首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soils are among the important sources of atmospheric nitric oxide (NO) and nitrous oxide (N2O), acting as a critical role in atmospheric chemistry. Updated data derived from 114 peer‐reviewed publications with 520 field measurements were synthesized using meta‐analysis procedure to examine the N fertilizer‐induced soil NO and the combined NO+N2O emissions across global soils. Besides factors identified in earlier reviews, additional factors responsible for NO fluxes were fertilizer type, soil C/N ratio, crop residue incorporation, tillage, atmospheric carbon dioxide concentration, drought and biomass burning. When averaged across all measurements, soil NO‐N fluxes were estimated to be 4.06 kg ha?1 yr?1, with the greatest (9.75 kg ha?1 yr?1) in vegetable croplands and the lowest (0.11 kg ha?1 yr?1) in rice paddies. Soil NO emissions were more enhanced by synthetic N fertilizer (+38%), relative to organic (+20%) or mixed N (+18%) sources. Compared with synthetic N fertilizer alone, synthetic N fertilizer combined with nitrification inhibitors substantially reduced soil NO emissions by 81%. The global mean direct emission factors of N fertilizer for NO (EFNO) and combined NO+N2O (EFc) were estimated to be 1.16% and 2.58%, with 95% confidence intervals of 0.71–1.61% and 1.81–3.35%, respectively. Forests had the greatest EFNO (2.39%). Within the croplands, the EFNO (1.71%) and EFc (4.13%) were the greatest in vegetable cropping fields. Among different chemical N fertilizer varieties, ammonium nitrate had the greatest EFNO (2.93%) and EFc (5.97%). Some options such as organic instead of synthetic N fertilizer, decreasing N fertilizer input rate, nitrification inhibitor and low irrigation frequency could be adopted to mitigate soil NO emissions. More field measurements over multiyears are highly needed to minimize the estimate uncertainties and mitigate soil NO emissions, particularly in forests and vegetable croplands.  相似文献   

2.
Papke  H.  Papen  H. 《Plant and Soil》1998,199(1):131-139
Flux measurements of nitric oxide (NO) and nitrogen dioxide (NO2) were performed in a coniferous forest (Höglwald) in southern Germany using a fully automated measuring system based on the dynamic chamber method. The forest soil was predominately a source of NO, but mean flux rates of NO ranged from –26.3 (deposition) to 55 g N m-2 h-1 (emission). NO2 was deposited on the forest soil with mean flux rates ranging from –4 to –72 g N m-2 h-1 . Removal of forest floor vegetation did not influence NO or NO2 fluxes. Apparently, forest floor vegetation was neither a source of NO nor a significant sink of NO2. When the organic layer of the forest soil was removed, net NO flux changed from emission to deposition. Thus NO emitted to the atmosphere was produced almost exclusively in the organic layer of the forest soil. Liming caused a significant decrease in the rate of NO emission by 43 to 100%, whereas irrigation with simulated acid rain increased the emission of NO by a factor of 3.1. Irrigation with simulated normal rain decreased the emission of NO by 35 to 100%. No such effects could be detected for the deposition of NO2.  相似文献   

3.
Tropical forest soils are known to emit large amounts of reactive nitrogen oxide compounds, often referred to collectively as NOy (NOy = NO + NO2 + HNO3 + organic nitrates). Plants are known to assimilate and emit NOy and it is therefore likely that plant canopies affect the atmospheric concentration of reactive nitrogen compounds by assimilating or emitting some fraction of the soil-emitted NOy. It is crucial to understand the magnitude of the canopy effects and the primary environmental and physiological controls over NOy exchange in order to accurately quantify regional NOy inventories and parameterize models of tropospheric photochemistry. In this study we focused on nitrogen dioxide (NO2), which is the component of NOy that most directly catalyzes the chemistry of O3 dynamics, one of the most abundant oxidative species in the troposphere, and which has been reported as the NOy species that is most readily exchanged between plants and the atmosphere. Leaf chamber measurements of NO2 flux were measured in 25 tree species growing in a wet tropical forest in the Republic of Panama. NO2 was emitted to the atmosphere at ambient NO2 concentrations below 0.53-1.60 ppbv (the NO2 compensation point) depending on species, with the highest rate of emission being 50 pmol m-2 s-1 at <0.1 ppbv. NO2 was assimilated by leaves at ambient NO2 concentrations above the compensation point, with the maximum observed uptake rate being 1,550 pmol m-2 s-1 at 5 ppbv. No seasonal variation in leaf NO2 flux was observed in this study and leaf emission and uptake appeared to be primarily controlled by leaf nitrogen and stomatal conductance, respectively. When scaled to the entire canopy, soil NO emission rates to the atmosphere were estimated to be maximally altered ᆧ% by the overlying canopy.  相似文献   

4.
Gasche  R.  Papen  H. 《Plant and Soil》2002,240(1):67-76
In order to evaluate differences in the magnitude of NO and NO2 flux rates between soil areas in direct vicinity to tree stems and areas of increasing distance to tree stems, we followed in 1997 at the Höglwald Forest site with a fully automated measuring system a complete annual cycle of NO and NO2 fluxes from soils of an untreated spruce stand, a limed spruce strand, and a beech stand using at each stand measuring chambers which were installed onto the soils in such a way that they formed a stem to stem gradient. Flux data obtained since the end of 1993 from measuring chambers placed at the interstem areas of the stands, which had been used for the calculation of the long year annual mean of NO and NO2 flux rates from soils of the stands, are compared to both (a) those obtained from the interstem chambers in 1997 and (b) those from the stem to stem gradient chambers. Daily mean NO fluxes obtained in 1997 were in a range of 0.3 – 280.1 g NO-N m–2 h–1 at the untreated spruce stand, 0.5 – 273.2 g NO-N m–2 h–1 at the limed spruce stand and 0.5 - 368.8 g NO-N m–2 h–1 at the beech stand, respectively. Highest NO emission rates were observed during summer, lowest during winter. Daily mean NO2 fluxes were in a range of –83.1 – 7.6 g NO2-N m–2 h–1 at the untreated spruce stand, -85.1 – 2.1 g NO2-N m–2 h–1 at the limed spruce stand and –77.9 to –2.0 g NO2-N m–2 h–1 at the beech site, respectively. As had been observed for the years 1994–1996, also in 1997 NO emission rates were highest at the untreated spruce stand and lowest at the beech stand and liming of a spruce stand resulted in a significant decrease in NO emission rates. For NO2 no marked differences in the magnitude of flux rates were found between the three different stands. Results obtained from the stem to stem gradient experiments revealed that at all stands studied NO emission rates were significantly higher (between 1.6- and 2.6-fold) from soil areas close to the tree stems and decreased – except at the beech stand - with increasing distance from the stems, while for NO2 deposition no marked differences were found. Including the contribution of soil areas in direct vicinity to the beech stems in the estimation of the annual mean NO source strength revealed that the source strength has been underestimated by 40% in the past.  相似文献   

5.
Nitrous oxide fluxes and soil nitrogen transformations were measured in experimentally-treated high elevation Douglas-fir forests in northwestern New Mexico, USA. On an annual basis, forests that were fertilized with 200 kg N/ha emitted an average of 0.66 kg/ha of N2O-N, with highest fluxes occurring in July and August when soils were both warm and wet. Control, irrigated, and woodchip treated plots were not different from each other, and annual average fluxes ranged from 0.03 to 0.23 kg/ha. Annual net nitrogen mineralization and nitrate production were estimated in soil and forest floor usingin situ incubations; fertilized soil mineralized 277 kg ha−1 y−1 in contrast to 18 kg ha−1 y−1 in control plots. Relative recovery of15NH4-N applied to soil in laboratory incubations was principally in the form of NO3-N in the fertilized soils, while recovery was mostly in microbial biomass-N in the other treatments. Fertilization apparently added nitrogen that exceeded the heterotrophic microbial demand, resulting in higher rates of nitrate production and higher nitrous oxide fluxes. Despite the elevated nitrous oxide emission resulting from fertilization, we estimate that global inputs of nitrogen into forests are not currently contributing significantly to the increasing concentrations of nitrous oxide in the atmosphere.  相似文献   

6.
In a pristine evergreen rainforest of Nothofagus betuloides, located at the Cordillera de los Andes in southern Chile (41?°S), concentrations and fluxes of nutrients in bulk precipitation, cloud water, throughfall water, stemflow water, soil infiltration and percolation water and runoff water were measured. The main objectives of this study were to investigate canopy–soil–atmosphere interactions and to calculate input–output budgets. From May 1999 till April 2000, the experimental watershed received 8121?mm water (86% incident precipitation, 14% cloud water), of which the canopy intercepted 16%. Runoff water volume amounted 9527?mm. Bulk deposition of inorganic (DIN) and organic (DON) nitrogen amounted 3.6?kg?ha?1?year?1 and 8.2?kg?ha?1?year?1 respectively. Occult deposition (clouds?+?fog) contributes for 40% to the atmospheric nitrogen input (bulk?+?occult deposition) of the forest. An important part of the atmospheric ammonium deposition is retained within the canopy or converted to nitrate or organic nitrogen by epiphytic bacteria or lichens. Also the export of inorganic (0.9?kg?ha?1?year?1) and organic (5.2?kg?ha?1?year?1) nitrogen via runoff is lower than the input to the forest floor via throughfall and stemflow water (3.2?kg?DIN?ha?1?year?1 and 5.6?kg?DON?ha?1?year?1). The low concentrations of NO-3 and NH+4 under the rooting depth suggest an effective biological immobilization by vegetation and soil microflora. Dry deposition and foliar leaching of base cations (K+, Ca2+, Mg2+) was estimated using a canopy budget model. Bulk deposition accounted for about 50% of the total atmospheric input. Calculated dry and occult deposition are both of equal value (about 25%). Foliar leaching of K+, Ca2+, and Mg2+ accounted for 45%, 38% and 6% of throughfall deposition respectively. On an annual basis, the experimental watershed was a net source for Na+, Ca2+ and Mg2+.  相似文献   

7.
Dry deposition of nitrate to a deciduous forest   总被引:2,自引:1,他引:1  
Because dry-deposition inputs are difficult to measure, they are often ignored in biogeochemical studies. In this study three separate methods were used to estimate dry deposition of nitrate to a deciduous forest (Walker Branch Watershed) in eastern Tennessee. The range of estimates of dry-deposition flux was from 1.8 to 9.1 kg NO3 --N ha-1 yr-1 Using a hybrid approach that combines some aspects of all three methods, a best estimate of 4.8 kg NO3 --N ha-1 yr-1 was derived. About 75% of this flux is attributable to deposition of HNO3, vapor with large particles contributing most of the remainder; the contribution from small particles is negligible. The range of estimates obtained from the three techniques suggest that dry-deposition measurements should be interpreted with caution.Our best estimate indicates that dry deposition of NO3 - is the largest single form of inorganic nitrogen (N) deposition to this forest, contributing almost half of the 10.1 kg N ha-1 total annual input. All of the enhancement of NO3 - deposition in stemflow and throughfall relative to incident precipitation can be explained by washoff of dry-deposited NO3 -, and some canopy uptake of dry-deposited NO3 - is suggested. This uptake occurs primarily during the growing season and contributes from 0.2 to 7.5 kg N ha-1 yr-1 to the N requirements of the ecosystem, with a best estimate of 3.2. Despite the uncertainties, the magnitude of the potential input fluxes to forested ecosystems necessitates consideration of nitrate dry deposition in ecosystem nitrogen cycling studies.  相似文献   

8.
Croplands mainly act as net sources of the greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O), as well as nitrogen oxide (NO), a precursor of troposheric ozone. We determined the carbon (C) and nitrogen (N) balance of a four-year crop rotation, including maize, wheat, barley and mustard, to provide a base for exploring mitigation options of net emissions. The crop rotation had a positive net ecosystem production (NEP) of 4.4?±?0.7 Mg C ha-1 y-1 but represented a net source of carbon with a net biome production (NBP) of -1.3?±?1.1 Mg C?ha-1 y-1. The nitrogen balance of the rotation was correlated with the carbon balance and resulted in net loss (?24?±?28 kg N ha-1 y-1). The main nitrogen losses were nitrate leaching (?11.7?±1.0 kg N ha-1 y-1) and ammonia volatilization (?9 kg N ha-1 y-1). Dry and wet depositions were 6.7?±?3.0 and 5.9?±0.1 kg N ha-1 y-1, respectively. Fluxes of nitrous (N2O) and nitric (NO) oxides did not contribute significantly to the N budget (N2O: -1.8?±?0.04; NO: -0.7?±?0.04 kg N ha-1 y-1) but N2O fluxes equaled 16% of the total greenhouse gas balance. The link between the carbon and nitrogen balances are discussed. Longer term experiments would be necessary to capture the trends in the carbon and nitrogen budgets within the variability of agricultural ecosystems.  相似文献   

9.
Rates and pathways of nitrous oxide production in a shortgrass steppe   总被引:5,自引:2,他引:3  
Most of the small external inputs of N to the Shortgrass steppe appear to be conserved. One pathway of loss is the emission of nitrous oxide, which we estimate to account for 2.5–9.0% of annual wet deposition inputs of N. These estimates were determined from an N2O emission model based on field data which describe the temporal variability of N2O produced from nitrification and denitrification from two slope positions. Soil water and temperature models were used to translate records of air temperature and precipitation between 1950 and 1984 into variables appropriate to drive the gas flux model, and annual N2O fluxes were estimated for that period. The mean annual fluxes were 80 g N ha–1 for a midslope location and 160 g N ha–1 for a swale. Fluxes were higher in wet years than in dry, ranging from 73 to 100 g N ha–1y–1at the midslope, but the variability was not high. N2O fluxes were also estimated from cattle urine patches and these fluxes while high within a urine patch, did not contribute significantly to a regional budget. Laboratory experiments using C2H2 to inhibit nitrifiers suggested that 60–80% of N2O was produced as a result of nitrification, with denitrification being less important, in contrast to our earlier findings to the contrary. Intrasite and intraseasonal variations in N2O flux were coupled to variations in mineral N dynamics, with high rates of N2O flux occurring with high rates of inorganic N turnover. We computed a mean flux of 104 g N ha–1 y–1 from the shortgrass landscape, and a flux of 2.6 × 109 g N y from all shortgrass steppe (25 × 106 ha).  相似文献   

10.
Gut  A.  Neftel  A.  Staffelbach  T.  Riedo  M.  Lehmann  B.E. 《Plant and Soil》1999,216(1-2):165-180
The surface flux of nitric oxide from a wheat field was investigated from 23 March to 29 May 1997 in the Kerzersmoos, Switzerland. A plot fertilised with 19 kg N ha-1 in cattle slurry and 40 kg N ha-1 in mineral NH4NO3 fertiliser and a plot receiving no nitrogen containing fertiliser were compared. The flux was calculated based on hourly measurements of the NO soil–atmosphere concentration gradient using the one-dimensional soil diffusion model of Galbally and Johansson (1989). The soil bulk diffusion coefficient was determined from measurements of the 222Rn surface flux and the activity gradient between 10 cm depth and the surface. It ranged between 79% and 0.3% of the NO diffusion coefficient in air and was parameterised by air filled soil pore space. The indirectly determined NO flux agreed well with standard flux measurements using dynamic chambers. The largest NO emission was found following fertiliser application and irrigation. The emission occurred in pulses, which lasted for 4 days up to 3 weeks coinciding with elevated soil ammonium concentrations. Nitric oxide emission in 5 days following application of cattle slurry were 31 g NO-N ha-1 and 5 g NO-N ha-1 from the non-fertilised plot, respectively. Nitric oxide emission in 15 days following application of NH4NO3 was 95 g NO-N ha-1 and 10 g NO-N ha-1 from the non-fertilised plot, respectively. NO emission in 4 days following irrigation on 21 April were 36 g N ha-1 from the fertilised and 39 g N ha-1 from the non-fertilised plot. The daily NO emission before and after fertiliser and irrigation pulses was between 0.3 and 0.7 g NO-N ha-1 d-1. NO production and NO uptake of the soil was measured regularly. No systematic influence of management or climate on NO uptake was found. NO production was strongly stimulated by fertiliser input and soil moisture content. The simulation of NO production could be reproduced using a nitrification algorithm (Riedo et al., 1998) driven by soil temperature, moisture and ammonium concentration. A NO production rate constant of 1.1ċ10-3 h-1 at 15 °C was derived from a linear regression between nitrification and NO production. Introducing the parameterisation of NO production into the model of Galbally and Johansson (1989) the duration and the strength of the NO emission pulses could be reproduced and the total NO emission during the experiment was approximated within a factor of two. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
In a pristine evergreen rainforest of Nothofagus betuloides, located at the Cordillera de los Andes in southern Chile (41 °S), concentrations and fluxes of nutrients in bulk precipitation, cloud water, throughfall water, stemflow water, soil infiltration and percolation water and runoff water were measured. The main objectives of this study were to investigate canopy-soil-atmosphere interactions and to calculate input-output budgets. From May 1999 till April 2000, the experimental watershed received 8121 mm water (86% incident precipitation, 14% cloud water), of which the canopy intercepted 16%. Runoff water volume amounted 9527 mm. Bulk deposition of inorganic (DIN) and organic (DON) nitrogen amounted 3.6 kg ha–1 year–1 and 8.2 kg ha–1 year–1 respectively. Occult deposition (clouds + fog) contributes for 40% to the atmospheric nitrogen input (bulk + occult deposition) of the forest. An important part of the atmospheric ammonium deposition is retained within the canopy or converted to nitrate or organic nitrogen by epiphytic bacteria or lichens. Also the export of inorganic (0.9 kg ha–1 year–1) and organic (5.2 kg ha–1 year–1) nitrogen via runoff is lower than the input to the forest floor via throughfall and stemflow water (3.2 kg DIN ha–1 year–1 and 5.6 kg DON ha–1 year–1). The low concentrations of NO 3 and NH 4 + under the rooting depth suggest an effective biological immobilization by vegetation and soil microflora. Dry deposition and foliar leaching of base cations (K+, Ca2+, Mg2+) was estimated using a canopy budget model. Bulk deposition accounted for about 50% of the total atmospheric input. Calculated dry and occult deposition are both of equal value (about 25%). Foliar leaching of K+, Ca2+, and Mg2+ accounted for 45%, 38% and 6% of throughfall deposition respectively. On an annual basis, the experimental watershed was a net source for Na+, Ca2+ and Mg2+.  相似文献   

12.
Cotton is one of the major crops worldwide and delivers fibers to textile industries across the globe. Its cultivation requires high nitrogen (N) input and additionally irrigation, and the combination of both has the potential to trigger high emissions of nitrous oxide (N2O) and nitric oxide (NO), thereby contributing to rising levels of greenhouse gases in the atmosphere. Using an automated static chamber measuring system, we monitored in high temporal resolution N2O and NO fluxes in an irrigated cotton field in Northern China, between January 1st and December 31st 2008. Mean daily fluxes varied between 5.8 to 373.0 µg N2O-N m?2?h?1 and ?3.7 to 135.7 µg NO-N m?2?h?1, corresponding to an annual emission of 2.6 and 0.8 kg N ha?1?yr?1 for N2O and NO, respectively. The highest emissions of both gases were observed directly after the N fertilization and lasted approximately 1 month. During this time period, the emission was 0.85 and 0.22 kg N ha?1 for N2O and NO, respectively, and was responsible for 32.3% and 29.0% of the annual total N2O and NO loss. Soil temperature, moisture and mineral N content significantly affected the emissions of both gases (p?<?0.01). Direct emission factors were estimated to be 0.95% (N2O) and 0.24% (NO). We also analyzed the effects of sampling time and frequency on the estimations of annual cumulative N2O and NO emissions and found that low frequency measurements produced annual estimates which differed widely from those that were based on continuous measurements.  相似文献   

13.
Gross rates of N mineralization and nitrification, and soil–atmosphere fluxes of N2O, NO and NO2 were measured at differently grazed and ungrazed steppe grassland sites in the Xilin river catchment, Inner Mongolia, P. R. China, during the 2004 and 2005 growing season. The experimental sites were a plot ungrazed since 1979 (UG79), a plot ungrazed since 1999 (UG99), a plot moderately grazed in winter (WG), and an overgrazed plot (OG), all in close vicinity to each other. Gross rates of N mineralization and nitrification determined at in situ soil moisture and soil temperature conditions were in a range of 0.5–4.1 mg N kg−1 soil dry weight day−1. In 2005, gross N turnover rates were significantly higher at the UG79 plot than at the UG99 plot, which in turn had significantly higher gross N turnover rates than the WG and OG plots. The WG and the OG plot were not significantly different in gross ammonification and in gross nitrification rates. Site differences in SOC content, bulk density and texture could explain only less than 15% of the observed site differences in gross N turnover rates. N2O and NO x flux rates were very low during both growing seasons. No significant differences in N trace gas fluxes were found between plots. Mean values of N2O fluxes varied between 0.39 and 1.60 μg N2O-N m−2 h−1, equivalent to 0.03–0.14 kg N2O-N ha−1 y−1, and were considerably lower than previously reported for the same region. NO x flux rates ranged between 0.16 and 0.48 μg NO x -N m−2 h−1, equivalent to 0.01–0.04 kg NO x -N ha−1 y−1, respectively. N2O fluxes were significantly correlated with soil temperature and soil moisture. The correlations, however, explained only less than 20% of the flux variance.  相似文献   

14.
Increasing demand for food and fibre by the growing human population is driving significant land use (LU) change from forest into intensively managed land systems in tropical areas. But empirical evidence on the extent to which such changes affect the soil-atmosphere exchange of trace gases is still scarce, especially in Africa. We investigated the effect of LU on soil trace gas production in the Mau Forest Complex region, Kenya. Intact soil cores were taken from natural forest, commercial and smallholder tea plantations, eucalyptus plantations and grazing lands, and were incubated in the lab under different soil moisture conditions. Soil fluxes of nitrous oxide (N2O), nitric oxide (NO) and carbon dioxide (CO2) were quantified, and we approximated annual estimates of soil N2O and NO fluxes using soil moisture values measured in situ. Forest and eucalyptus plantations yielded annual fluxes of 0.3–1.3 kg N2O–N ha?1 a?1 and 1.5–5.2 kg NO–N ha?1 a?1. Soils of commercial tea plantations, which are highly fertilized, showed higher fluxes (0.9 kg N2O–N ha?1 a?1 and 4.3 kg NO–N ha?1 a?1) than smallholder tea plantations (0.1 kg N2O–N ha?1 a?1 and 2.1 kg NO–N ha?1 a?1) or grazing land (0.1 kg N2O–N ha?1 a?1 and 1.1 kg NO–N ha?1 a?1). High soil NO fluxes were probably the consequence of long-term N fertilization and associated soil acidification, likely promoting chemodenitrification. Our experimental approach can be implemented in understudied regions, with the potential to increase the amount of information on production and consumption of trace gases from soils.  相似文献   

15.
Contemporary and pre-industrial global reactive nitrogen budgets   总被引:56,自引:6,他引:50  
Increases and expansion of anthropogenic emissions of both oxidized nitrogen compounds, NOx, and a reduced nitrogen compound, NH3, have driven an increase in nitrogen deposition. We estimate global NOx and NH3 emissions and use a model of the global troposphere, MOGUNTIA, to examine the pre-industrial and contemporary quantities and spatial patterns of wet and dry NOy and NHx deposition. Pre-industrial wet plus dry NOx and NHx deposition was greatest for tropical ecosystems, related to soil emissions, biomass burning and lightning emissions. Contemporary NOy+NHx wet and dry deposition onto Northern Hemisphere (NH) temperate ecosystems averages more than four times that of preindustrial N deposition and far exceeds contemporary tropical N deposition. All temperate and tropical biomes receive more N via deposition today than pre-industrially. Comparison of contemporary wet deposition model estimates to measurements of wet deposition reveal that modeled and measured wet deposition for both NO 3 and NH 4 + were quite similar over the U.S. Over Western Europe, the model tended to underestimate wet deposition of NO 3 and NH 4 + but bulk deposition measurements were comparable to modeled total deposition. For the U.S. and Western Europe, we also estimated N emission and deposition budgets. In the U.S., estimated emissions exceed interpolated total deposition by 3-6 Tg N, suggesting that substantial N is transported offshore and/or the remote and rural location of the sites may fail to capture the deposition of urban emissions. In Europe, by contrast, interpolated total N deposition balances estimated emissions within the uncertainty of each.Abbreviations EMEP European Monitoring and Evaluation Program - GEIA Global Emissions Inventory Activity - NADP/NTN National Atmospheric Deposition Program/National Trends Network in the US - NH Northern Hemisphere - NHx=NH3+NH + 4 NOx=NO+NO2 NOy total odd nitrogen=NOx+HNO3+HONO+HO2NO2+NO3+radical (NO3 .)+Peroxyacetyl nitrates+N2O5+organic nitrates - SH Southern Hemisphere - Gg 109 g - Tg 1012 g  相似文献   

16.
We investigated the atmospheric concentrations and deposition fluxes of major ions to the Turkey Lakes Watershed (TLW) between 1980 and 1996. During that time, daily SO4 2− concentrations in precipitation decreased markedly, while NO3 , NH4 +, and H+ concentrations remained roughly constant. It appears that precipitation acidity did not decrease in spite of declining SO4 2− concentrations due to a concurrent and counterbalancing decrease in the concentrations of Ca2+, Mg2+, and K+ in precipitation. The reasons for the decline in base cations are unknown, but this decline is probably related to decreasing emissions of soil-derived particles from agricultural, industrial, and road sources. A similar situation was seen during the same period in other parts of Canada, the eastern United States, and Europe. Wet, dry, and total (wet + dry) deposition fluxes of sulphur (S) and nitrogen (N) were estimated annually for the years 1980–96. The 17-year mean annual total (wet + dry) deposition of S to the watershed was estimated at 38.5 mmol m−2 y−1 (range 24.3–50.3). Total S deposition decreased by 35% from the early 1980s (1982–84) to the mid-1990s (1994–96), a decline consistent with the 23% decline in annual SO2 emissions in eastern North America during the same period. In contrast, the annual total (wet + dry) deposition of oxidized N ranged from 39.8 to 60.4 mmol m−2 y−1, with a 15-year mean of 50.1 mmol m−2 y−1 and a net increase of 10% between the early 1980s (1983–85) and the mid-1990s (1994–96). This is in keeping with a 10% increase in NOx emissions in eastern North America during the same period. For both S and N (oxidized), wet deposition dominated over dry deposition as the major mechanism for atmospheric input to the watershed. Annually, wet deposition accounted for approximately two-thirds of the total atmospheric deposition of both S and N. Dry S deposition was due more to gaseous SO2 deposition (two-thirds of dry S deposition) than to particulate SO4 2− deposition (one-third of dry S deposition). Dry deposition of oxidized N, however, was dominated (95%) by gaseous HNO3 deposition, with minimal input from particulate NO3 deposition. Compared to several selected watershed/forest sites in Canada, the United States, and Europe, the estimated total deposition of S and N at the TLW was relatively high during the measurement period. Received 5 October 1999; accepted 1 March 2001.  相似文献   

17.
Anthropogenic actions are altering fluxes of nitrogen (N) in the biosphere at unprecedented rates. Efforts to study these impacts have concentrated in the Northern hemisphere, where experimental data are available. In tropical developing countries, however, experimental studies are lacking. This paper summarizes available data and assesses the impacts of human activities on N fluxes in Puerto Rico, a densely populated Caribbean island that has experienced drastic landscape transformations over the last century associated with rapid socioeconomic changes. N yield calculations conducted in several watersheds of different anthropogenic influences revealed that disturbed watersheds export more N per unit area than undisturbed forested watersheds. Export of N from urban watersheds ranged from 4.8 kg ha?1 year?1 in the Río Bayamón watershed to 32.9 kg ha?1 year?1 in the highly urbanized Río Piedras watershed and 33.3 kg ha?1 year?1 in the rural-agricultural Río Grande de Añasco watershed. Along with land use, mean annual runoff explained most of the variance in fluvial N yield. Wastewater generated in the San Juan Metropolitan Area receives primary treatment before it is discharged into the Atlantic Ocean. These discharges are N-rich and export large amounts of N to the ocean at a rate of about 140 kg ha?1 year?1. Data on wet deposition of inorganic N ( $\hbox{NH}_{4}^{+}+\hbox{NO}_{3}^{-}Anthropogenic actions are altering fluxes of nitrogen (N) in the biosphere at unprecedented rates. Efforts to study these impacts have concentrated in the Northern hemisphere, where experimental data are available. In tropical developing countries, however, experimental studies are lacking. This paper summarizes available data and assesses the impacts of human activities on N fluxes in Puerto Rico, a densely populated Caribbean island that has experienced drastic landscape transformations over the last century associated with rapid socioeconomic changes. N yield calculations conducted in several watersheds of different anthropogenic influences revealed that disturbed watersheds export more N per unit area than undisturbed forested watersheds. Export of N from urban watersheds ranged from 4.8 kg ha−1 year−1 in the Río Bayamón watershed to 32.9 kg ha−1 year−1 in the highly urbanized Río Piedras watershed and 33.3 kg ha−1 year−1 in the rural-agricultural Río Grande de A?asco watershed. Along with land use, mean annual runoff explained most of the variance in fluvial N yield. Wastewater generated in the San Juan Metropolitan Area receives primary treatment before it is discharged into the Atlantic Ocean. These discharges are N-rich and export large amounts of N to the ocean at a rate of about 140 kg ha−1 year−1. Data on wet deposition of inorganic N () suggest that rates of atmospheric N deposition are increasing in the pristine forests of Puerto Rico. Stationary and mobile sources of NO x (NO+NO2) and N2O generated in the large urban centers may be responsible for this trend. Comprehensive measurements are required in Puerto Rico to quantitatively characterize the local N cycle. More research is required to assess rates of atmospheric N deposition, N fixation in natural and human-dominated landscapes, N-balance associated with food and feed trade, and denitrification.  相似文献   

18.
Sulphate fluxes in bulk deposition, throughfall and soil solution were monitored during two years, and integrated within a model describing the cycling of S in a chalk grassland ecosystem. Throughfall fluxes were strongly determined by interceptive properties of the grassland canopy. Seasonal variation in Leaf Area Index resulted in dry deposition velocities for SO2 varying between 0.1 cm.s–1 (snow cover, almost no aerodynamic resistance) to 0.9–1.8 cm.s–1 in periods with a fully developed canopy. On an annual basis net canopy exchange (assimilation of SO2 minus foliar leaching) was estimated to be –15% of net throughfall. Simulated soil solution concentrations, being the result of throughfall input, leaching, adsorption, biomass uptake and mineralization, closely fitted actual values (r > 0.92; p > 0.001). Actual and simulated leaching were 1.74 ± 0.03 and 2.00 keq.-ha–1.yr–1, respectively. Sulphur budgets for the soil showed net accumulation from April to October and net losses from October to April. Annual budgets for the ecosystem showed atmospheric input (2.02keq.ha–1.yr–1) and actual output (2.05keq.ha–1.yr–1) to be almost balanced. Apart from increased soil solution concentrations, additional input of sulphate (3.55 keq.ha–1.yr–1) to experimental plots resulted in additional accumulation in the ecosystem of 0.62 keq.ha–1.yr–1  相似文献   

19.
Little is known about how tropical forest canopies interact with atmospheric nitrogen deposition and how this affects the internal nutrient dynamics and the processing of external nutrient inputs. The objectives of this study therefore were (1) to investigate gross and net canopy nitrogen (N) fluxes (retention and leaching) and (2) the effect of canopy components on net canopy N retention. Tracers were applied on detached branches in a tropical wet lowland rainforest, Costa Rica. A novel 15N pool dilution method showed that gross canopy fluxes (retention and leaching) of NO3 ?, NH4 +, and dissolved organic nitrogen (DON) were remarkably higher than net throughfall fluxes. Gross fluxes of NH4 + and NO3 ? resulted in a negligible net flux whereas DON showed net uptake by the canopy. The highest quantity of 15N was recovered in epiphytic bryophytes (16.4%) although the largest biomass fraction was made up of leaves. The study demonstrates that tracer applications allow investigation of the dynamic and complex canopy exchange processes and that epiphytic communities play a major role in solute fluxes in tree canopies and therefore in the nutrient dynamics of tropical rain forests.  相似文献   

20.
Nitrogen (N) biogeochemistry of a mature Scots pine (Pinus sylvestris L.) stand subjected to an average total atmospheric N deposition of 48 kg ha?1 year?1 was studied during the period 1992–2007. The annual amount of dissolved inorganic nitrogen (DIN) in throughfall (TF) averaged 34 kg ha?1 year?1 over the 16-year monitoring period. The throughfall fluxes contained also considerable amounts of dissolved organic nitrogen (DON) (5–8.5 kg N ha?1 year?1), which should be incorporated in the estimate of N flux using throughfall collectors. Throughfall DIN fluxes declined at a rate of ?0.9 kg N ha?1 year?1, mainly due to the decreasing TF fluxes of ammonium (NH4), which accounted for 70% to TF DIN. The decrease in TF DIN was accompanied by a decrease in DIN leaching in the seepage water (?1.6 kg N ha?1 year?1), which occurred exclusively as nitrate (NO3 ?). Nitrate losses in the leachate of the forest floor (LFH) equalled the TF NO3 ? delivered to the LFH-layer. On the contrary, about half of the TF NH4 + was retained within the LFH-layer. Approximately 60% of the TF DIN fluxes were leached indicating that N inputs were far in excess of the N requirements of the forest. For DON, losses were only substantial from the LFH-layer, but no DON was leached in the seepage water. Despite the high N losses through nitrate leaching and NO x emission, the forest was still accumulating N, especially in the aggrading LFH-layer. The forest stand, on the contrary, was found to be a poor N sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号