首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Individual specialization can influence important ecological and evolutionary traits and both inter‐ and intra‐individual variation in resource use can drive niche shifts in natural populations. We evaluated the predominance of these two factors for determining seasonal differences in the trophic niche of the didelphid marsupial Gracilinanus agilis (Burmeister, 1854) in the highly seasonal Brazilian savanna. In the three sampled sites, the population of G. agilis increased its dietary niche width in the warm–wet season, when food resources are more abundant, and there were no differences between sexes and no interaction between season and sex. However, the evaluation of intra‐individual variation indicated that females reduce the number of items consumed during the warm–wet season, whereas males show no seasonal differences. Inter‐individual variation nonetheless followed the overall population pattern because both sexes increased their spread with respect to food‐item consumption in the warm–wet season. Additionally, we found positive relationships between body length and diet only in the warm–wet season, when larger animals fed more on invertebrates and less on fruits than the small ones. Our results show a previously unknown pattern for mammals, in which the trophic niche is wider during the high‐resource season as a result of inter‐individual variation along the body‐size axis. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 737–747.  相似文献   

2.
Understanding tree growth in response to rainfall distribution is critical to predicting forest and species population responses to climate change. We investigated inter‐annual and seasonal variation in stem diameter by three emergent tree species in a seasonally dry tropical forest in southeast Pará, Brazil. Annual diameter growth rates by Swietenia macrophylla demonstrated strong positive correlation with annual rainfall totals during 1997–2009; Hymenaea courbaril growth rates demonstrated weak positive correlation, whereas Parkia pendula exhibited weak negative correlation. For both Swietenia and Hymenaea, annual diameter growth rates correlated positively and significantly with rainfall totals during the first 6 mo of the growing year (July to December). Vernier dendrometer bands monitored at 4‐wk intervals during 3–5 yr confirmed strong seasonal effects on stem diameter expansion. Individuals of all three species expanded in unison during wet season months and were static or even contracted during dry season months. Stems of the deciduous Swietenia contracted as crowns were shed during the early dry season, expanded slightly as new crowns were flushed, and then contracted further during 3–5 wk flowering periods in the late dry season by newly mature crowns. The three species’ physiographic distribution patterns at the study site may partially underlie observed differences in annual and seasonal growth. With most global circulation models predicting conditions becoming gradually drier in southeast Amazonia over the coming decades, species such as Swietenia that perform best on the ‘wet end’ of current conditions may experience reduced growth rates. However, population viability will not necessarily be threatened if life history and ecophysiological responses to changing conditions are compensatory.  相似文献   

3.
The aim of this work was to analyze the sequential foraging behavior of dusky dolphins (Lagenorhynchus obscurus). Foraging sequences were defined when more than two feeding bouts occur with a traveling bout between them. We hypothesized that traveling costs of searching for prey patches were related to the time spent feeding on a patch. In addition, the distribution and seasonal variation of anchovy schools were studied in the area to better understand dolphins' behavior. We observed dolphins from a research vessel from 2001 to 2007, and recorded their location and behavior. Anchovy data were collected during two hydro‐acoustic surveys. Dusky dolphin behaviors varied seasonally; they spent a greater proportion of time traveling and feeding in the warm season (Kruskal‐Wallis: = 172.07, < 0.01). During the cold season dolphin groups were more likely to exhibit diving behavior and less surface feeding. We found a positive correlation between searching and foraging time (= 0.88, = 0.019), suggesting that the costs associated with searching were compensated by an increase in the energy intake during the foraging bout. There was an association between dusky dolphin and anchovy distribution, in that they co‐varied spatially and seasonally.  相似文献   

4.
Reproductive ecology, population structure, and diets of three common livebearing poeciliid fishes (Alfaro cultratus, Phallichthys amates, Poecilia gilli) from rainforest streams in Costa Rica were investigated over ten continuous months. The region experiences little annual temperature variation, and although monthly rainfall is continuous each year, two brief dry seasons typically occur. Monthly changes in indices of ovarian condition, percentages of females with developing embryos, and population size structure revealed that reproductive output by females of all three species varied seasonally. Based on testicular condition, males were reproductively active year-round, however the mean gonadal index for males of two algivorous species showed low levels of seasonal cycling that largely coincided with female variation in reproductive effort. All three species had seasonal differences in the female size-brood size relationship, whereby larger females tended to carry more embryos during the wet season. Several important adult and neonate food resources are more available in the flooded forest during the wet season, which is also the period when conspecifics and predators are at their lowest per-area densities. Three hypotheses are discussed: (1) brood size in relation to conspecific density-mating frequency, (2) reproductive allocation in response to variation in adult food resources, and (3) selection for greater reproductive effort during conditions optimal for juvenile growth and survival. Data for Alfaro were consistent with the latter two hypotheses. In Phallichthys and Poecilia, diets were poorer during wet seasons, indicating that reproductive effort does not coincide with availability of adult food resources, and that selection probably favors greater reproductive effort during periods optimal for juvenile growth and survival.  相似文献   

5.
Three sympatric Hapalemur species (H. g. griseus, H. aureus, and H. (Prolemur) simus) in Ranomafana National Park, Madagascar are known to eat bamboo food parts that contain cyanide. How these lemurs avoid cyanide poisoning remains unknown. In this study, we tested for the presence/absence of cyanide in bamboo lemur foods and excreta to (1) document patterns of cyanide consumption among species with respect to diet, (2) identify routes of elimination of cyanide from the gastrointestinal tract, and (3) determine whether cyanide is absorbed from the diet. We tested 102 food, urine, and fecal samples for hydrogen cyanide (HCN) during two “pre‐dry” seasons (April 2006, May 2007) using commercially available Cyantesmo test strips. The test strips changed color in the presence of HCN, and we recorded color change on a scale of 0 (no change) to 5 (cobalt) at preset intervals with a final score taken at 24 hr. We detected cyanide in bamboo food parts and urine of all three Hapalemur species. Time to color change of the test strips ranged from almost instantaneous to >12 hr incubation. Of the foods tested, only bamboo contained cyanide, but results differed among bamboo species and plant parts of the same species. Specifically, branch shoot and culm pith of the giant bamboo produced strong, immediate reactions to the test paper, whereas parts of liana bamboos produced either weak or no color change. Cyanide was present in almost all urine samples but rarely in fecal samples. This suggests that dietary cyanide is absorbed in the gastrointestinal tract of the Hapalemur species and excreted, at least in part, by the kidneys. Samples from H. griseus exhibited lower, though still detectable, cyanide levels compared with H. simus and H. aureus. Differences among lemur species appear to be related to the specific bamboo parts consumed. Am. J. Primatol. 72:56–61, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Seasonal patterns of group fragmentation, including the size of subgroups and percentage of time spent in subgroups, may provide information on individual decision-making in response to resource distribution. Age-sex class composition of subgroup membership can offer insights into the social dynamics of the group as a whole. At most field sites, capuchins (Cebus spp.) form stable groups with no evidence of group fragmentation. Here I describe seasonal subgrouping patterns, including proportion of time spent in subgroups, subgroup size, age-sex membership, dyadic fidelity, stability of membership, and the effect of subgrouping on individual foraging efficiency, in a group of wild Cebus apella nigritus. From September 1996 to August 1997 the study group at the Estação Biológica de Caratinga, Brazil divided into 148 different subgroups, on 99 of 194 census days. In contrast to expectations for subgrouping patterns as a response to seasonal distribution of resources, the proportion of days spent in subgroups did not vary significantly by season. Subgroup composition was relatively fluid, with multimale multifemale subgroups the most common throughout the year. Unimale multifemale subgroups were restricted to the wet season; in contrast, all-male subgroups and unimale unifemale subgroups occurred in the dry season. For both males and females, low rank predicted membership in smaller subgroups. For males, but not females, subgrouping coincided with increased foraging efficiency, as measured by increased time spent ingesting food and decreased time spent traveling on days with subgrouping compared to days with the group in a cohesive unit.  相似文献   

7.
Understanding how species cope with variations in climatic conditions, forest types and habitat amount is a fundamental challenge for ecologists and conservation biologists. We used data from 18 communities of Mesoamerican spider monkeys (Ateles geoffroyi) throughout their range to determine whether their activity patterns are affected by climatic variables (temperature and rainfall), forest types (seasonal and nonseasonal forests), and forest condition (continuous and fragmented). Data were derived from 15 published and unpublished studies carried out in four countries (Mexico, El Salvador, Costa Rica, and Panama), cumulatively representing more than 18 years (221 months, >3,645 hr) of behavioral observations. Overall, A. geoffroyi spent most of their time feeding (38.4 ± 14.0%, mean ± SD) and resting (36.6 ± 12.8%) and less time traveling (19.8 ± 11.3%). Resting and feeding were mainly affected by rainfall: resting time increased with decreasing rainfall, whereas feeding time increased with rainfall. Traveling time was negatively related to both rainfall and maximum temperature. In addition, both resting and traveling time were higher in seasonal forests (tropical dry forest and tropical moist forest) than in nonseasonal forests (tropical wet forest), but feeding time followed the opposite pattern. Furthermore, spider monkeys spent more time feeding and less time resting (i.e., higher feeding effort) in forest fragments than in continuous forest. These findings suggest that global climate changes and habitat deforestation and fragmentation in Mesoamerica will threaten the survival of spider monkeys and reduce the distributional range of the species in the coming decades. Am. J. Primatol. 73:1189–1198, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO2 assimilation per unit mass (A mass), nitrogen concentration (N mass), and δ13C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO2 assimilation per unit area (A area), phosphorus concentration per unit mass (P mass), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A area decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana δ13C increased four times more than tree δ13C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A mass than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.  相似文献   

9.
The distribution and quality of food resources is generally recognized as the preeminent factor explaining much interspecific and intraspecific variation in the behavior of nonhuman primates. Primates that live in seasonal environments often show predictable responses to fluctuating resources. In order to compensate for the reduction in resource availability, primates variously switch to alternative, poorer quality food sources, increase the amount of time they spend foraging, or increase their daily path length. Some primate species reduce their group size or maximize the group dispersion. I address whether spectral tarsiers (Tarsius spectrum), which are insectivores, modify their behavior in the same ways as frugivores and folivores in response to seasonal or scarce resources. My results indicate that wild spectral tarsiers modify their activity budget in response to seasonal resources. Specifically, during periods of low resource availability, spectral tarsier males and females spent more time traveling and foraging compared to their activity budget during the wet season. Males and females not only increased the amount of time they spent foraging during times of low resource abundance but also modified their foraging behavior. During the wet season, when resource abundance was high, they consumed Orthoptera and Lepidoptera with greater frequency than during the dry season. During the dry season, when resource abundance was low, spectral tarsiers still ate numerous Orthoptera and Lepidoptera, but they also increased consumption of Coleoptera and Hymenoptera. Spectral tarsiers were also more likely to be involved in territorial disputes during the dry season than during the wet season. Intragroup encounters decreased in frequency in the dry season versus the frequency of encounters during the wet season.  相似文献   

10.
Lianas reduce tree growth, reproduction, and survival in tropical forests. Liana competition can be particularly intense in isolated forest fragments, where liana densities are high, and thus, host tree infestation is common. Furthermore, lianas appear to grow particularly well during seasonal drought, when they may compete particularly intensely with trees. Few studies, however, have experimentally quantified the seasonal effects of liana competition on multiple tree species in tropical forests. We used a liana removal experiment in a forest fragment in southeastern Brazil to test whether the effects of lianas on tree growth vary with season and tree species identity. We conducted monthly diameter measurements using dendrometer bands on 88 individuals of five tree species for 24 months. We found that lianas had a stronger negative effect on some tree species during the wet season compared to the dry season. Furthermore, lianas significantly reduced the diameter growth of two tree species but had no effect on the other three tree species. The strong negative effect of lianas on some trees, particularly during the wet season, indicates that the effect of lianas on trees varies both seasonally and with tree species identity. Abstract in Portuguese is available with online material.  相似文献   

11.
A one‐year phenological study of three columnar cacti, Stenocereus griseus (Haw.) Britton & Rose, Pilosocereus sp., Cereus hexagonus (L.) Mill., and a decumbent cactus Monvillea cf. smithiana (Britton & Rose) Backeberg., was carried out in the Andean arid region of La Tatacoa, Colombia. Pollinators and/or dispersers of the cacti species also were studied monthly, and fecal samples were collected for the identification of pollen and seeds. The flowering of all species was prolonged and showed bimodal, multimodal, or irregular patterns. Fruiting in all species also was prolonged and followed flowering with a lag of less than two months. Although there were no simple correlations between rainfall and flowering or fruiting, flower production during the dry season was higher for 5. griseus, while Pilosocereus sp. and C. hexagonus showed higher flower production during the wet season. Fruit production was also seasonal, with higher production during the wet season for 5. griseus and C. hexagonus. The patterns of flowering and fruiting in M. cf. smithiana showed no relationships with dry and wet seasons. The bats Glossophaga longirostris, Carollia perspicillata, Sturnira lilium, the birds Melanerpes rubricapillus (Picidae) and Mimus gilvus (Mimidae), and moths of the family Sphingidae, were identified as pollinators and/or fruit consumers of these cacti species.  相似文献   

12.
The feeding behavior of the southern subspecies of Japanese macaque (Macaca fuscata yakui) was studied over a period of 18 months in warm temperate broad-leaved forest on the island of Yakushima, Japan. Focal animal data were collected for the eight adults in the troop. Over a full annual cycle, 35.0% of foraging on identified foods was on leaves and shoots, 30.2% on fleshy fruit, 13.2% on seeds, and 5.5% on flowers. Invertebrates and other animal matter accounted for 10.3% of foraging and fungi for 4.6%. There was marked seasonal variation in the use of different food categories, and seeds, leaves, fleshy fruit, and animal matter were each predominant at different times of year. There was also evidence of annual cyclicity in patterns of foraging on all major food types. The monkeys spent less time moving and ate a greater variety of foods when feeding on leaves than when feeding on fruit and seeds, or on insects. Time spent foraging was positively correlated with diversity of the diet, but there was no simple relationship between time spent foraging and the predominant food type. This suggests that a wide variety of foods takes longer to harvest and process, irrespective of the food type. The diet of the study troop was flexible and could not be assigned to a simple dietary category, such as frugivorous or folivorous. If these data are representative of the subspecies, the Yakushima macaque is much more of a dietary generalist than most primates for which there are adequate data. Am. J. Primatol. 43:305–322, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Seasonal fluctuations in resource abundance often cause primates to change their feeding behavior and ecology. The objective of this study was to examine the response of a largely frugivorous monkey, the grey-cheeked mangabey (Lophocebus albigena), to seasonal variations in fruit abundance. We used 15-min scan sampling to quantify feeding, activity, and habitat use by monkeys between February and December 1998 in the Dja Reserve, Cameroon. L. albigena were found to have omnivorous feeding habits, consuming the fruits, seeds, leaves, and flowers of 132 plant species. Although monkeys fed from many plant species, only five plant species accounted for 45% of all feeding records. The number of feeding observations on a plant species was significantly correlated with its fruit production. L. albigena responded to fruit-lean periods by shifting from a diet dominated by fruit to one dominated by seeds, flowers, and young leaves. This diet shift coincided with greater use of swamp habitat and higher dietary diversity. L. albigena spent the greatest percentage of scan samples feeding and traveling, but activities varied significantly over the day. Individuals spent a significantly higher percentage of scan samples feeding during the fruit-rich season than in the fruit-lean season. Comparing our results to those of studies in Gabon and Uganda, we found that L. albigena differ across regions in the number of plant species they consume and time spent feeding. These differences may be a result of variations in tree diversity or the strength of seasonal fluctuations in resource abundance among sites.  相似文献   

14.
The seasonality of herbivory on the leaves of Neoboutonia macrocalyx Pax. in Kibale Forest National Park, Uganda, was studied. A total of 2929 fallen leaves was collected during 15 months under randomly-selected trees in three different habitats; natural forest and two selectively cut forest sites. The percentage of leaf area eaten and leaf size were estimated. Leaf herbivory was highly seasonal and correlated with rainfall in the previous 2 months, but less than 100 mm monthly rainfall had no effect. There was no correlation between leaf size and rainfall. Although Kibale Forest has two wet seasons, insect feeding on leaves had only one peak during the major rainy season from September to December. Three to four months after peak herbivory, leaves had very low rates of insect damage. Habitat had only a small effect on the amount of insect feeding. The sampling time accounted for 71% of variation in leaf herbivory. New leaves were formed continuously year-round. The constant leaf production by Neoboutonia trees may be an adaptation to escape generalist herbivorous insects which might be synchronized with the major wet season when the leaf flush of the most other deciduous species occurs. Thus, the availability of fresh leaves is not acting as a regulating factor in seasonality of Neoboutonia herbivory.  相似文献   

15.
Previous laboratory studies have shown that photoperiodic adult songbirds experience seasonal variations in singing frequency that correlate with plasma androgen levels, as well as changes in the brain regions that control singing (vocal control regions). The present study investigates naturally occurring seasonal changes in the sizes of these regions in a wild migratory species (dark-eyed junco, Junco hyemalis), with samples from adolescence to post-breeding fall migration. In adult males, the volumes of the vocal control regions area X and the higher vocal center (HVC) were large during the breeding season when birds were singing and androgen levels were high, and decreased in size after the breeding season when singing had stopped and androgen levels were low. HVC volume in adolescent males caught in the fall (no singing), when plasma androgen levels were low, was smaller than in breeding adults, thereby following the seasonal pattern of change in plasma androgen levels. In adolescent males, however, area X volume was the same as in breeding adults. Thus, area X size in adolescent male juncos may be testosterone independent. The seasonal pattern of robust nucleus of the archistriatum volume was similar to that of the HVC. The volumes of neither the magnocellular nucleus of the anterior neostriatum nor the nucleus rotundus, a control region, differed seasonally. Castration of breeding adult males caused both area X and HVC volumes to decrease compared to castrated controls with testosterone replacement, indicating that maintenance of these two region volumes is testosterone dependent in adults. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 391–402, 1997.  相似文献   

16.
Butterflies, like most forest dependent animals are good ecological indicators of the health of the forests they dwell. For example, butterfly species richness decreases after a forest disturbance and fragmentation but a few species may subsequently invade the forest fragment and boost the species richness. Studies were conducted to determine the effects of human activity and seasonal changes on butterfly species in the affected new habitats. Results showed that both seasonal and habitat changes significantly affect the butterfly abundance (P = 0.0001). Similarly, there was significant correlation between plant diversity and butterfly diversity in wet season (r = 0.854) and dry season (r = 0.855). The significance of these studies as a useful tool for sustainable forest use and conservation is discussed.  相似文献   

17.
The seasonal abundance and reproductive cycle of the flyingfish Hirundichthys affinis was studied near Barbados. H. affinis shows large seasonal variation in abundance. They are common between December and June and scarce from July to November. The population size structure of H. affinis was determined by fishing with four different mesh sizes throughout one year. There appear to be two cohorts of H. affinis present in May and June, one of immature fish with a mean size of 19.8cm FL, and one of mature fish with a mean size of 21.7cm FL. From September to April there is only a single cohort of maturing fish with a mean size that increases from 20.4cm FL in September to 22.0cm FL in April. H. affinis spawns throughout the fishing-season (December–June) and shows a peak in spawning activity from March to June. Immature fish are present in Barbados waters from July to November but in very low abundance. Surface water temperature, wind speed and swell height are the only environmental factors with which catch rate of H. affinis showed significant correlation. Catch rate appears to be negatively correlated with temperature, whereas for wind speed and swell height there are optima. Three hypotheses for the seasonal variation in abundance of H. affinis were examined. The hypothesis that this species remains dispersed near Barbados during the off-season was rejected. The other hypotheses were refined. Both post-spawning mortality, resulting in an interval of low abundance between cohorts (non-overlapping generations), and migration of fish away from Barbados at the end of the fishing season, remain possible explanations for the observed seasonal variation in abundance of this species.  相似文献   

18.
Biophysical models are used to predict the spatial distributions of organisms. Nevertheless, understanding factors influencing the temporal distributions of animals may often be additionally required. It is expected that intertidal macrofauna of the wet–dry tropics face a multitude of temporal challenges because there is not only seasonal drying but also variation in surface moisture over the circatidal cycle. Activities of fiddler crabs (Uca spp.) depend on adequate surface moisture being available for feeding and respiration. A recent study monitored crab abundance during spring tides and found that one Uca species in the mangroves of Darwin Harbour, Australia, U. flammula, is most abundant in the wet season, while another, U. elegans, is most abundant in the dry season. We hypothesized here that these seemingly contradictory abundance patterns are driven by temporal variation in the availability of soil moisture within each species habitat. We thus monitored crab abundance and measured soil moisture content across four types of habitat (low gap centres, low gap edges, mid‐height gap centres and high gap centres) seasonally and across the circatidal cycle. We found that crab abundance and soil moisture both varied over time among habitat types. We used a log‐linear model to show that habitat type influenced soil moisture and this in turn influenced crab abundance. Sampling across the circatidal cycle showed that U. flammula was more abundant in the wet season, as reported previously, while the abundance of U. elegans did not vary between seasons. Our model suggested that U. elegans ‘makes up for lost time’ in the dry season by undertaking all activities during spring tide low water as only at this time is the substratum moist enough for feeding and respiration. We highlight the importance of measuring multiple variables across habitats over small and large scales when assessing temporal abundance patterns of intertidal tropical organisms.  相似文献   

19.
Although cavitation is common in plants, it is unknown whether the cavitation resistance of xylem is seasonally constant or variable. We tested the changes in cavitation resistance of Acer mono before and after a controlled cavitation–refilling and freeze–thaw cycles for a whole year. Cavitation resistance was determined from ‘vulnerability curves’ showing the percent loss of conductivity versus xylem tension. Cavitation fatigue was defined as a reduction of cavitation resistance following a cavitation–refilling cycle, whereas frost fatigue was caused by a freeze–thaw cycle. A. mono developed seasonal changes in native embolisms; values were relatively high during winter but relatively low and constant throughout the growing season. Cavitation fatigue occurred and changed seasonally during the 12‐month cycle; the greatest fatigue response occurred during summer and the weakest during winter, and the transitions occurred during spring and autumn. A. mono was highly resistant to frost damage during the relatively mild winter months; however, a quite different situation occurred during the growing season, as the seasonal trend of frost fatigue was strikingly similar to that of cavitation fatigue. Seasonality changes in cavitation resistance may be caused by seasonal changes in the mechanical properties of the pit membranes.  相似文献   

20.
In tropical regions, rainfall gradients often explain the abundance and distribution of plant species. For example, many tree and liana species adapted to seasonal drought are more abundant and diverse in seasonally-dry forests, characterized by long periods of seasonal water deficit. Mean annual precipitation (MAP) is commonly used to explain plant distributions across climate gradients. However, the relationship between MAP and plant distribution is often weak, raising the question of whether other seasonal precipitation patterns better explain plant distributions in seasonally-dry forests. In this study, we examine the relationship between liana abundance and multiple metrics of seasonal and annual rainfall distribution to test the hypothesis that liana density and diversity increase with increasing seasonal drought along a rainfall gradient across the isthmus of Panama. We found that a normalized seasonality index, which combines MAP and the variability of monthly rainfall throughout the year, was a significant predictor of both liana density and species richness, whereas MAP, rainfall seasonality and the mean dry season precipitation (MDP) were far weaker predictors. The strong response of lianas to the normalized seasonality index indicates that, in addition to the total annual amount of rainfall, how rainfall is distributed throughout the year is an important determinant of the hydrological conditions that favor liana proliferation. Our findings imply that changes in annual rainfall and rainfall seasonality will determine the future distribution and abundance of lianas. Models that aim to predict future plant diversity, distribution, and abundance may need to move beyond MAP to a more detailed understanding of rainfall variability at sub-annual timescales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号