首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 135 毫秒
1.
During the last years many investigations have shown that a major catalyst within the mechanism of skeletal muscle wasting occuring under conditions like sepsis, injuries, trauma, cancer cachexia, chronic acidosis, fasting, glucocorticoid treatment, and insulinopenia is the ubiquitin-proteasome system. Evidence for this was obtained by findings that the rate of ATP-dependent protein degradation is increased, that m-RNA concentrations of several proteasome subunits and ubiquitin are increased and the amount of ubiquitin-protein conjugates is elevated under these conditions. Additionally, the enhanced protein breakdown was shown to be suppressed by proteasome inhibitors. In the present report we show that most but not all of the proteolytic activities of partially purified 20S/26S proteasomes from skeletal muscle of rats increase after induction of Diabetes mellitus. This finding suggests that part of the mechanism of acceleration of muscle protein breakdown is due to changes in proteasome activities.  相似文献   

2.
It is concluded from many experiments that mammalian tissues and cells must contain a heterogeneous population of 20 S proteasome complexes. We describe the purification and separation by chromatographic procedures of constitutive 20 S proteasomes, 20 S immuno-proteasomes and intermediate-type 20 S proteasomes from a given tissue. Our data demonstrate that each of these three groups comprises more than one subtype and that the relative ratios of the subtypes differ between different rat tissues. Thus, six subtypes could be identified in rat muscle tissue. Subtypes I and II are constitutive proteasomes, while subtypes V and VI comprise immuno-proteasomes. Subtypes III and IV belong to a group of intermediate-type proteasomes. The subtypes differ with regard to their enzymatic characteristics. Subtypes I-III exhibit high chymotrypsin-like activity and high peptidylglutamylpeptide hydrolysing activity, while these activities are depressed in subtypes IV-VI. In contrast, trypsin-like activity of subtypes IV-VI is enhanced in comparison to subtypes I-III. Importantly, the subtypes also differ in their preferential cleavage site usage when tested by digestion of a synthetic 25mer polypeptide substrate. Therefore, the characteristics of proteasomes purified from tissues or cells represent the average of the different subtype activities which in turn may have different functions in vivo.  相似文献   

3.
Dahlmann B  Ruppert T  Kloetzel PM  Kuehn L 《Biochimie》2001,83(3-4):295-299
20S proteasomes from tissues and cells are a mixture of several subtypes. From rat skeletal muscle we have tentatively separated six different subtypes of 20S proteasomes purified from rat skeletal muscle by high-resolution anion exchange chromatography. Immunoblot analysis using antibodies to the beta-subunits LMP2, LMP7 and their constitutive counterparts delta and MB1 revealed that two of the three major subtypes (subtypes I and II) are constitutive proteasomes, whereas two of the three minor subtypes belong to the subpopulation of immuno-proteasomes. Subtype III and IV are intermediate-type proteasomes. Enzymological characterisation of the six subtypes revealed clearly different V(max) values for hydrolysis of fluorogenic peptide substrates as well as significantly different activities measured with a 25-mer polypeptide of the murine cytomegalovirus IE pp89 protein as substrate. Our data show that the properties of 20S proteasomes isolated from a given tissue or cells are always the average of the properties of the whole set of proteasome subtypes.  相似文献   

4.
A precise knowledge of the role of subunits of the 19S complex and the PA28 regulator, which associate with the 20S proteasome and regulate its peptidase activities, may contribute to design new therapeutic approaches for preventing muscle wasting in human diseases. The proteasome is mainly responsible for the muscle wasting of tumor-bearing and unweighted rats. The expression of some ATPase (MSS1, P45) and non ATPase (P112-L, P31) subunits of the 19S complex, and of the two subunits of the PA28 regulator, was studied in such atrophying muscles. The mRNA levels for all studied subunits increased in unweighted rats, and analysis of MSS1 mRNA distribution profile in polyribosomes showed that this subunit entered active translation. By contrast, only the mRNA levels for MSS1 increased in the muscles from cancer rats. Thus, gene expression of the proteasome regulatory subunits depends on a given catabolic state. Torbafylline, a xanthine derivative which inhibits tumor necrosis factor production, prevented the activation of protein breakdown and the increased expression of 20S proteasome subunits in cancer rats, without reducing the elevated MSS1 mRNA levels. Thus, the increased expression of MSS1 is regulated independently of 20S proteasome subunits, and did not result in accelerated proteolysis.  相似文献   

5.
The 20S proteasome is almost exclusively localized within cells. High levels of extracellular proteasomes are also found circulating in the blood plasma of patients suffering from a variety of inflammatory, autoimmune and neoplastic diseases. However, the origin of these proteasomes remained enigmatic. Since the proteome of microparticles, small membrane enclosed vesicles released from cells, was shown to contain proteasomal subunits, we studied whether intact proteasomes are actively released into the extracellular space. Using human primary T lymphocytes stimulated with CaCl2 and the calcium ionophore A23187 to induce membrane blebbing we demonstrate that microparticles contain proteolytically active 20S proteasomes as well as the proteasome activator PA28 and subunits of the 19S proteasome regulator. Furthermore, our experiments reveal that incubation of in vitro generated T lymphocyte‐microparticles with sphingomyelinase results in the hydrolysis of the microparticle membranes and subsequent release of proteasomes from the vesicles. Thus, we here show for the first time that functional proteasomes can be exported from activated immune cells by way of microparticles, the dissolution of which may finally lead to the generation of extracellular proteasomes.  相似文献   

6.
In experimental alcoholic liver disease, protein degradation by the ATP-ubiquitin-proteasome pathway is inhibited. Failure of the proteasome to eliminate cytoplasmic proteins leads to the accumulation of oxidized and otherwise modified proteins. One possible explanation for the inhibition of the proteasome is hyperphosphorylation of proteasome subunits. To examine this possibility, the 26S proteasomes from the liver of rats fed ethanol and a pair-fed control were studied by isolating the proteasomes in a purified fraction. The effect of ethanol on the phosphorylation of proteasomal subunits was compared with the hyperphosphorylation of the proteasomes caused by okadaic acid given to rats in vivo. Ethanol ingestion caused an inhibition of the chymotrypsin-like activity of the purified proteasome. The 2D electrophoresis and Western blot analysis of the purified 20S and 26S proteasomes from the ethanol-fed rats indicated that hyperphosphorylation of proteasomal subunits had occured. The proteasomal alpha type subunits C9/alpha3 and C8/alpha7 were hyperphosphorylated compared to the controls. Chymotrypsin-like activity was also inhibited by okadaic acid treatment similar to ethanol feeding. The 26S proteasome fraction examined by isoelectric focusing gel revealed many hyperphosphorylated bands in the proteasomes from the okadaic acid treated and the ethanol fed rat livers compared with the controls. In conclusion hyperphosphorylation of the proteasome subunits occurs in the ethanol treated proteasomal subunits which could be one mechanism of the inhibition of the 26S proteasome caused by ethanol feeding.  相似文献   

7.
The proteasome is the main proteolytic enzyme that functions in the ubiquitin-proteasome system. The 26S proteasome has multi-subunit protease complexes consisting of 20S subunits composed of four seven-numbered rings with two outer rings containing α subunits and two central rings composed of β subunits, and 19S caps of 6 ATPase and 11 non-ATPase subunits; however, it is unclear how these subunits are regulated and the 26S proteasomes assembled. To verify whether each subunit’s mRNA expression is associated with the mRNA expression of other proteasome subunits, we carried out expression analysis of 34 proteasome subunits mRNA on peripheral blood from 75 subjects. The expression of proteasome subunits mRNA was comparable in each individual of the studied population and the mRNA expression has been investigated in each 20S or 19S proteasome. Our results suggest that each type of subunit is regulated by respectively common factors, and that the 20S and 19S proteasomes are regulated by different systems.  相似文献   

8.
The arrangement of subunits in human 20S proteasomes was recently determined by us by immunoelectron microscopy and chemical cross-linking. The positions of 4 of the 14 subunits differed from those found in the yeast proteasome by X-ray crystallography. Double labeling of human 20S proteasomes with antibodies to subunits C2 and C5 has now shown that these subunits are nearest neighbors. The result contradicts our published model for the human proteasome but is in accordance with the subunit arrangement in yeast proteasomes, suggesting that yeast and human proteasomes most probably have identical subunit arrangements. Immunoelectron microscopy also showed that the C-terminal extension at the human C2 subunit is flexible but takes up a well-defined position in the proteasome.  相似文献   

9.
The polo-like kinase (Plk) has been shown to be associated with the anaphase-promoting complex at the transition from metaphase to anaphase and to regulate ubiquitination, the process that targets proteins for degradation by proteasomes. In this study, we have identified proteasomal proteins interacting with Plk by mass spectrometry and found that Plk and 20S proteasome subunits could be reversibly immunoprecipitated from both human CA46 cells and HEK 293 cells transfected with HA-Plk. Furthermore, both coprecipitated Plk and baculovirus-expressed Plk were able to phosphorylate proteasome subunits, and metabolic labeling studies indicate that Plk is partially responsible for the phosphorylation of 20S proteasome subunits C9 and C8 in vivo. In addition, phosphorylation of proteasomes by Plk enhanced proteolytic activity toward an artificial substrate Suc-L-L-V-Y-AMC in vitro and in vivo. Finally, we were also able to detect Plk associated with 26S proteasomes under certain conditions. Together our results suggest that Plk is an important mitotic regulator of proteasome activity.  相似文献   

10.
Molecular biology of proteasomes   总被引:7,自引:0,他引:7  
Eukaryotic proteasomes are unusually large proteins with a heterogeneous subunit composition and have been classified into two isoforms with apparently distinct sedimentation coefficients of 20S and 26S. The 20S proteasome is composed of a set of small subunits with molecular masses of 21–32 kDa. The 26S proteasome is a multi-molecular assembly, consisting of a central 20S proteasome and two terminal subsets of multiple subunits of 28–112 kDa attached to the central part in opposite orientations. The primary structures of all the subunits of mammalian and yeast 20S proteasomes have been deduced from the nucleotide sequences of cDNAs or genes isolated by recombinant DNA techniques. These genes constitute a unique multi-gene family encoding homologous polypeptides that have been conserved during evolution. In contrast, little is yet known about the terminal structures of the 26S proteasome, but the cDNA clonings of those of humans are currently in progress. In this review, I summarize available information of the structural features on eukaryotic 20S and 26S proteasomes which has been clarified by molecular-biological methods.  相似文献   

11.
The participation of proteasome in the programmed cells death is now extensively investigated. Studies using selective inhibitors of proteasomes have provided a direct evidence of both pro- and anti-apoptotic functions of proteasomes. Such opposite roles of 26S proteasomes in regulation of apoptosis may be defined by the proliferative state of cell. The induction of apoptosis in K562 cells by diethylmaleate was used as a model to investigate changes in the subunit composition, phosphorylation state and enzymatic activities of 26S proteasomes undergoing the programmed cell death. Here we have shown that proteasomes isolated from the cytoplasm of control and diethylmaleate treated K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. It has been shown for the first time that proteolytic activity of 26S proteasomes is decreased, and endoribonuclease activity of 26S proteasomes is affected under diethylmaleate action on K562 cells. Treatment of K562 cells with an inductor of apoptosis--diethylmaleate--leads to modification of a proteasomal subunit (zeta/alpha5) associated with RNase activity of proteasomes. These data suggest the subunit composition and enzymatic activities of 26S proteasomes to be changed in K562 cells undergoing apoptosis, and that specific subtypes of 26S proteasomes participate in execution of programmed death of these cells.  相似文献   

12.
13.
Belactosin A is a potent proteasome inhibitor isolated from Streptomyces metabolites. Here we show that a hydrophobic belactosin A derivative, dansyl-KF33955, can covalently, and specifically, affinity label the catalytic subunits of the 26S proteasome, which consists of the 20S protein degrading core particle and the 19S regulatory particles. The labeling of catalytic subunits proceeds faster in intact proteasomes in vivo than in isolated 20S core particles. These data suggest that the 19S regulatory particle may facilitate entry of the inhibitor into the 20S core particle. This cell-permeable chemical probe is an excellent tool with which to study the interactions of this proteasome inhibitor with proteasomes in intact cells.  相似文献   

14.
M Tokumoto  R Horiguchi  Y Nagahama  T Tokumoto 《Gene》1999,239(2):301-308
The proteasomes are large, multi-subunit particles that act as the proteolytic machinery for most of the regulated intracellular protein degradation in eukaryotic cells. To investigate the regulatory mechanism for the 26S proteasome in cell-cycle events, we purified this proteasome from immature and mature oocytes, and compared its subunits. Immunoblot analysis of 26S proteasomes showed a difference in the subunit of the 20S proteasome. A monoclonal antibody, GC3beta, cross-reacted with two bands in the 26S proteasome from immature oocytes (in G2-phase); however, the upper band was absent in the 26S proteasome from mature oocytes (in M-phase). These results suggest that changes in the subunits of 26S proteasomes are involved in the regulation of the meiotic cell cycle. Here we describe the molecular cloning of one of the alpha subunits of the 20S proteasome from a Xenopus ovarian cDNA library using an anti-GC3beta monoclonal antibody. From the screening, two types of cDNA are obtained, one 856bp, the other 984bp long. The deduced amino-acid sequences comprise 247 and 248 residues, respectively. These deduced amino-acid sequences are highly homologous to those of alpha4 subunits of other vertebrates. Phosphatase treatment of 26S proteasome revealed the upper band to be a phosphorylated form of the lower band. These results suggest that a part of the alpha4 subunit of the Xenopus 20S proteasome, alpha4_xl, is phosphorylated in G2-phase and dephosphorylated in M-phase.  相似文献   

15.
20S proteasomes are large, multicatalytic proteases that play an important role in intracellular protein degradation. The barrel-like architecture of 20S proteasomes, formed by the stacking of four heptameric protein rings, is highly conserved from archaea to eukaryotes. The outer two rings are composed of alpha-type subunits, and the inner two rings are composed of beta-type subunits. The halophilic archaeon Haloferax volcanii synthesizes two different alpha-type proteins, alpha1 and alpha2, and one beta-type protein that assemble into at least two 20S proteasome subtypes. In this study, we demonstrate that all three of these 20S proteasomal proteins (alpha1, alpha2, and beta) are modified either post- or cotranslationally. Using electrospray ionization quadrupole time-of-flight mass spectrometry, a phosphorylation site of the beta subunit was identified at Ser129 of the deduced protein sequence. In addition, alpha1 and alpha2 contained N-terminal acetyl groups. These findings represent the first evidence of acetylation and phosphorylation of archaeal proteasomes and are one of the limited examples of post- and/or cotranslational modification of proteins in this unusual group of organisms.  相似文献   

16.
17.
Mammalian 26S proteasomes remain intact during protein degradation   总被引:1,自引:0,他引:1  
It has been suggested that degradation of polyubiquitylated proteins is coupled to dissociation of 26S proteasomes. In contrast, using several independent types of experiments, we find that mammalian proteasomes can degrade polyubiquitylated proteins without disassembling. Thus, immobilized, (35)S-labeled 26S proteasomes degraded polyubiquitylated Sic1 and c-IAP1 without releasing any subunits. In addition, it is predicted that if 26S proteasomes dissociate into 20S proteasomes and regulatory complexes during a degradation cycle, the reassembly rate would be limiting at low proteasome concentrations. However, the rate with which each proteasome degraded polyubiquitylated Sic1 was independent of the proteasome concentration. Likewise, substrate-dependent dissociation of 26S proteasomes could not be detected by nondenaturing electrophoresis. Lastly, epoxomicin-inhibited 20S proteasomes can trap released regulatory complexes, forming inactive 26S proteasomes, but addition of epoxomicin-inhibited 20S proteasomes had no effect on the degradation of either polyubiquitylated Sic1 or UbcH10 by 26S proteasomes or of endogenous substrates in cell extracts.  相似文献   

18.
Human bone marrow stromal cells (hBMSCs) could be used in clinics as precursors of multiple cell lineages following proper induction. Such application is impeded by their characteristically short lifespan, together with the increasing loss of proliferation capability and progressive reduction of differentiation potential after the prolonged culture expansion. In the current study, we addressed the possible role of 20S proteasomes in this process. Consistent with prior reports, long-term in vitro expansion of hBMSCs decreased cell proliferation and increased replicative senescence, accompanied by reduced activity and expression of the catalytic subunits PSMB5 and PSMB1, and the 20S proteasome overall. Application of the proteasome inhibitor MG132 produced a senescence-like phenotype in early passages, whereas treating late-passage cells with 18α-glycyrrhetinic acid (18α-GA), an agonist of 20S proteasomes, delayed the senescence progress, enhancing the proliferation and recovering the capability of differentiation. The data demonstrate that activation of 20S proteasomes assists in counteracting replicative senescence of hBMSCs expanded in vitro.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号