首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The morphology and number of cells in the trophectoderm (TE) and inner cell mass (ICM) of buffalo blastocysts derived from in vitro fertilization and cultured in the presence or absence of insulin-like growth factor-I (IGF-I) were analyzed by differential fluorochrome staining technique. The total cell number (TCN), TE number, and ICM cell number were significantly higher in blastocysts developed in vitro in the presence of IGF-I as compared to blastocysts developed without IGF-I (P < 0.01). It was observed that the buffalo blastocyst took 5–9 days postfertilization to develop in vitro. In order to correlate the time required for blastocyst development and the allocation of cells to TE and ICM, blastocysts were designated as fast (developing on or before day 7) or slow (developing after day 7). The TCN, TE, and ICM cells of fast-developing blastocysts cultured in the presence of IGF-I were significantly higher than slow-developing blastocysts (P < 0.01). The blastocysts developed on day 6 had a mean total cell number 118.6 ± 21.4, which significantly decreased to 85.6 ± 17.4, 62.0 ± 14.5, and 17.0 ± 4.0 on days 7, 8, and 9, respectively (P < 0.05). Normal development of buffalo embryo showed that, on average, embryos reached compact morula stage at the earliest between days 4.5–5.5. Blastocysts developed, at the earliest, between days 5.0–6.0, and it took them, on average, 6.5 days to hatch from the zona pellucida. TCN, TE, and ICM increased three times from morula to blastocyst; however, the proportion of ICM to TCN remained the same, in both embryonic stages. TE approximately doubled in hatched blastocysts, as compared to unhatched blastocysts (P < 0.05). However, ICM cells were decreased. The time required for development of parthenogenetic blastocysts was observed to be greater as compared to in vitro fertilized (IVF) blastocysts. The total cell number of parthenogenetic blastocysts was 100.8 ± 11.3, including 59.2 ± 8.4 cells of TE and 42.1 ± 6.9 cells of ICM. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The objective of these experiments was to assess putative embryotrophic effects of leukemia inhibitory factor (LIF) on bovine preimplantation development in chemically defined media. Recombinant human LIF was added to embryo culture media at a concentration of 100 ng/ml. When added for culture of morulae LIF had no positive effect on the proportion of embryos reaching the blastocyst stage. However, LIF significantly reduced development to the blastocyst stage when added for culture of 4-cell stage embryos (P<0.05). In contrast, a positive effect was found for progression of blastocyst development. In vitro blastocyst hatching rates were significantly improved in the presence of LIF (P<0.02). Number of total cells and of inner cell mass (ICM) cells were increased in LIF-treated blastocysts. In vitro survival of frozen-thawed blastocysts was not improved by adding LIF to morula stage embryos before cryopreservation. The pregnancy rate after direct transfer of cryopreserved LIF-treated embryos was not different from that for untreated control embryos. Data indicate that addition of LIF has no major beneficial effect on bovine embryos produced in these chemically defined conditions.  相似文献   

3.
The aim of the present study was to isolate and characterize goat embryonic stem cell-like cells from in vitro produced goat embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 150 blastocysts and 35 hatched blastocysts whereas 100 morulae were used for blastomeres isolation mechanically. The ICM derived cells or blastomeres were cultured on a feeder layer. The primary colony formation was significantly higher (P < 0.01) for hatched blastocysts (77.14%) than early/expanded blastocysts (54%) or morula (14%). When ICMs were isolated mechanically the primary colony formation for hatched blastocysts (90%) as well as blastocysts (66%) were significantly more than when ICMs were isolated by enzymatic digestion (60% and 30%, respectively). The colonies were disaggregated either mechanically or by enzymatic digestion for further subculture. When mechanical method was followed, the colonies remained undifferentiated up to 15 passages and three ES cell-like cell lines were produced (gES-1, gES-2, and gES-3). However, enzymatic disaggregation resulted in differentiation. The undifferentiated cells showed stem cell like morphological features, normal karyotype, and expressed stem cell specific surface markers like alkaline phosphatase, TRA-1-61, TRA-1-81, and intracellular markers Oct4, Sox2, and Nanog. Following prolonged culture of the ES cell-like cells were differentiated into several types of cells including neuron like and epithelium-like cells. In conclusion, goat embryonic stem cell-like cells can be isolated from in vitro produced goat embryos and can be maintained for long periods in culture.  相似文献   

4.
In vitro culture of bovine egg fertilized either in vivo or in vitro   总被引:4,自引:0,他引:4  
Three-quarters of in vivo and one-third of in vitro fertilized bovine eggs reached blastocyst stage when cultured on tubal cell monolayers (TCM), but no hatching occurred in B2 medium supplemented with estrous cow serum. When after 3 days of culture on TCM, morulae were transferred on endometrial cell monolayers (UCM), the same proportion of blastocysts was obtained and one-third of them hatched. Histological studies of hatched blastocysts showed that the number of inner cells was significantly lower than in hatched blastocysts recovered in vivo 8-8.5 days after ovulation. Moreover, the number of pycnotic cells was higher than normal, although mitosis were present. On the contrary, there was no difference in either the number or the appearance of trophoblastic cells between blastocysts obtained in vitro and in vivo. The addition of transforming growth factor (TGF-beta) to either TCM or UCM co-cultures at the very beginning of blastocyst formation specifically stimulated growth of the inner cell mass (ICM). The number of cells at hatching was about double (120) and significantly higher than that found in 8-8.5-day blastocysts in vivo. Moreover, hatching percentages were similar to the controls, even when eggs were cultured for 8 days only on TCM. However the proportion of pycnotic cells remained higher than normal, although many mitotic cells were unevenly distributed in ICM) In vivo during hatching, there were always pycnotic cells in ICM, but their number was limited and approximately similar to the number of mitosis. The uterine factors which control both mitosis and pycnosis in ICM remain to be discovered.  相似文献   

5.
The ability of trophectoderm (TE) cells to produce chimeric mice (pluripotency) was compared with that of inner cell mass (ICM) cells. TE and ICM cells of blastocysts and hatching or hatched blastocysts derived from albino mice (CD-1, Gpi-1a/a) were aggregated with zona cut 8- to 16-cell stage embryos or injected into the blastocoele from non-albino mice (C57BL/6 x C3H/He, Gpi-1b/b). After transfer to pseudopregnant female mice, the contribution of the donor cells was examined by glucose phosphate isomerase (GPI) analysis of embryos, membrane and placenta at mid-gestation (Day 10.5 and 12.5) or by the coat color of newborn mice. In contrast to ICM cells, there was no contribution of TE cells in the conceptuses and no coat color chimeric young were obtained. After pre-labeling of TE cells with fluorescent latex microparticles, they were aggregated with embryos and the allocation of TE cells at the compacted morula and blastocyst stages was observed under a fluorescent microscope. Although the TE cells were observed attached onto the surface of the embryos at morula and blastocyst stages, unlike the ICM cells, they were not positively incorporated into the embryos. Thus, the pluripotency of TE cells from mouse blastocysts was not induced by the aggregation and injection methods.  相似文献   

6.
To verify the importance of somatic cells upon in vitro embryo development, in vitro-matured (IVM) and -fertilized (IVF) bovine oocytes were cultured in TCM 199 supplemented with estrous cow serum (10% v/v) and 0.25 mM sodium pyruvate (ECSTCM) under the following treatments: 1) ECSTCM alone; 2) together with bovine oviduct epithelial cells (BOEC); 3) with cumulus cells (CC); 4) in fresh BOEC conditioned ECSTCM; or 5) in frozen-thawed BOEC conditioned ECSTCM. Culturing zygotes encased in cumulus cells significantly reduced the cleavage rate (P<0.05). There was no difference between culture systems in the proportions of embryo development through the 8-cell stage (P=0.42) up to the morula/blastocyst stages (P=0.50) at Day 7 post insemination. However, co-culture with BOEC yielded the highest percentage (21.2% of zygotes; P<0.05) of quality Grade-1 and Grade-2 embryos with the number of blastomeres per embryo (114.4) comparable to that of 7-day-old in vivo-developed embryos of similar grades (102.5), and higher (P<0.05) than those of the other treatments. The ratio of blastocysts to total morulae/blastocysts obtained from frozen-thawed conditioned medium was lower (P<0.05) than that from ECSTCM or after co-culture with BOEC at Day 7 post insemination. On average, 7.5 to 17.5% of the zygotes developed to blastocyst, expanded blastocyst and hatched blastocyst stages by Day 10 post insemination, depending upon the culture system. The difference between treatments, however, was not significant (P=0.68). The results indicate that chronological development up to hatching of bovine IVM-IVF embryos is not favored by somatic cells; however, the presence of viable oviduct epithelial cells in culture significantly improves the quality of 7-day-old embryos.  相似文献   

7.
This study examined the effects of fetal calf serum (FCS) supplementation of culture medium on blastulation and hatching of bovine morulae cultured in vitro. The presumptive zygotes derived from in vitro maturation and fertilization (IVM/IVF) were cultured in the modified synthetic oviduct fluid medium containing 3 mg/ml BSA (mSOF-BSA). At 120 h post insemination, morulae were randomly assigned to culture with mSOF-BSA (control) or mSOF containing 5% FCS (mSOF-FCS) instead of BSA. The replacement of BSA with FCS in mSOF significantly increased the percentage of blastocyst formation from Day 6 to Day 10 (Day 0 = the day of in vitro insemination) and the hatching rate of embryos on Days 8 and 9. The total number of cells in morulae and blastocysts on Day 6, in blastocysts on Day 7, and in blastocysts and hatched blastocysts on Day 8 were similar among the treatments. However, the replacement of BSA with FCS in mSOF significantly increased the total number of cells in hatched blastocysts on Day 10. Although the time of blastulation of embryos was significantly accelerated by the replacement of BSA with FCS in mSOF, the total number of cells in embryos at blastulation was lowered. The total number of cells in embryos at blastulation showed a time-dependent decrease when the embryos were cultured in mSOF-BSA. In contrast, the total number of cells in embryos that were cultured in mSOF-FCS depended little on the time after in vitro insemination. The results indicate that FCS supplementation of culture medium increased the percentage of embryos developing to the blastocyst stage without an increase in the total number of cells. However, an acceleration in the hatching rate and an increase in the total number of cells in hatched blastocysts were observed, compared with that in BSA-supplemented medium. It is suggested that FCS in the culture medium initiates earlier blastulation with fewer total numbers of cells in the morulae than BSA during in vitro culture of bovine embryos.  相似文献   

8.
An embryonic stem (ES) cell line stably expressing lacZ under the control of an endogenous promoter has been isolated and used as a marker to follow the fate of ES cells injected into blastocysts and morulae, before midgestation. The results show a multisite pattern of blastocyst colonization by ES cells deposited into the blastocoel cavity and a low degree of mingling between ES cells and ICM cells. Furthermore, analysis of dispersal of ES cell descendants in postimplantation chimaeric embryos showed that colonization can be highly variable from one region of the embryo to another. In contrast, a high and reproducible degree of chimaerism was obtained when the ES cells were injected at the morula stage prior to ICM formation.  相似文献   

9.
This study evaluated the effect of freezing-thawing procedures on the viability of sheep embryos cryopreserved at various developmental stages. The survival rates of frozen-thawed embryos were compared with non-frozen counterparts. Embryos were recovered from the oviduct and uterus, at different days of the early luteal phase, and were classified at six different developmental stages: 2- to 4-cell (n = 72), 5- to 8-cell (n = 73), 9- to 12-cell (n = 70), early morulae (n = 42), morulae (n = 41), and blastocyst (n = 70). For each early cleavage stage and blastocysts, approximately half of the embryos, were frozen immediately by slow freezing with an ethylene glycol-based solution. The remaining embryos were cultured to the hatched blastocyst stage. All morulae and compact morulae were frozen after recovery with the same protocol. Cryoprotectants were removed using 1M sucrose solution, and then warmed the embryos were cultured to the hatched stage in a standardized in vitro culture. Embryo developmental stage had a significant effect on the ability to hatch following freezing (P<0.0001). The cryotolerance of the embryos fitted a regression (r2 = 0.908), increasing linearly from 2- to 4-cell embryos (17.1%) to morula stage (46.3%) and in a quadratic regression from the morula to the blastocyst stage (83.7%). Frozen early cleavage stage embryos had a significantly lower viability than their fresh counterparts (23.1 vs 83.1%; P<0.0001), with a similar rate of viability between fresh or frozen blastocysts (92.5 vs 83.7%). In conclusion, early sheep embryos are very sensitive to freezing per se and the survival rates following conventional freezing improve as embryo developmental stage progresses.  相似文献   

10.
The influence of bovine serum albumin (BSA) concentration on embryo hatching and the number of embryos cultured per drop of culture medium was examined in F1 (C57BL/6J × DBA/2J), C3HeB/FeJ strain and Line E mice. Embryos collected from F1 and Line E mice exhibited uniform hatching rates at BSA concentrations between 1 and 10 mg/ml, and embryo numbers ranging from 1 to 10 per 3 μ1 of culture medium. The hatching of C3HeB/FeJ blastocysts was greater at the higher concentrations of BSA and higher embryo densities. When the C3HeB/FeJ embryos were grown at high densities until morula and then cultured singly in fresh media they hatched at a low rate. However, when allowed to develop until the blastocyst stage before replotting, the embryos hatched at a high rate. C3HeB/FeJ embryos cultured singly until morula and then placed in groups of 10 hatched at a high rate. Single C3HeB/FeJ embryos, cultured in medium conditioned by the prior presence of embryos at high densities, hatched at a slightly higher frequency than those cultured in fresh medium. There was no tendency of embryos developing from the two-cell to the eight-cell stages to hatch when cultured in the presence of high densities of hatching blastocysts.  相似文献   

11.
Several contemporary micromanipulation techniques, such as sperm microinjection, nuclear transfer, and gene transfer by pronuclear injection, require removal of cumulus cells from oocytes or zygotes at various stages. In humans, the cumulus cells are often removed after 15–18 hr of sperm-oocyte coincubation to assist the identification of the fertilization status. This study was designed to evaluate the function of cumulus cells during oocyte maturation, fertilization, and in vitro development in cattle. Cumulus cells were removed before and after maturation and after fertilization for 0,7,20, and 48 hr. The cumulus-free oocytes or embryos were cultured either alone or on cumulus cell monolayers prepared on the day of maturation culture. Percentages of oocyte maturation, fertilization, and development to cleavage, morula, and blastocyst stages and to expanding or hatched blastocysts were recorded for statistical analysis by categorical data modeling (CATMOD) procedures. Cumulus cells removed before maturation significantly reduced the rate of oocyte maturation (4–26% vs. 93–96%), fertilization (0–9% vs. 91–92%), and in vitro development at all stages evaluated. Cumulus cells removed immediately prior to in vitro fertilization (IVF) or 7 hr after IVF reduced the rates of fertilization (58–60% and 71%, respectively, vs. 91–92% for controls), cleavage development (40–47% and 53–54% vs. 74–78% for controls), and morula plus blastocyst development (15% and 24% vs. 45%, P < 0.05). Cumulus cell co-culture started at various stages had no effect on fertilization and cleavage development but significantly improved rates of embryo development to morula or blastocyst stages (P < 0.05). Cumulus cell removal at 20 hr after IVF resulted in similar development to controls (P > 0.05) at all stages tested in this study. The intact state of surrounding cumulus cells of oocytes or embryos appears to be beneficial before or shortly after insemination (at or before 7 hr of IVF) but not essential at 20 hr after IVF. © 1995 Wiley-Liss, Inc.  相似文献   

12.
13.
Changes in the morphology and cell number of the inner cell mass (ICM) of porcine blastocysts at the expanded and hatched stages during freezing (-6.8 degrees C, -35 degrees C and -196 degrees C) were studied by differential fluorochrome staining. The shape of each ICM cell from fresh blastocysts at the expanded and hatched stages was sharply delineated but that of ICM cells from frozen blastocysts was partially distorted. The cell-to-cell contact of the ICM from fresh blastocysts was tight, while that from frozen blastocysts was loose or scattered. The percentages (18 to 38%) of expanded and hatched blastocysts with tight-contact ICM cells from frozen groups at each step were significantly lower (P<0.05) than that (100%) from fresh blastocysts. The number of live ICM cells and their proportion from frozen expanded blastocysts (10.9, 12,4% at -36 degrees C) were significantly lower (P<0.05) than those from fresh embryos (18.4, 19.1%) and at -196 degrees C (20.6, 18.4%). At the hatched stage, the number of live ICM cells and their proportion were not significantly different between each freezing step. These results show that the ICM of porcine embryos at both the expanded- and hatched-blastocysts stages survived even after freezing at -196 degrees C and that the degree of ICM damage was lower at the hatched stage than at the expanded stage.  相似文献   

14.
Data from other laboratories have shown that speed of bovine blastocyst development is higher when Ménézo B2 is used for coculture compared to TCM199. It was our purpose to investigate whether this early blastocyst formation was also indicative of embryo quality by studying the allocation of inner cells in embryos generated by B2-coculture and by TCM199-coculture. For this purpose, a differential staining technique was used. General embryo development was similar for TCM199- and B2-embryos expressed as rate of cleavage at day 3 and morula-blastocyst formation at day 8 (P > 0.05), but significantly different when expressed as number of eight-cell stages at day 3 and expanded or hatched blastocysts at day 8 (P < 0.01). B2-embryos cultured until day 5, 6, and 7 post insemination, had total cell numbers of 24, 65, and 109 respectively, which was significantly higher than the cell number of TCM199 embryos cultured over the same time period (18, 41, and 71 respectively, P < 0.001). Morphological differentiation was significantly more advanced for B2-embryos at day 7 and 8 (P < 0.0001 and P < 0.001, respectively). First presumptive inner cells appeared in eight- to 16-cell stages at day 3. Because the determination of inner cells by differential staining is depending upon the presence of functional tight junctions, we concluded that the establishment of the tight junction seal in B2-embryos differed from that in TCM199-embryos: Inner cells appeared 0.56 cell cycle later in B2-embryos (P < 0.001) and a larger variation existed in the number of ICM-cells in B2-blastocysts (P < 0.001). The higher total cell number of B2-expanded blastocysts was mainly acquired by trophectoderm growth (P < 0.06). These data indicate that the apparent better quality of B2-embryos (faster cleavage, earlier blastocyst formation) is not reflected in a reliable number of inner cells of B2-blastocysts. © 1996 Wiley-Liss, Inc.  相似文献   

15.
The aim of the present study was to isolate and characterize goat embryonic stem cell-like cells from in vitro produced goat embryos. Inner cell mass (ICM) cells were isolated either mechanically or by enzymatic digestion from 150 blastocysts and 35 hatched blastocysts whereas 100 morulae were used for blastomeres isolation mechanically. The ICM derived cells or blastomeres were cultured on a feeder layer. The primary colony formation was significantly higher (P?相似文献   

16.
应用乙二醇冷冻小鼠胚胎:优化和简化程序的探索   总被引:1,自引:0,他引:1  
提高解冻胚胎的发育能力和简化冷冻解冻程序是胚胎冷冻研究的两大永恒的主题。尽管乙二醇(EG)广泛用于家畜胚胎冷冻,但很少用于冷冻小鼠和人胚胎。为数很少的以EG慢冻小鼠或人胚胎的研究均采用较为复杂的人胚冷冻程序,未见简化程序和用EG冷冻小鼠桑椹胚的报道。采用简单的牛胚胎冷冻程序研究了发育时期、EG浓度、平衡方法、添加蔗糖以及解冻后脱除EG等对小鼠胚胎冻后发育能力的影响。结果显示:(1)致密晚期桑椹胚冻后体外培养囊胚发育率(81.92%±2.24%)和孵出率(68.56%±2.43%)显著(P<0.05)高于4-细胞、8-细胞胚胎和致密早期桑椹胚胎;(2)1.8mol/L EG冷冻小鼠致密晚期桑椹胚的囊胚发育和孵出率显著高于其它浓度;(3)在EG中平衡10min的冻后囊胚发育显著好于平衡5、20或30min;(4)两步平衡冷冻胚胎的囊胚发育率和孵出率显著高于一步平衡;(5)用EG冷冻小鼠胚胎无需添加蔗糖;(6)解冻后可不脱除EG;(7)冻后发育的早期囊胚和囊胚细胞数明显少于体内发育胚胎。因此,用EG冷冻小鼠胚胎的最佳方案为:致密晚期桑椹胚用1.8mol/L EG不添加蔗糖、两步平衡15min、以简单的牛胚胎冷冻程序冷冻解冻、解冻后不脱除EG直接培养或移植。  相似文献   

17.
In this study, the quantitative fluctuation of cytoplasmic lipid droplets (LD) and cryotolerance were investigated in bovine embryos derived from in vitro-matured (IVM) and in vitro-fertilized (IVF) oocytes developed in different culture systems using serum-free or serum-containing media. The serum-free cultures were grown using IVMD101 medium in conjunction with bovine cumulus/granulosa cell (BCGC) cocultures or IVD101 medium without BCGC cocultures, and the serum-containing cultures were grown in the presence of BCGC cocultures using HPM199 medium supplemented with 5% calf serum (HPM199 + CS). Large numbers of sudanophilic LD were present in the cytoplasm of bovine embryos from 2-cell to hatched blastocyst stages, and the number and size differed between the embryos cultured in serum-free and serum-supplemented media. In the embryos cultured in HPM199 + CS, large (2-6 microm in diameter) sudanophilic LD increased significantly from the morula to the blastocyst stages. Throughout the embryonic development, the embryos developed in serum-free cultures with and without BCGC cocultures had numerous sudanophilic LD, but most of these droplets were small (<2 microm in diameter) and large LD were less numerous than those embryos cultured in HPM199 + CS. Giant LD (>6 microm in diameter) were frequently observed in morulae and blastocysts (including early blastocysts) developed in HPM199 + CS. Electron microscopic observations demonstrated that large LD were abundant in the cytoplasm of trophoblast and embryonic (inner cell mass) cells of blastocysts cultured in HPM199 + CS. These large LD were identified as osmophilic LD, an indication that these lipid inclusions contained a significant proportion of unsaturated lipids. Many elongated mitochondria were found in embryos developed in IVMD101 and IVD101 at the morula and early blastocyst stages, whereas many of the mitochondria in the morulae developed in HPM199 + CS were of an immature form such as spherical or ovoid shape. The survival and hatching rates of embryos (morulae, early blastocysts, and blastocysts) produced in serum-free media (both IVMD101 and IVD101) after post-thaw culture were superior to those of embryos produced in serum-containing medium. These results showed that bovine embryos cultured in serum-containing medium abnormally accumulated cytoplasmic lipids into their cytoplasm and the excess accumulation of cytoplasmic LD in embryos may affect the cryotolerance of embryos.  相似文献   

18.
The morphology of the inner cell mass (ICM) cells and the proportion of dead ICM cells in frozen-thawed bovine preimplantation embryos were investigated by differential fluorochrome staining. Embryos at the blastocyst stage of development were frozen and thawed by two different techniques (three-step and one-step) in two different basic salt solutions (PBS and TCM 199) containing 1.36M glycerol. After thawing and glycerol removal, embryos were co-cultured in a cumulus cells monolayer in TCM 199 for 48 hr (morula) or 24 hr (blastocysts). Differential cell counts of the ICM and trophectoderm were then done using differential fluorochrome staining. Overall, there was no significant difference in the viability of embryos frozen in the two basic salt solutions. Low proportions of dead ICM cells were observed in embryos frozen at the morula stage in both PBS (19.1%) or TCM 199 (18.0%). However, blastocyst stage embryos frozen by the three-step technique had a higher (P < 0.05) proportion of dead ICM cells in TCM 199 (37.7%) than in PBS (18.2%). Blastocysts frozen by the one-step technique had a higher (P < 0.05) proportion of dead ICM cells (42.2%) than those frozen by the three-step technique (18.2%), regardless of basic salt solutions. Results indicate that freezing and thawing damages ICM cells in morphologically normal embryos and that the degree of damage depended on the basic salt solution and the freezing method. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Supraphysiological oxygen tension during embryo culture can generate reactive oxygen species (ROS), which can induce apoptosis. Antioxidants such as thiol compounds (cysteine, cysteamine) can be used to prevent ROS damage to the embryo. The purpose of this study was to evaluate the prevalence of apoptosis during bovine embryo development and to evaluate the effect of the presence or absence of cysteine 0.6 mM in modified synthetic oviduct fluid (mSOF) on in vitro produced cattle embryos cultured under two different oxygen tensions (5% O2 versus 20% O2). Effects were assessed by checking embryo development at Days 7, 8 and 9 and by evaluating Day 9 hatched blastocysts for differentiation by means of differential staining and for apoptosis by means of TUNEL-assay. Apoptotic cells were present in 94% of Day 7 blastocysts and in 100% of Days 8 and 9 blastocysts. Cysteine addition affected Day 8 blastocyst rates in a negative way (P < 0.05) regardless of the oxygen tension. In fact, cysteine addition to the mSOF culture medium had a negative effect upon embryo development in terms of blastocyst rates, hatching rates and apoptotic cell ratio. Embryos cultured under 5% O2 in the presence of cysteine, however, possessed significantly higher numbers of ICM cells. This finding corroborates the theoretical assumption that antioxidants are beneficial for ICM development.  相似文献   

20.
To determine the best developmental stage of donor embryos for yielding the highest number of clones per embryo, we compared the efficiencies of nuclear transfer when using blastomeres from morulae or morulae at cavitation, or when using inner-cell-mass cells of blastocysts as nuclear donors. This comparison was done both on in vivo-derived and in vitro-produced donor embryos. In experiment 1, with in vivo-derived donor embryos, nuclei from morulae at cavitation supported the development of nuclear transfer embryos to the blastocyst stage (36%) at a rate similar to that of nuclei from morulae (27%), blastomeres from morulae at cavitation being superior (P < 0.05) to inner-cell-mass cells from blastocysts (21%). The number of blastocysts per donor embryo was significantly (P < 0.05) higher when using nuclei from morulae at cavitation (15.7 ± 4.1) rather than nuclei from morulae (9.8 ± 5.5) or blastocysts (6.3 ± 3.3). With in vitro-produced donor embryos (experiment 2), nuclei from morulae yielded slightly more blastocysts (32%) than nuclei from morulae at cavitation (29%), both stages being superior to nuclei from blastocysts (15% development to the blastocyst stage). Morulae at cavitation yielded a higher number of cloned blastocysts per donor embryo (11.5 ± 5.9) than did morulae (9.3 ± 3.2) and blastocysts (3.3 ± 1.4). Transfer of cloned embryos originating from in vivo-derived morulae, morulae at cavitation, and blastocysts resulted in four pregnancies (10%), three pregnancies (7%), and one (17%) pregnancy on day 45. The corresponding numbers of calves born were 3 (4%), 3 (7%), and 0, respectively. After transfer of blastocysts derived from in vitro nuclear donor morulae (n = 16) and morulae at cavitation (n = 7), two (20%) and two (50%) recipients, respectively, were pregnant on day 45. However, transfer of seven cloned embryos from in vitro donor blastocysts to three recipients did not result in a pregnancy. Using in vitro-produced donor embryos, calves were only obtained from morula-stage donors (13%). Our results indicate that the developmental stage of donor embryos affects the efficiency of nuclear transfer, with morulae at cavitation yielding a high number of cloned blastocysts. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号