首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
Baseline susceptibility to the Cry1Ab delta-endotoxin from Bacillus thuringiensis (Berliner) was determined for four populations of Sesamia nonagrioides (Lefebvre) and two populations of Ostrinia nubilalis (Hübner) from Spain. This study shows that S. nonagrioides is at least as susceptible as O. nubilalis to B. thuringiensis Cry1Ab protein. We found small differences in susceptibility among the Spanish populations of S. nonagrioides that can be attributed to natural variation, because there are no records of B. thuringiensis products being used on corn crops in Spain. There were no differences in susceptibility to Cry1Ab toxin between the two populations of O. nubilalis.  相似文献   

2.
In 2006, reports of potential Spodoptera frugiperda resistance to TC1507 maize in Puerto Rico were received. Subsequent investigation confirmed that pest populations collected from several sites in Puerto Rico were largely unaffected by the Cry1F protein in bioassays, with resistance ratios likely in excess of 1000. Since then, we have continued monitoring populations in Puerto Rico and in southern areas of the mainland US. The majority of the collections from Puerto Rico continue to show high levels of Cry1F resistance whereas populations collected from the southern US mainland continue to show full susceptibility to Cry1F and TC1507 maize. It does not appear that resistant populations have spread to any measurable extent from Puerto Rico to mainland US, nor that local selection pressure from Cry1F-expressing maize or cotton production in the southern US has caused a measurable change in population susceptibility. Lessons learned from Puerto Rico are being applied in other parts of the Americas where TC1507 maize is grown and additional steps being taken to protect the long-term durability of Cry1F in maize in areas where similar selection pressure may be expected. Tactics include using locally-adapted germplasm that contain native Spodoptera resistance, a robust education program to teach end-users about the potential for resistance to develop appropriate crop stewardship, resistance monitoring, and the use of insecticides under high S. frugiperda pressure. Perhaps most importantly, pyramided trait products that produce two or more different Bt proteins are being introduced to further delay resistance development to Cry1F.  相似文献   

3.
Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105, indicates that current Cry1-based maize hybrids face a challenge in managing S. frugiperda in Brazil and highlights the importance of effective insect resistance management for these technologies.  相似文献   

4.
Transgenic maize (Zea mays L., Poaceae) event TC1507, producing the Cry1F protein of Bacillus thuringiensis Berliner, has been used for management of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in Brazil since 2009. A strain of S. frugiperda, obtained from field collections of larvae in TC1507 maize in Minas Gerais state in 2010, was selected in the laboratory for resistance to Cry1F using leaves of TC1507 maize in two selection regimes. Continuous exposure of larvae to Cry1F was more effective than exposure for 6, 8, and 10 days in the selection of resistant S. frugiperda individuals. With only four generations of laboratory selection, a strain with high levels of resistance to Cry1F was obtained, as indicated by the survival of insects reared on leaves of TC1507 maize plants and by the more than 300‐fold resistance level measured in bioassays with the purified Cry1F protein. Importantly, reciprocal crosses between control and the Cry1F‐selected strains revealed that the resistance is autosomal and incompletely recessive, and the response obtained in the backcross of the F1 generation with the resistant strain was consistent with simple monogenic inheritance. Additionally, there were no apparent fitness costs associated with resistance either for survival or larval growth on non‐Bt maize leaves. Our findings provide experimental evidence for rapid evolution of Cry1F resistance in S. frugiperda in the laboratory and further reinforce the potential of this species to evolve field resistance to the TC1507 maize as previously reported. The resistant strain isolated in this study provides an opportunity to estimate the resistance allele frequency in the field and to determine the biochemical and molecular basis of the resistance, which should provide further information to assist in the resistance management of S. frugiperda on transgenic maize producing B. thuringiensis proteins.  相似文献   

5.
The transgenic maize (Zea mays L.) event MON 88017 produces the Bacillus thuringiensis Berliner (Bt) toxin Cry3Bb1 to provide protection from western corn rootworm (Diabrotica virgifera virgifera LeConte) larval feeding. In response to reports of reduced performance of Cry3Bb1‐expressing maize at two locations in Illinois, we conducted a two‐year experiment at these sites to characterize suspected resistance, as well as to evaluate root injury and adult emergence. Single‐plant bioassays were performed on larvae from each population that was suspected to be resistant. Results indicate that these populations had reduced mortality on Cry3Bb1‐expressing maize relative to susceptible control populations. No evidence of cross‐resistance between Cry3Bb1 and Cry34/35Ab1 was documented for the Cry3Bb1‐resistant populations. Field studies were conducted that included treatments with commercially available rootworm Bt hybrids and their corresponding non‐Bt near‐isolines. When compared with their near‐isolines, larval root injury and adult emergence were typically reduced for hybrids expressing Cry34/35Ab1 either alone or in a pyramid. In many instances, larval root injury and adult emergence were not significantly different for hybrids expressing mCry3A or Cry3Bb1 alone when compared with their non‐Bt near‐isolines. These findings suggest that Cry34/35Ab1‐expressing Bt maize may represent a valuable option for maize growers where Cry3Bb1 resistance is either confirmed or suspected. Consistent trends in adult size (head capsule width and dry mass) for individuals recovered from emergence cages were not detected during either year of this experiment. Because of the global importance of transgenic crops for managing insect pests, these results suggest that improved decision‐making for insect resistance management is needed to ensure the durability of Bt maize.  相似文献   

6.
Sesamia nonagrioides is one of the most damaging pests of corn in Spain and other Mediterranean countries. Bt corn expressing the Bacillus thuringiensis Cry1Ab toxin is being grown on about 58,000 ha in Spain. Here we studied the mode of action of this Cry protein on S. nonagrioides (binding to specific receptors, stability of binding, and pore formation) and the modes of action of other Cry proteins that were found to be active in this work (Cry1Ac, Cry1Ca, and Cry1Fa). Binding assays were performed with (125)I- or biotin-labeled toxins and larval brush border membrane vesicles (BBMV). Competition experiments indicated that these toxins bind specifically and that Cry1Aa, Cry1Ab, and Cry1Ac share a binding site. Cry1Ca and Cry1Fa bind to different sites. In addition, Cry1Fa binds to Cry1A's binding site with very low affinity and vice versa. Binding of Cry1Ab and Cry1Ac was found to be stable over time, which indicates that the observed binding is irreversible. The pore-forming activity of Cry proteins on BBMV was determined using the voltage-sensitive fluorescent dye DiSC(3)(5). Membrane permeability increased in the presence of the active toxins Cry1Ab and Cry1Fa but not in the presence of the nonactive toxin Cry1Da. In terms of resistance management, based on our results and the fact that Cry1Ca is not toxic to Ostrinia nubilalis, we recommend pyramiding of Cry1Ab with Cry1Fa in the same Bt corn plant for better long-term control of corn borers.  相似文献   

7.
Approximately 22 000 hectares (5% of the total maize growing area) of transgenic maize expressing the Cry1Ab toxin from Bacillus thuringiensis (Bt maize) have been planted annually in Spain since 1998. Changes in the susceptibility to Cry1Ab of Spanish populations of the Mediterranean corn borer (MCB), Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae), and the European corn borer (ECB), Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), were assessed by annual monitoring on Bt maize fields. No increase in resistance was detected in the MCB populations from Ebro, Albacete, and Badajoz, nor in the ECB populations from Ebro and Badajoz during the period 1999–2002. The susceptibility of the MCB population from Madrid fluctuated from year to year, but a gradual trend towards higher levels of tolerance was not observed. Laboratory selection assays for eight generations yielded selected strains of MCB and ECB that were 21‐ and 10‐fold significantly more tolerant to Cry1Ab than the corresponding unselected strains, respectively. Nevertheless, none of the field‐collected or laboratory‐selected larvae were able to survive on Bt maize. Considering these data, no consistent shifts in susceptibility were found for Spanish populations of MCB nor ECB after 5 years of Bt maize cultivation, but systematic field monitoring needs to be continued.  相似文献   

8.
Evolution of resistance by insect pests is the greatest threat to the continued success of Bacillus thuringiensis (Bt) toxins used in insecticide formulations or expressed by transgenic crop plants such as Cry1F‐expressing maize [(Zea mays L.) (Poaceae)]. A strain of European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), obtained from field collections throughout the central US Corn Belt in 1996 was selected in the laboratory for resistance to Cry1F by exposure to the toxin incorporated into artificial diet. The selected strain developed more than 3000‐fold resistance to Cry1F after 35 generations of selection and readily consumed Cry1F expressing maize tissue; yet, it was as susceptible to Cry1Ab and Cry9C as the unselected control strain. Only a low level of cross‐resistance (seven‐fold) to Cry1Ac was observed. These lacks of cross‐resistance between Cry1F and Cry1Ab suggest that maize hybrids expressing these two toxins are likely to be compatible for resistance management of O. nubilalis.  相似文献   

9.
贺明霞  何康来  王振营  王新颖  李庆 《昆虫学报》2013,56(10):1135-1142
亚洲玉米螟Ostrinia furnacalis (Guenée) 是危害玉米的重要害虫之一, 转Bt基因抗虫玉米为其防治提供了新的途径。然而, 靶标害虫产生抗性将严重阻碍Bt制剂及转Bt基因抗虫玉米的持续应用。明确害虫对转Bt基因玉米表达的毒素蛋白的抗性演化, 对于制定科学有效的抗性治理策略具有重要的理论和实际意义。本实验通过人工饲料汰选法研究了Bt Cry1Ie毒素胁迫下亚洲玉米螟的抗性发展及汰选14代的种群对其他Bt毒素(Cry1Ab, Cry1Ac和Cry1Fa)的交互抗性, 并观察了Cry1Ie蛋白胁迫对亚洲玉米螟生物学的影响。结果表明: 随着汰选压不断提高, 亚洲玉米螟种群对Cry1Ie毒素的敏感性逐渐下降。汰选14代后, 种群对Cry1Ie毒素的抗性水平提高了23倍。然而, Cry1Ab, Cry1Ac和Cry1Fa对所获Cry1Ie汰选种群的毒力与对敏感种群的毒力相比没有显著差异, 说明Cry1Ie汰选没有引起亚洲玉米螟对Cry1Ab, Cry1Ac和Cry1Fa毒素产生交互抗性。同时, 与敏感种群相比, Cry1Ie汰选14代的种群幼虫平均发育历期延长5.7 d, 蛹重减轻13.7%, 单雌产卵量下降40.0%。本研究结果说明, 大面积单一种植转cry1Ie基因抗虫玉米, 可能引起亚洲玉米螟产生抗性; 亚洲玉米螟Cry1Ie抗性种群对Cry1Ab, Cry1Ac和Cry1Fa没有交互抗性, 含有cry1Ie和cry1Ab, cry1Ac或cry1F双/多基因抗虫玉米, 可作为靶标害虫抗性治理的重要策略。  相似文献   

10.
Evolution of insect resistance to transgenic crops containing Bacillus thuringiensis (Bt) genes is a serious threat to the sustainability of this technology. However, field resistance related to the reduced efficacy of Bt maize has not been documented in any lepidopteran pest in the mainland U.S. after 18 years of intensive Bt maize planting. Here we report compelling evidence of field resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith), to Cry1F maize (TC 3507) in the southeastern region of the U.S. An F2 screen showed a surprisingly high (0.293) Cry1F resistance allele frequency in a population collected in 2011 from non-Bt maize in south Florida. Field populations from non-Bt maize in 2012–2013 exhibited 18.8-fold to >85.4-fold resistance to purified Cry1F protein and those collected from unexpectedly damaged Bt maize plants at several locations in Florida and North Carolina had >85.4-fold resistance. In addition, reduced efficacy and control failure of Cry1F maize against natural populations of S. frugiperda were documented in field trials using Cry1F-based and pyramided Bt maize products in south Florida. The Cry1F-resistant S. frugiperda also showed a low level of cross-resistance to Cry1A.105 and related maize products, but not to Cry2Ab2 or Vip3A. The occurrence of Cry1F resistance in the U.S. mainland populations of S. frugiperda likely represents migration of insects from Puerto Rico, indicating the great challenges faced in achieving effective resistance management for long-distance migratory pests like S. frugiperda.  相似文献   

11.
Transgenic cotton, Gossypium hirsutum L., lines expressing both Cry1F and Cry1Ac insecticidal proteins from Bacillus thuringiensis (Bt) have been commercially available in the United States since 2005. Both Bt proteins are highly effective against tobacco budworm, Heliothis virescens (F.), and other lepidopteran pests of cotton. Although CrylAc has been available in Bt cotton since 1996, the Cry1F component is relatively new. As part of the proactive resistance management program for Cry1F/Cry1Ac cotton, a susceptibility-monitoring program is being implemented. Baseline variation in the susceptibility to Cry1F in field populations of tobacco budworm was measured. There was a three-fold variation in the amount of Cry1F needed to kill 50% of the neonates from 15 different field populations from the southern and central United States. Future variation in susceptibility of tobacco budworm populations to Cry1F or even resistance evolution could be documented based on this baseline data. A candidate diagnostic concentration was determined that may be efficiently used to identify individuals that potentially carry major alleles conferring field-relevant resistance to Cry1F before such alleles spread through field populations.  相似文献   

12.
Transgenic maize, Zea mays L., expressing the Bacillus thuringiensis (Bt) CrylAb toxin has been planted to extensive areas across the United States and several other countries, but no resistance has been documented in field populations oflepidopteran target pests. This article describes the first report of resistance alleles to commercially available Cry1Ab Bt maize in a Louisiana population of sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae). Two hundred thirteen two-parent isolines of D. saccharalis were screened for Cry1Ab resistance on Bt maize leaf tissue using an F2 screening technique. Larvae representing three isolines survived >15 d on Bt tissue in the F2 generation. The second generation backcross progeny (B1F2) derived from isoline 52 completed larval development on Bt maize in the greenhouse. Segregation and resistance frequency analysis associated with isoline 52 suggested that Bt resistance is probably determined by a nearly completely recessive allele at a single locus. With this assumption, the estimated resistance allele frequency in this population is 0.0023, within a 95% confidence interval of 0.0003-0.0064.  相似文献   

13.
Popcorn adapted to Spanish conditions could be an interesting and profitable alternative to field corn. However, little is known about breeding popcorn germplasm for adaptation to Spain. Sesamia nonagrioides Lefèvbre is the main insect pest affecting popcorn quality and yield under Spanish growing conditions. The objectives of the study were the search for sources of resistance to S. nonagrioides among popcorn germplasm and to study the genetics of the resistance to S. nonagrioides attack. Eight breeding populations along with a five-inbred line diallel and two popcorn commercial checks were evaluated under S. nonagrioides infestation in 2 yr. Significant differences were found among general combining ability (GCA) effects for days to silking, S. nonagrioides tunnel length, general appearance of the ear, kernel moisture, and yield. Specific combining ability (SCA) effects were found to be significant for yield and ear damage. Therefore, heterotic patterns among popcorn materials should be taken into account to generate new popcorn hybrids that are not only more productive but also have higher kernel quality. Breeding popcorn populations BSP4APC0 and PSPW1C1 could be base germplasms in a breeding program for obtaining parental inbreds of healthy kernel popcorn hybrids. New inbred lines could be generated from the cross BP1 x BP2 that would have improved GCA and SCA effects for S. nonagrioides resistance when crossed to South American inbreds.  相似文献   

14.
The proteolytic processing of native Cry1Ab toxin by midgut extracts from the Mediterranean corn borer, Sesamia nonagrioides, takes place in successive steps. Several cuts occur until a 74 kDa protein is obtained; this is further digested to give rise to an active form of 69 kDa, which can be again processed to fragments of 67, 66 and 43 kDa. We have shown that three different trypsins (TI, TIIA and TIII) purified from the S. nonagrioides midgut were able to digest Cry1Ab protoxin to obtain the active form of 69 kDa. Interestingly, TI and TIII further hydrolyzed the 69 kDa protein to a fragment of slightly lower molecular mass (67 kDa), while TIIA was able to continue digestion to give fragments of 46 and 43 kDa. These results contrast with those obtained using bovine trypsin, in which the main product of Cry1Ab digestion is a 69 kDa protein. The digestion of the toxin with a "non-trypsin" fraction from S. nonagrioides midgut lumen, mostly containing chymotrypsins and elastases and free of trypsin-like activity, resulted in a different processing pattern, yielding fragments of 79, 77, 71, 69 and 51 kDa. Our results indicate that trypsins and other proteases are involved in the first steps of protoxin processing, but trypsins play the most important role in obtaining the 74 and 69 kDa proteins. All the digestion products, including the proteins of 46 and 43 kDa obtained from the digestion of Cry1Ab by TIIA, were toxic to neonate larvae, indicating that none of the tested proteases contribute to toxin degradation in a significant manner.  相似文献   

15.
Various studies have been conducted to assess the damage caused by secondary lepidopteran pests to transgenic Bt maize expressing Cry1Ab. However, to date little is known on the effects of transgenic maize on Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), a polyphagous herbivore which is considered a pest in Mediterranean maize growing areas. Here we present results on the effects of Bt maize (Bt‐11) and Bt spray (Dipel) on the various life stage parameters of this herbivore. We further assess the expression of Cry1Ab in different leaves and leaf parts in maize at a given plant growth stage, and determine whether the feeding damage of 3rd instar S. littoralis is influenced by Bt toxin expression. Contrary to previous literature reporting that S. littoralis is not sensitive to Bt Cry1Ab toxin, our results show that insects fed on either transgenic or Bt sprayed plants were negatively affected. Young S. littoralis larvae (1st and 2nd instars) were found to be the most sensitive to the Bt toxin. This was represented by a higher mortality and a slower developmental time of larvae maintained on transgenic or sprayed plants when compared to insects maintained on control plants. Moreover, Bt maize had a stronger and prolonged detrimental effect on insects when compared to Bt spray in maize. This was revealed by the fact that insects maintained on transgenic plants from 3rd instar to pupation took longer to reach adult emergence compared to insects that were maintained on sprayed plants. This was likely due to the continuous exposure of insects to the toxin when kept on transgenic maize. ELISA results showed a variation in the amount of Bt toxin among different leaf sections in transgenic maize at a given plant growth stage. These differences in Bt toxin were primarily found in the youngest leaf of growing plants. Although the lowest amounts of Bt toxin were detected in the growing leaf section of young leaves, this difference did not appear to influence the feeding behavior of 3rd instar S. littoralis.  相似文献   

16.
The high-dose/refuge strategy is considered as the main strategy for delaying resistance in target pests to genetically modified crops that produce insecticidal proteins derived from Bacillus thuringiensis Berliner. This strategy is based on a key assumption that resistance alleles are initially rare (<10(-3)). To test this assumption, we used an F2 screen on natural populations of Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae) from Greece and Spain. In total, 75 lines from Greece and 85 lines from Spain were screened for survival of F2 larvae on Cry1Ab corn, Zea mays L., leaves. No major resistance alleles were found. The frequency of resistance alleles in the Greek population was <9.7 x 10(-3) with 95% probability, which was very similar to that of the Spanish population (<8.6 x 10(-3) with 95% probability), and the expected frequencies were 3.2 x 10(-3) (0-0.0097) and 2.9 x 10(-3) (0-0.0086) in Greece and Spain (pooled 1.5 x 10(-3)). The experiment-wise detection probability of resistance was 94.0 and 97.5% for the Greek and the Spanish population, respectively. Evidence of alleles conferring partial resistance to Cry1Ab was found only for the Greek population. The frequency of alleles for partial resistance was estimated as 6.5 x 10(-3) with a 95% credibility interval between 8 x 10(-4) and 17.8 x 10(-3) and a detection probability of 94%. Our results suggest that the frequency of alleles conferring resistance to CrylAb, regarding the population of S. nonagrioides, may be rare enough so that the high-dose/refuge strategy could be applied with success for resistance management.  相似文献   

17.
Bt maize cultivars based on the event MON810 (expressing Cry1Ab) have shown high efficacy for controlling corn borers. However, their efficiency for controlling some secondary lepidopteran pests such as Mythimna unipuncta has been questioned, raising concerns about potential outbreaks and its economic consequences. We have selected a resistant strain (MR) of M. unipuncta, which is capable of completing its life cycle on Bt maize and displays a similar performance when feeding on both Bt and non-Bt maize. The proteolytic activation of the protoxin and the binding of active toxin to brush border membrane vesicles were investigated in the resistant and a control strain. A reduction in the activity of proteolytic enzymes, which correlates with impaired capacity of midgut extracts to activate the Cry1Ab protoxin has been observed in the resistant strain. Moreover, resistance in larvae of the MR strain was reverted when treated with Cry1Ab toxin activated with midgut juice from the control strain. All these data indicate that resistance in the MR strain is mediated by alteration of toxin activation rather than to an increase in the proteolytic degradation of the protein. By contrast, binding assays performed with biotin labelled Cry1Ab suggest that binding to midgut receptors does not play a major role in the resistance to Bt maize. Our results emphasize the risk of development of resistance in field populations of M. unipuncta and the need to consider this secondary pest in ongoing resistance management programs to avoid the likely negative agronomic and environmental consequences.  相似文献   

18.
The sugarcane borer, Diatraea saccharalis (F.), is a major target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the mid-Southern region of the United States. During 2007-2009, a total of 986 feral individuals of D. saccharalis were collected from maize fields in six locations of Louisiana and Mississippi and examined for resistance to Cry1Ab maize using F 1/F 2 screens. Major resistance alleles to Cry1Ab maize in the populations sampled from non-Bt maize plants during 2007 and 2008 in Louisiana and 2009 in Mississippi were rare. From a total of 487 individuals collected from three locations in Louisiana in 2007 and 2008, only one individual was identified with major resistance alleles. In addition, no major resistance alleles were detected in 242 individuals collected from three locations in Mississippi in 2009. The frequency of major resistance alleles was estimated to be 0.002 with a 95% CI of 0.00025-0.0057 for the Louisiana populations and < 0.0061, with 95% probability, for the Mississippi populations. The resistance frequency estimated for the Louisiana populations in 2007 and 2008 was not significantly different from those reported previously for populations sampled in 2004-2006. However, among 200 individuals sampled from non-Bt maize plants in 2009 in Louisiana, six individuals were identified to possess major resistance alleles. The estimated major resistance allele frequency for the populations sampled from non-Bt maize plants in 2009 in Louisiana was 0.0176 with a 95% CI of 0.0072 to 0.0328, which was significantly greater than those estimated for the populations collected in 2004-2008. Similarly, the frequency of minor resistance alleles to Cry1Ab maize for the Louisiana populations collected in 2009 was also significantly greater than those estimated for the populations sampled before. In addition, two out of 57 feral individuals collected from Bt maize plants in Louisiana in 2009 were identified to carry major resistance alleles to Cry1Ab maize. Since 2010, transgenic maize expressing pyramided Bt genes has been planted in the US mid-Southern region and by 2011, pyramided Bt maize has replaced Cry1Ab maize as the dominant Bt maize for managing lepidopteran pests including D. saccharalis. The timely switching from single-gene Cry1Ab maize to the pyramided Bt maize should prevent further increases in Cry1Ab resistance allele frequency and thus ensure the continued success of Bt maize for managing D. saccharalis in the region.  相似文献   

19.
转Bt基因玉米的生态安全性研究进展   总被引:3,自引:0,他引:3  
随着转基因作物的应用和推广 ,转 Bt基因作物释放后对生态环境及其它方面产生的潜在影响越来越受到重视。分别从生物活性杀虫晶体蛋白在土壤中的残留特性、杀虫晶体蛋白对土壤中非目标生物的影响、转 Bt基因玉米植株体成分的变化、转Bt基因玉米花粉中杀虫晶体蛋白的表达特性及其在田间和马力筋叶片上的散积状况、花粉中表达的杀虫晶体蛋白对君主斑蝶的毒性、君主斑蝶幼虫暴露在 Bt花粉中的概率及综合风险评价估算等方面对转 Bt基因玉米产生的杀虫晶体蛋白与土壤生态环境的相互作用、花粉对非目标生物影响的研究现状进行了综述。通过对转 Bt基因作物生态安全性的科学评价和广泛宣传 ,以确保生物技术的健康发展。  相似文献   

20.
Flint maize, Zea mays L., varieties provide some interesting agronomic characteristics and kernels that possess a better ability than other kernels for developing high-quality flour. The pink stem borer, Sesamia nonagrioides Lefebvre, is an important constraint for the maize crop in Mediterranean regions. The objective of this work was to identify a "flint x flint" heterotic pattern that would perform well under artificial infestation by S. nonagrioides. A 10-population diallel was evaluated under infestation by S. nonagrioides in 2 yr. Variety effects were the only significant effects involved in stem and ear resistance to S. nonagrioides attack. Variety effects and average heterosis effects were the only significant effects for grain yield under artificial infestation conditions. Considering variety effects and cross-performance, the heterotic pattern Basto/Enano levantixo x Longfellow (BA/EL x LO) would be recommended for obtaining flint maize hybrids tolerant to S. nonagrioides attack because BA/EL had the most favorable variety effects for stem resistance, LO exhibited the most positive variety effects for grain yield, and the cross BA/EL x LO yielded significantly more than the remaining crosses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号