pSY-gB-F,采用脂质体转染禽痘病毒感染的鸡胚成纤维(CEF)细胞后,通过蓝斑试验筛选出重组禽痘病毒(rFPv-gB-F),并进行了6轮蚀斑纯化。Western-blot试验和间接免疫荧光试验证明ILTV gB基因和NBVF基因在rFPV-gB-F感染的CEF细胞中获得表达。为传染性喉气管炎、新城疫与鸡痘活载体多价疫苗的研制奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号