首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The orphan nuclear receptor CAR (NR1I3) has been characterized as a central component in the coordinate response to xenobiotic and endobiotic stress. In this study, we demonstrate that CAR plays a pivotal function in energy homeostasis and establish an unanticipated metabolic role for this nuclear receptor. Wild-type mice treated with the synthetic CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) exhibited decreased serum concentration of the thyroid hormone (TH) thyroxine (T(4)). However, treatment of Car(-/-) mice with TCPOBOP failed to elicit these changes. To examine whether CAR played a role in the regulation of TH levels under physiological conditions, wild-type and Car(-/-) mice were fasted for 24 h, a process known to alter TH metabolism in mammals. As expected, the serum triiodothyronine and T(4) concentrations decreased in wild-type mice. However, triiodothyronine and T(4) levels in fasted Car(-/-) mice remained significantly higher than those in fasted wild-type animals. Concomitant with the changes in serum TH levels, both CAR agonist treatment and fasting induced the expression of CAR target genes (notably, Cyp2b10, Ugt1a1, Sultn, Sult1a1, and Sult2a1) in a receptor-dependent manner. Importantly, the Ugt1a1, Sultn, Sult1a1, and Sult2a1 genes encode enzymes that are capable of metabolizing TH. An attenuated reduction in TH levels during fasting, as observed in Car(-/-) mice, would be predicted to increase weight loss during caloric restriction. Indeed, when Car(-/-) animals were placed on a 40% caloric restriction diet for 12 weeks, Car(-/-) animals lost over twice as much weight as their wild-type littermates. Thus, CAR participates in the molecular mechanisms contributing to homeostatic resistance to weight loss. These data imply that CAR represents a novel therapeutic target to uncouple metabolic rate from food intake and has implications in obesity and its associated disorders.  相似文献   

2.
As 5-lipoxygenase (5-LO) is an emerging target in obesity and insulin resistance, we have investigated whether this arachidonate pathway is also implicated in the progression of obesity-related fatty liver disease. Our results show that 5-LO activity and 5-LO-derived product levels are significantly elevated in the liver of obese ob/ob mice with respect to wild-type controls. Treatment of ob/ob mice with a selective 5-LO inhibitor exerted a remarkable protection from hepatic steatosis as revealed by decreased oil red-O staining and reduced hepatic triglyceride (TG) concentrations. In addition, 5-LO inhibition in ob/ob mice downregulated genes involved in hepatic fatty acid uptake (i.e., L-FABP and FAT/CD36) and normalized peroxisome proliferator-activated receptor alpha (PPARalpha) and acyl-CoA oxidase expression, whereas the expression of lipogenic genes [i.e., fatty acid synthase (FASN) and SREBP-1c] remained unaltered. Furthermore, 5-LO inhibition restored hepatic microsomal TG transfer protein (MTP) activity in parallel with a stimulation of hepatic VLDL-TG and apoB secretion in ob/ob mice. Consistent with these findings, 5-LO products directly inhibited MTP activity and triggered cytosolic TG accumulation in CC-1 cells, a murine hepatocyte cell line. Taken together, these findings identify a novel steatogenic role for 5-LO in the liver through mechanisms involving the regulation of hepatic MTP activity and VLDL-TG and apoB secretion.  相似文献   

3.
The nuclear hormone receptor constitutive androstane receptor (CAR, NR1I3) regulates detoxification of xenobiotics and endogenous molecules, and has been shown to be involved in the metabolism of hepatic bile acids and cholesterol. The goal of this study was to address potential effects of CAR on the metabolism of HDL particles, key components in the reverse transport of cholesterol to the liver. Wild-type (WT) mice, transgenic mice expressing human apolipoprotein A-I (HuAITg), and CAR-deficient (CAR(-/-)) mice were treated with the specific CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP). CAR activation decreased HDL cholesterol and plasma apolipoprotein A-I (apoA-I) levels in both WT and HuAITg mice, but not CAR(-/-) mice. Both mouse apoA-I and human apoA-I were decreased by more than 40% after TCPOBOP treatment, and kinetic studies revealed that the production rate of HDL is reduced in TCPOBOP-treated WT mice. In transient transfections, TCPOBOP-activated CAR decreased the activity of the human apoA-I promoter. Although loss of CAR function did not alter HDL levels in normal chow-fed mice, HDL cholesterol, apoA-I concentration, and apoA-I mRNA levels were increased in CAR(-/-) mice relative to WT mice when both were fed a high-fat diet. We conclude that CAR activation in mice induces a pronounced decrease in circulating levels of plasma HDL, at least in part through downregulation of apoA-I gene expression.  相似文献   

4.
The role of the constitutive androstane receptor (CAR) in xenobiotic metabolism by inducing expression of cytochromes P450 is well known, but CAR has also been implicated in the down-regulation of key genes involved in bile acid synthesis, gluconeogenesis, and fatty acid beta-oxidation by largely unknown mechanisms. Because a key hepatic factor, hepatic nuclear factor-4 (HNF-4), is crucial for the expression of many of these genes, we examined whether CAR could suppress HNF-4 transactivation. Expression of CAR inhibited HNF-4 transactivation of CYP7A1, a key gene in bile acid synthesis, in HepG2 cells, and mutation of the DNA binding domain of CAR impaired this inhibition. Gel shift assays revealed that CAR competes with HNF-4 for binding to the DR1 motif in the CYP7A1 promoter. TCPOBOP, a CAR agonist that increases the interaction of CAR with coactivators, potentiated CAR inhibition of HNF-4 transactivation. Furthermore, inhibition by CAR was reversed by expression of increasing amounts of GRIP-1 or PGC-1alpha, indicating that CAR competes with HNF-4 for these coactivators. Treatment of mice with phenobarbital or TCPOBOP resulted in decreased hepatic mRNA levels of the reported genes down-regulated by CAR, including Cyp7a1 and Pepck. In vivo recruitment of endogenous CAR to the promoters of Cyp7a1 and Pepck was detected in mouse liver after phenobarbital treatment, whereas association of HNF-4 and coactivators, GRIP-1, p300, and PGC-1alpha, with these promoters was significantly decreased. Our data suggest that CAR inhibits HNF-4 activity by competing with HNF-4 for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-1alpha, which may be a general mechanism by which CAR down-regulates key genes in hepatic lipid and glucose metabolism.  相似文献   

5.
CCAAT/enhancer binding protein alpha (C/EBP alpha) is a critical factor in glucose metabolism in the neonate as revealed by conventional C/EBP alpha-null mice that do not survive beyond the first day after birth because of severe hypoglycemia and a deficiency in hepatic glycogen accumulation. To elucidate the function of C/EBP alpha in leptin-deficient mouse (ob/ob) liver, a C/EBP alpha-liver null mouse on an ob/ob background (ob/ob-C/EBP alpha/Cre(+)) was produced using a floxed C/EBP alpha allele and Cre recombinase under control of the albumin promoter (AlbCre). The C/EBP alpha-deficient liver in ob/ob mice had significantly decreased triglyceride content compared with equivalent mice lacking the AlbCre transgene (ob/ob-C/EBP alpha/Cre(-)). Expression of genes involved in lipogenesis including fatty acid synthase, acetyl-coenzyme A carboxylase, stearoyl-coenzyme A desaturase 1 and ATP-citrate lyase dramatically decreased in ob/ob-C/EBP alpha/Cre(+) mouse liver. Induction of these lipogenic genes by a high-carbohydrate diet caused an exacerbation in the development of fatty liver and an increase in liver size, hepatic triglyceride, and cholesterol contents in ob/ob-C/EBP alpha/Cre(-) mice but not in ob/ob-C/EBP alpha/Cre(+) mice. Deficiency in hepatic C/EBP alpha expression caused an exacerbation of hyperglycemia because of decreased insulin secretion. Taken together, these results indicate that hepatic C/EBP alpha plays a critical role in the acceleration of lipogenesis in ob/ob mice and in glucose homeostasis by the indirect regulation of insulin secretion.  相似文献   

6.
The nuclear receptors, farnesoid X receptor (FXR) and pregnane X receptor (PXR), are important in maintaining bile acid homeostasis. Deletion of both FXR and PXR in vivo by cross-breeding B6;129-Fxrtm1Gonz (FXR-null) and B6;129-Pxrtm1Glaxo-Wellcome (PXR-null) mice revealed a more severe disruption of bile acid, cholesterol, and lipid homeostasis in B6;129-Fxrtm1Gonz Pxrtm1Glaxo-Wellcome (FXR-PXR double null or FPXR-null) mice fed a 1% cholic acid (CA) diet. Hepatic expression of the constitutive androstane receptor (CAR) and its target genes was induced in FXR- and FPXR-null mice fed the CA diet. To test whether up-regulation of CAR represents a means of protection against bile acid toxicity to compensate for the loss of FXR and PXR, animals were pretreated with CAR activators, phenobarbital or 1,4-bis[2-(3,5-dichlorpyridyloxy)]benzene (TCPOBOP), followed by the CA diet. A role for CAR in protection against bile acid toxicity was confirmed by a marked reduction of serum bile acid and bilirubin concentrations, with an elevation of the expression of the hepatic genes involved in bile acid and/or bilirubin metabolism and excretion (CYP2B, CYP3A, MRP2, MRP3, UGT1A, and glutathione S-transferase alpha), following pretreatment with phenobarbital or TCPOBOP. In summary, the current study demonstrates a critical and combined role of FXR and PXR in maintaining not only bile acid but also cholesterol and lipid homeostasis in vivo. Furthermore, FXR, PXR, and CAR protect against hepatic bile acid toxicity in a complementary manner, suggesting that they serve as redundant but distinct layers of defense to prevent overt hepatic damage by bile acids during cholestasis.  相似文献   

7.
Peroxisome proliferator-activated receptors (PPARs) control energy homeostasis. In this study, we showed that farnesol, a naturally occurring ligand of PPARs, could ameliorate metabolic diseases. Obese KK-Ay mice fed a high-fat diet (HFD) containing 0.5% farnesol showed significantly decreased serum glucose level, glucosuria incidence, and hepatic triglyceride contents. Farnesol-containing HFD upregulated the mRNA expressions of PPARα target genes involved in fatty acid oxidation in the liver. On the other hand, farnesol was not effective in upregulating the mRNA expressions of PPARγ target genes in white adipose tissues. Experiments using PPARα-deficient [(-/-)] mice revealed that the upregulation of fatty acid oxidation-related genes required PPARα function, but the suppression of hepatic triglyceride accumulation was partially PPARα-dependent. In hepatocytes isolated from the wild-type and PPARα (-/-) mice, farnesol suppressed triglyceride synthesis. In luciferase assay, farnesol activated both PPARα and the farnesoid X receptor (FXR) at similar concentrations. Moreover, farnesol increased the mRNA expression level of a small heterodimer partner known as one of the FXR target genes and decreased those of sterol regulatory element-binding protein-1c and fatty acid synthase in both the wild-type and PPARα (-/-) hepatocytes. These findings suggest that farnesol could improve metabolic abnormalities in mice via both PPARα-dependent and -independent pathways and that the activation of FXR by farnesol might contribute partially to the PPARα-independent hepatic triglyceride content-lowering effect. To our knowledge, this is the first study on the effect of the dual activators of PPARα and FXR on obesity-induced metabolic disorders.  相似文献   

8.
9.
This study investigates the importance of peroxisome proliferator activated receptor alpha (PPARalpha) for serum apolipoprotein B (apoB) levels and hepatic secretion of apoB-containing lipoproteins. Total serum apoB and VLDL-apoB levels were higher in female PPARalpha-null mice compared with female wild-type mice, but no difference was seen in male mice. Furthermore, hepatic triglyceride secretion rate, determined in vivo after Triton WR1339 injection, was 2.4-fold higher in female PPARalpha-null mice compared with female wild-type mice, but no difference was observed in male mice. However, when fed a high fat diet, male PPARalpha-null mice displayed 2-fold higher serum levels of apoB and LDL cholesterol compared with male wild-type mice, but triglyceride levels were not affected. Hepatic LDL receptor protein levels were not influenced by PPARalpha deficiency, gender, or the fat diet. Hepatocyte cultures from female PPARalpha-null mice (cultured for 4 days in serum free medium) showed 2-fold higher total apoB secretion and increased secretion of apoB-48 VLDL, as well as 2.7-fold larger accumulation of VLDL-triglycerides in the medium compared with wild-type cultures. In conclusion, PPARalpha-deficient female mice, but not males, display high serum apoB associated with VLDL and increased hepatic triglyceride secretion. Moreover, male PPARalpha-null mice show increased susceptibility to high fat diet in terms of serum apoB levels.  相似文献   

10.
11.
Proper function of the peroxisome proliferator-activated receptor alpha (PPARalpha) is essential for the regulation of hepatic fatty acid metabolism. Fatty acid levels are increased in liver during the metabolism of ethanol and should activate PPARalpha. However, recent in vitro data showed that ethanol metabolism inhibited the function of PPARalpha. We now report that ethanol feeding impairs fatty acid catabolism in the liver in part via blocking PPARalpha-mediated responses in C57BL/6J mice. Ethanol feeding decreased PPARalpha/retinoid X receptor alpha binding in electrophoretic mobility shift assay of liver nuclear extracts. mRNAs for PPAR-regulated genes were reduced (long chain and medium chain acyl-CoA dehydrogenases) or failed to be induced (acyl-CoA oxidase, liver carnitine palmitoyl-CoA transferase, very long chain acyl-CoA synthetase, very long chain acyl-CoA dehydrogenase) in livers of the ethanol-fed animals, and ethanol feeding did not increase the rate of fatty acid beta-oxidation. Wy14,643, a PPARalpha agonist, restored the DNA binding activity of PPARalpha/retinoid X receptor alpha, induced mRNA levels of PPARalpha target genes, stimulated the rate of fatty acid beta-oxidation, and prevented fatty liver in ethanol-fed animals. Impairment of PPARalpha function during ethanol consumption contributes to the development of alcoholic fatty liver, which can be overcome by Wy14,643.  相似文献   

12.
13.
Constituent chemicals in garlic extract are known to induce phase I and phase II enzymes in rodent livers. Here we have utilized Car(+/+) and Car(-/-) mice to demonstrate that the nuclear xenobiotic receptor CAR regulated the induction of the estrogen sulfotransferase Sult1e1 gene by diallyl sulfide (DAS) treatment in mouse liver. DAS treatment caused CAR accumulation in the nucleus, resulting in a remarkable increase of SULT1E1 mRNA (3,200 fold) and protein in the livers of Car(+/+) females but not of Car(-/-) female mice. DAS also induced other CAR-regulated genes such as Cyp2b10, Cyp3a11 and Gadd45β. Compared with the rapid increase of these mRNA levels, which began as early as 6 hours after DAS treatment, the levels of SULT1E1 mRNA began increasing after 24 hours. This slow response to DAS suggested that CAR required an additional factor to activate the Sult1e1 gene or that this activation was indirect. Despite the remarkable induction of SULT1E1, there was no decrease in the serum levels of endogenous E2 or increase of estrone sulfate while the clearance of exogenously administrated E2 was accelerated in DAS treated mice.  相似文献   

14.
15.
Interruption of the enterohepatic circulation of bile acids increases cholesterol catabolism, thereby stimulating hepatic cholesterol synthesis from acetate. We hypothesized that such treatment should lower the hepatic acetate pool which may alter triglyceride and glucose metabolism. We explored this using mice deficient of the ileal sodium-dependent BA transporter (Slc10a2) and ob/ob mice treated with a specific inhibitor of Slc10a2. Plasma TG levels were reduced in Slc10a2-deficient mice, and when challenged with a sucrose-rich diet, they displayed a reduced response in hepatic TG production as observed from the mRNA levels of several key enzymes in fatty acid synthesis. This effect was paralleled by a diminished induction of mature sterol regulatory element-binding protein 1c (Srebp1c). Unexpectedly, the SR-diet induced intestinal fibroblast growth factor (FGF) 15 mRNA and normalized bile acid synthesis in Slc10a2-/- mice. Pharmacologic inhibition of Slc10a2 in diabetic ob/ob mice reduced serum glucose, insulin and TGs, as well as hepatic mRNA levels of Srebp1c and its target genes. These responses are contrary to those reported following treatment of mice with a bile acid binding resin. Moreover, when key metabolic signal transduction pathways in the liver were investigated, those of Mek1/2-Erk1/2 and Akt were blunted after treatment of ob/ob mice with the Slc10a2 inhibitor. It is concluded that abrogation of Slc10a2 reduces hepatic Srebp1c activity and serum TGs, and in the diabetic ob/ob model it also reduces glucose and insulin levels. Hence, targeting of Slc10a2 may be a promising strategy to treat hypertriglyceridemia and diabetes.  相似文献   

16.
WY14,643 is a specific peroxisome proliferator-activated receptor alpha (PPARalpha) agonist with strong hypolipidemic effects. Here we have examined the effect of WY14,643 in the A-ZIP/F-1 mouse, a model of severe lipoatrophic diabetes. With 1 week of treatment, all doses of WY14,643 that were tested normalized serum triglyceride and fatty acid levels. Glucose and insulin levels also improved but only with high doses and longer treatment duration. WY14,643 reduced liver and muscle triglyceride content and increased levels of mRNA encoding fatty acid oxidation enzymes. In liver, the elevated lipogenic mRNA profile (including PPARgamma) in A-ZIP/F-1 mice remained unchanged. These results suggest that WY14,643 acts by increasing beta-oxidation rather by than decreasing lipogenesis or lipid uptake. Hyperinsulinemic euglycemic clamp studies indicated that WY14,643 treatment improved liver more than muscle insulin sensitivity and that hepatic mRNA levels of gluconeogenic enzymes were reduced. Combination treatment with both WY14,643 and a PPARgamma ligand, rosiglitazone, did not lower glucose levels more effectively than did treatment with WY14,643 alone. These data support the hypothesis that reducing intracellular triglycerides in non-adipose tissues improves insulin sensitivity and suggest that further investigation of the role of PPARalpha agonists in the treatment of lipoatrophic diabetes is warranted.  相似文献   

17.
Animal studies reveal that fasting and caloric restriction produce increased activity of specific metabolic pathways involved in resistance to weight loss in liver. Evidence suggests that this phenomenon may in part occur through the action of the constitutive androstane receptor (CAR, NR1I3). Currently, the precise molecular mechanisms that activate CAR during fasting are unknown. We show that fasting coordinately induces expression of genes encoding peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), CAR, cytochrome P-450 2b10 (Cyp2b10), UDP-glucuronosyltransferase 1a1 (Ugt1a1), sulfotransferase 2a1 (Sult2a1), and organic anion-transporting polypeptide 2 (Oatp2) in liver in mice. Treatments that elevate intracellular cAMP levels also produce increased expression of these genes in cultured hepatocytes. Our data show that PGC-1alpha interaction with hepatocyte nuclear factor 4alpha (HNF4alpha, NR2A1) directly regulates CAR gene expression through a novel and evolutionarily conserved HNF4-response element (HNF4-RE) located in its proximal promoter. Expression of PGC-1alpha in cells increases CAR expression and ligand-independent CAR activity. Genetic studies reveal that hepatic expression of HNF4alpha is required to produce fasting-inducible CAR expression and activity. Taken together, our data show that fasting produces increased expression of genes encoding key metabolic enzymes and an uptake transporter protein through a network of interactions involving cAMP, PGC-1alpha, HNF4alpha, CAR, and CAR target genes in liver. Given the recent finding that mice lacking CAR exhibit a profound decrease in resistance to weight loss during extended periods of caloric restriction, our findings have important implications in the development of drugs for the treatment of obesity and related diseases.  相似文献   

18.
脂肪酰基辅酶A氧化酶1(acyl-coenzyme A oxidase 1,Acox1)缺失可通过内源性配体激活过氧化物酶体增殖物激活受体α(peroxisome proliferator-activated receptor-α,PPARα)及其调控的信号通路,从而减轻肥胖基因leptin突变型(ob/ob)小鼠的肥胖和脂肪肝症状,但提高了其肝癌发生率.为进一步研究PPARα信号通路在高脂日粮和leptin缺失诱导的脂肪肝形成过程中的作用,本研究以野生型、Acox1-/-、ob/ob和Acox1Δob/ob小鼠为模型,用正常日粮或60%高脂日粮饲喂10个月.结果显示,正常日粮或高脂日粮饲喂情况下,Acox1-/-和Acox1Δob/ob小鼠的体重、白色脂肪细胞体积、棕色脂肪组织含量及肝脏脂肪含量均分别显著低于WT和ob/ob小鼠.溴化脱氧尿嘧啶核苷(Brdurd)及烯酰辅酶A水合酶(L-PBE)免疫组化染色结果显示Acox1-/-和Acox1Δob/ob小鼠肝脏内肝细胞增殖及L-PBE活性、肝脏重量及其占体重的百分比均显著高于WT和ob/ob小鼠.正常日粮饲喂的WT、Acox1-/-、ob/ob和Acox1Δob/ob小鼠肝癌发生率分别为0%、100%、0%和4%,高脂日粮饲喂后,其肝癌发生率分别为0%、100%、2.9%和100%.Q-PCR结果显示Acox1-/-和Acox1Δob/ob小鼠肝脏内L-PBE、Cyp4a3、Akr1b10、ap2等基因的表达水平显著高于WT和ob/ob小鼠.综上所述,PPARα信号通路激活可以抵抗高脂日粮和leptin缺失诱导的肥胖和脂肪肝,但脂质过氧化反应可能通过Nrf2-Akr1b10信号通路促进了肝癌发生.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号