首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The tumorigenicity of HeLa cells in nude mice can be suppressed by the addition of a normal human chromosome 11 in somatic cell hybrids. We have attempted to identify specific genes involved in this phenomenon by transfecting a complementary DNA expression library into a tumorigenic HeLa-fibroblast hybrid. A cell line designated F2 was isolated which displayed morphological features of the nontumorigenic hybrids, demonstrated reduced tumorigenicity in nude mice, and showed an 85% reduction in alkaline phosphatase, a consistent marker of the tumorigenic phenotype in these cells. F2 contained a single exogenous complementary DNA, which was recovered by polymerase chain reaction and designated HTS1 because of its potential association with "HeLa tumor suppression." Northern blot studies suggested differential regulation of the HTS1 gene dependent on the tumorigenicity of the cell. In nontumorigenic hybrids, RNA species of 2.8, 3.1, and 4.6 kilobases were identified. In two tumorigenic hybrid lines, the 2.8-kilobase species was markedly reduced or absent. Similarly, three nontumorigenic human keratinocyte lines expressed all three RNA species, whereas several tumorigenic cervical carcinoma cell lines lacked the 2.8-kilobase species. Chromosome localization studies mapped the HTS1 gene to chromosome 11p15, a region of chromosome 11 that is believed to contain a tumor suppressor gene. These findings indicate that HTS1 represents a novel chromosome 11 gene which may be a target of the tumor suppressor gene active in this system.  相似文献   

4.
To examine the biological properties of the bovine papillomavirus type 1 (BPV) and human papillomavirus type 16 (HPV16) E5 genes, each was cloned separately into a retroviral expression vector and helper-free recombinant viruses were generated in packaging cell lines. The BPV E5 retroviruses efficiently caused morphologic and tumorigenic transformation of cultured lines of murine fibroblasts, whereas the HPV16 E5 viruses were inactive in these assays. In contrast, infection of the p117 established line of murine epidermal keratinocytes with either the BPV or the HPV16 E5 retrovirus resulted in the generation of tumorigenic cells. Pam212 murine keratinocytes were also transformed to tumorigenicity by the HPV16 E5 gene but not by the gene carrying a frameshift mutation. These results establish that the HPV16 E5 gene is a transforming gene in cells related to its normal host epithelial cells.  相似文献   

5.
Human papillomavirus (HPV) E6 and E7 oncogenes are expressed in the great majority of human cervical carcinomas, whereas the viral E2 regulatory gene is usually disrupted in these cancers. To investigate the roles of the papillomavirus E2 genes in the development and maintenance of cervical carcinoma, the bovine papillomavirus (BPV) E2 gene was acutely introduced into cervical carcinoma cell lines by infection with high-titer stocks of simian virus 40-based recombinant viruses. Expression of the BPV E2 protein in HeLa, C-4I, and MS751 cells results in specific inhibition of the expression of the resident HPV type 18 (HPV18) E6 and E7 genes and in inhibition of cell growth. HeLa cells, in which HPV gene expression is nearly completely abolished, undergo a dramatic and rapid inhibition of proliferation, which appears to be largely a consequence of a block in progression from the G1 to the S phase of the cell cycle. Loss of HPV18 gene expression in HeLa cells is also accompanied by a marked increase in the level of the cellular p53 tumor suppressor protein, apparently as a consequence of abrogation of HPV18 E6-mediated destabilization of p53. The proliferation of HT-3 cells, a human cervical carcinoma cell line devoid of detectable HPV DNA, is also inhibited by E2 expression, whereas two other epithelial cell lines that do not contain HPV DNA are not inhibited. Thus, a number of cervical carcinoma cell lines are remarkably sensitive to growth inhibition by the E2 protein. Although BPV E2-mediated inhibition of HPV18 E6 and E7 expression may contribute to growth inhibition in some of the cervical carcinoma cell lines, the BPV E2 protein also appears to exert a growth-inhibitory effect that is independent of its effects on HPV gene expression.  相似文献   

6.
Both tumorigenic segregant HeLa X human fibroblast hybrids and tumorigenic HeLa (D98/AH-2) cells can be converted to a non-tumorigenic state following introduction of a single copy of a fibroblast t(X;11) chromosome. The translocated chromosome contains approximately 95% of the 11 chromosome and the q26-qter portion of the X chromosome which contains the hypoxanthine guanine phosphoribosyl transferase (HPRT) gene. Introduction of a human X chromosome has no effect on tumorigenic expression. Suppression of tumorigenicity is relieved by selecting cells which have lost the t(X;11) chromosome by growth in medium containing 6-thioguanine (6-TG). Further, reintroduction of the t(X;11) chromosome into tumorigenic 6TGR cells again suppresses tumorigenicity. Thus, the introduction of a single copy of a human chromosome 11 is sufficient to completely suppress the tumorigenic phenotype of HeLa cells and is suggestive of the presence of tumor-suppressor gene(s) on this chromosome.  相似文献   

7.
The development and progression of human tumors often involves inactivation of tumor suppressor gene function. Observations that specific chromosome deletions correlate with distinct groups of cancer suggest that some types of tumors may share common defective tumor suppressor genes. In support of this notion, our initial studies showed that four human carcinoma cell lines belong to the same complementation group for tumorigenic potential. In this investigation, we have extended these studies to six human soft tissue sarcoma cell lines. Our data showed that hybrid cells between a peripheral neuroepithelioma (PNET) cell line and normal human fibroblasts or HeLa cells were nontumorigenic. However, hybrid cells between the PNET cell line and five other soft tissue sarcoma cell lines remained highly tumorigenic, suggesting at least one common genetic defect in the control of tumorigenic potential in these cells. To determine the location of this common tumor suppressor gene, we examined biochemical and molecular polymorphic markers in matched pairs of tumorigenic and nontumorigenic hybrid cells between the PNET cell line and a normal human fibroblast. The data showed that loss of the fibroblast-derived chromosome 17 correlated with the conversion from nontumorigenic to tumorigenic cells. Transfer of two different chromosome 17s containing a mutant form of the p53 gene into the PNET cell line caused suppression of tumorigenic potential, implying the presence of a second tumor suppressor gene on chromosome 17.  相似文献   

8.
9.
10.
In most cervical cancers, DNAs of high-risk mucosotropic human papillomaviruses (HPVs), such as types 16 and 18, are maintained so as to express two viral proteins, E6 and E7, suggesting that they play important roles in carcinogenesis. The carboxy-terminal PDZ domain-binding motif of the E6 proteins is in fact essential for transformation of rodent cells and induction of hyperplasia in E6-transgenic mouse skin. To date, seven PDZ domain-containing proteins, including DLG1/hDLG, which is a human homologue of the Drosophila discs large tumor suppressor (Dlg), have been identified as targets of high-risk HPV E6 proteins. Here, we describe DLG4/PSD95, another human homologue of Dlg, as a novel E6 target. DLG4 was found to be expressed in normal human cells, including cervical keratinocytes, but only to a limited extent in both HPV-positive and HPV-negative cervical cancer cell lines. Expression of HPV18 E6 in HCK1T decreased DLG4 levels more strongly than did HPV16 E6, the carboxy-terminal motif of the proteins being critical for binding and degradation of DLG4 in vitro. DLG4 levels were restored by expression of either E6AP-specific short hairpin RNA or bovine papillomavirus type 1 E2 in HeLa but not CaSki or SiHa cells, reflecting downregulation of DLG4 mRNA as opposed to protein by an HPV-independent mechanism in HPV16-positive cancer lines. The tumorigenicity of CaSki cells was strongly inhibited by forced expression of DLG4, while growth in culture was not inhibited at all. These results suggest that DLG4 may function as a tumor suppressor in the development of HPV-associated cancers.  相似文献   

11.
12.
The selective retention and expression of the E6-E7 region of human papillomavirus (HPV) types 16 and 18 in cervical carcinomas suggests that these viral sequences play a role in the development of genital neoplasia. Each of three possible gene products, E6, E6*, and E7, from this region of HPV-18 were examined for transforming properties in several types of rodent cells. We have found that in immortalized fibroblasts, both E6 and E7 (but not E6*) are capable of inducing anchorage-independent growth. In rat embryo cells, the HPV-18 E7 open reading frame was an effective immortalizing agent and complemented an activated ras oncogene for transformation. In both immortalized and primary cells, transformation was observed when the HPV-18 sequences were expressed from either the HPV-18 promoter or a heterologous promoter. The E6-E7 region is not, however, the sole transforming domain of HPV-18, since another portion of the early region, possibly E5, also exhibited transforming capability in immortalized fibroblasts. The development of human cervical carcinomas may therefore involve a series of steps involving multiple viral and cellular gene products.  相似文献   

13.
As cells progress through the multistep process of neoplastic transformation, they eventually acquire the property of invasive behavior. Although both plasminogen activators (PA) and their inhibitors (PAI) contribute to this process, their regulation in normal and transformed cells remains poorly defined. Because somatic cell hybrids provide useful tools for examining the transformation pathway, tumorigenic and invasive HeLa cells were fused with human normal vascular smooth muscle cells and tested for invasion-related parameters, including the expression of PA and PAI genes, and matrix degradation. Both parental cell lines produced large amounts of PAI activities with no detectable PA in either cellular or secreted form. Opposite findings were obtained with the hybrid cell lines, which demonstrated the presence of receptor-bound and secreted PA but absence of enzymatically measurable PAI activities. Both urokinase-type and tissue-type PA were found in cell-associated and secreted form in the hybrid cells. In addition, expression of the urokinase-type PA receptor gene was found in the three hybrid cells and the vascular smooth muscle cells but not in the HeLa cells. Expression of active, receptor-bound and secreted PA provided the nontumorigenic hybrid cells with the enzymatic tools to degrade extracellular proteins in a plasminogen-dependent manner. Thus, the hybrid cells lost tumorigenicity while retaining the tissue-degrading capability of HeLa cells. These hybrid cell lines should prove to be important reagents for investigating the complex regulatory control of PA and PAI gene expression.  相似文献   

14.
The techniques of somatic cell hybridization have provided a valuable means of studying mechanisms of regulation of mammalian cell differentiation and transformation. Most previous studies have indicated that fusions between tumorigenic and nontumorigenic cells result in hybrid cells that are usually tumorigenic. In recent years it has been demonstrated that the phenotypic expression of tumorigenicity is at least partially due to the extensive chromosome loss that occurs in most interspecific and some intraspecific hybrid cells. In the present study we have utilized enucleation techniques that permit cells to be divided into nuclear (karyoplast) and cytoplasmic (cytoplast) cell fragments. Even though these nuclear and cytoplasmic fragments are metabolically stable for short periods of time, in our hands they ultimately degenerate. Viable cells can be reconstructed by PEG-induced fusion of karyoplasts to cytoplasts. Since reconstructed cells apparently do not segregate chromosomes, they may provide a clearer understanding of the interactions between the nucleus and the cytoplasm in the control of the expression of tumorigenicity. We have reconstructed cells using karyoplasts from the tumorigenic Y-1 cell line and cytoplasts from a nontumorigenic cell line, A-MT-BU-A1. In addition we have reconstructed cells containing Y-1 cytoplasts and A-MT-BU-A1 karyoplasts. The reconstructed cells porduced were assayed for tumorigenicity by their ability to grow in soft agar and in nude mice. The results of these experiments indicate that the reconstructed cells containing a tumorigenic nucleus and a nontumorigenic cytoplasm ultimately are tumorigenic and conversely the reconstructed cells containing a nontumorigenic nucleus and a tumorigenic cytoplasm are nontumorigenic. These experiments support the concept that with these cell lines the nucleus (karyoplast) is sufficient to control the phenotypic expression of tumorigenicity.  相似文献   

15.
16.
高危型人乳头瘤病毒(human papillomavirus,HPV)的E6基因在宫颈癌的发生中起关键作用,特异siRNA能有效抑制宫颈癌HeLa 细胞内HPV18 E6基因的表达,诱导肿瘤细胞凋亡.为进一步探讨HPV18 E6-siRNA诱导HeLa 细胞凋亡的分子机制,针对HPV18-E6基因设计siRNA序列,利用人源U6启动子为模板,经PCR表达框架法体外扩增,转染宫颈癌HeLa细胞抑制HPV18 -E6基因表达,从而诱导肿瘤细胞凋亡.对转染前后HeLa细胞总RNA样品进行荧光标记后,与Agilent Human 1A寡核苷酸芯片杂交、扫描、数据分析及标准化处理,确定表达差异的基因并经荧光定量PCR对部分基因进行验证,结合PANTHER数据分析系统,将这些基因按照生物学功能进行归类,查阅GenBank数据库及相关文献,对其结果进行深入分析及讨论.在检测的18 716个基因和EST中,共筛出差异表达基因359个,其中307个基因表达上调,52个基因表达下调,主要包括细胞周期相关基因CCNG1、p21;凋亡相关基因CASP4、CASP6、IGFBP3、DFFA;泛素蛋白酶解途径相关基因E6-AP、UBE2C;角化细胞分化相关基因KRT4、KRT6E、KRT18;抑癌基因RECK、VHL等.研究结果表明,HPV18 -E6基因抑制引起的细胞凋亡效应主要是通过P53信号途径和泛素蛋白酶解信号途径调节细胞周期相关基因和凋亡相关基因的表达,从而抑制HeLa细胞增殖、促进细胞凋亡.同时,抑癌基因的激活,角化细胞分化和免疫相关基因的表达上调,都说明了E6抑制后肿瘤细胞恶性转化程度的下降.  相似文献   

17.
Loss of growth regulation by transforming growth factor-beta (TGF-beta) may be an important step in carcinogenesis. We have used a cell fusion system to show that inhibition of growth by TGF-beta can be restored to carcinoma cell lines that are unresponsive to the inhibitory effects of TGF-beta. In a previous study, the EJ bladder carcinoma line was fused to the SW480 colon adenocarcinoma line and found to produce nontumorigenic hybrid cells along with one hybrid cell clone of low tumorigenicity. Here we show that the capacity of the nontumorigenic hybrid cells to respond to either TGF-beta 1 or TGF-beta 2 has been restored, while the parental or tumorigenic hybrid cells show little or no inhibition of growth following TGF-beta treatment. Cross-linking analyses with labeled TGF-beta 1 demonstrated much higher levels of the type II (85 kDa) receptor in the hybrid cells compared with the parental tumor lines. Both the parental and tumorigenic hybrid cell lines were capable of responding to TGF-beta as evidenced by increased levels of mRNA for fibronectin, type IV collagenase, and plasminogen activator inhibitor after treatment with TGF-beta 1. These results suggest that the type II receptor is necessary for mediating the effects of TGF-beta on inhibition of growth but not on gene activation of the hybrid cells.  相似文献   

18.
19.
20.
Cytogenetic and molecular genetic analyses of human intraspecific HeLa x fibroblast hybrids have provided evidence for the presence of a tumor-suppressor gene(s) on chromosome 11 of normal cells. In the present study, we have carried out extensive RFLP analysis of various nontumorigenic and tumorigenic hybrids with at least 50 different chromosome 11-specific probes to determine the precise location of this tumor-suppressor gene(s). Two different hybrid systems, (1) microcell hybrids derived by the transfer of a normal chromosome 11 into a tumorigenic HeLa-derived hybrid cell and (2) somatic cell hybrids derived by the fusion of the HeLa (D98OR) cells to a retinoblastoma (Y79) cell line, were particularly informative. The analysis showed that all but one of the nontumorigenic hybrid cell lines contained a complete copy of the normal chromosome 11. This variant hybrid contained a segment of the long arm but had lost the entire short arm of the chromosome. The tumorigenic microcell and somatic cell hybrids had retained the short arm of the chromosome but had lost at least the q13-23 region of the chromosome. Thus, these results showed a perfect correlation between the presence of the long arm of chromosome 11 and the suppression of the tumorigenic phenotype. We conclude therefore that the gene(s) involved in the suppression of the HeLa cell tumors is localized to the long arm (q arm) of chromosome 11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号