首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Long-term potentiation of excitatory inputs to brain reward areas by nicotine   总被引:34,自引:0,他引:34  
Mansvelder HD  McGehee DS 《Neuron》2000,27(2):349-357
Nicotine reinforces smoking behavior by activating nicotinic acetylcholine receptors (nAChRs) in the midbrain dopaminergic (DA) reward centers, including the ventral tegmental area (VTA). Although nicotine induces prolonged excitation of the VTA in vivo, the nAChRs on the DA neurons desensitize in seconds. Here, we show that activation of nAChRs on presynaptic terminals in the VTA enhances glutamatergic inputs to DA neurons. Under conditions where the released glutamate can activate NMDA receptors, long-term potentiation (LTP) of the excitatory inputs is induced. Both the short- and the long-term effects of nicotine required activation of presynaptic alpha7 subunit-containing nAChRs. These results can explain the long-term excitation of brain reward areas induced by a brief nicotine exposure. They also show that nicotine alters synaptic function through mechanisms that are linked to learning and memory.  相似文献   

2.
Summary. Inhibitors of kynurenine 3-hydroxylase have previously been used to increase endogenous levels of kynurenic acid, an excitatory amino acid receptor antagonist. In the present electrophysiological study PNU 156561A was utilized to elevate endogenous concentrations of kynurenic acid and subsequent effects on the firing pattern of dopamine (DA) neurons of rat substantia nigra (SN) were analyzed. Pretreatment with PNU 156561A (40 mg/kg, i.v., 5–7 h) caused a five-fold increase in endogenous kynurenic acid levels in whole brain five to seven hours after administration and also evoked a significant increase in firing rate and bursting activity of nigral DA neurons. The results of the present study show that a moderate increase in endogenous kynurenic acid levels produces significant actions on the tonic glutamatergic control of the firing pattern of nigral DA neurons, and implicate kynurenine 3-hydroxylase inhibitors as novel antiparkinsonian agents. Received April 3, 2000 Accepted July 2, 2000  相似文献   

3.
In recent studies examining the modulation of dopamine (DA) cell firing patterns, particular emphasis has been placed on excitatory afferents from the prefrontal cortex and the subthalamic nucleus. A number of inconsistencies in recently published reports, however, do not support the contention that tonic activation of NMDA receptors is the sole determinate of DA neuronal firing patterns. The results of work on the basic mechanism of DA firing and the action of apamin suggest that excitatory projections to DA neurons from cholinergic and glutamatergic neurons in the tegmental pedunculopontine nucleus, and/or inhibitory GABAergic projections, are also involved in modulating DA neuron firing behavior.  相似文献   

4.
Dopamine (DA) neurons in the ventral tegmental area (VTA) are thought to play a critical role in affective, motivational, and cognitive functioning. There are fundamental target-specific differences in the functional characteristics of subsets of these neurons. For example, DA afferents to the prefrontal cortex (PFC) have a higher firing and transmitter turnover rate and are more responsive to some pharmacological and environmental stimuli than DA projections to the nucleus accumbens (NAc). These functional differences may be attributed in part to differences in tonic regulation by glutamate. The present study provides evidence for this mechanism: In freely moving animals, blockade of basal glutamatergic activity in the VTA by the selective alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate antagonist LY293558 produced an increase in DA release in the NAc while significantly decreasing DA release in the PFC. These data support an AMPA receptor-mediated tonic inhibitory regulation of mesoaccumbens neurons and a tonic excitatory regulation of mesoprefrontal DA neurons. This differential regulation may result in target-specific effects on the basal output of DA neurons and on the regulatory influence of voltage-gated NMDA receptors in response to phasic activation by behaviorally relevant stimuli.  相似文献   

5.
Abstract: The present study was undertaken to determine whether basal and stimulus-activated dopamine release in the prefrontal cortex (PFC) is regulated by glutamatergic afferents to the PFC or the ventral tegmental area (VTA), the primary source of dopamine neurons that innervate the rodent PFC. In awake rats, blockade of NMDA or α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors in the VTA, or blockade of AMPA receptors in the PFC, profoundly reduced dopamine release in the PFC, suggesting that the basal output of dopamine neurons projecting to the PFC is under a tonic excitatory control of NMDA and AMPA receptors in the VTA, and AMPA receptors in the PFC. Consistent with previous reports, blockade of cortical NMDA receptors increased dopamine release, suggesting that NMDA receptors in the PFC exert a tonic inhibitory control on dopamine release. Blockade of NMDA or AMPA receptors in the VTA as well as blockade of AMPA receptors in the PFC reduced the dopaminergic response to mild handling, suggesting that activation of glutamate neurotransmission also regulates stimulus-induced increase of dopamine release in the PFC. In the context of brain disorders that may involve cortical dopamine dysfunction, the present findings suggest that abnormal basal or stimulus-activated dopamine neurotransmission in the PFC may be secondary to glutamatergic dysregulation.  相似文献   

6.
Erhardt S  Engberg G 《Life sciences》2000,67(15):1901-1911
Previous electrophysiological studies have shown that the GABA(A)-receptor agonist muscimol is able to markedly increase the firing rate of rat nigral dopamine (DA) neurons. This action of the drug is paradoxical since local microiontophoretic application of the drug is associated with a clearcut inhibition of this neurons. In the present electrophysiological study, an attempt was made to analyze the mechanism of this action of the drug. Administration of muscimol (0.25-4.0 mg/kg, i.v.) was associated with a dose-dependent increase in firing rate as well as an increased bursting activity of the nigral DA neurons. Both these effects of muscimol were clearly antagonised by intravenous administration of the NMDA receptor antagonist MK 801(1 mg/kg) or by intracerebroventricular administration of the broad-spectrum excitatory amino acid receptor antagonist kynurenic acid. Furthermore, pretreatment with PNU 156561A (40 mg/kg, i.v., 5-8h), a compound that raised endogenous kynurenic acid levels about 9 times, also clearly antagonised the actions of muscimol. Indeed, this treatment reversed the excitatory action of muscimol into an inhibitory effect on the nigral DA neurons. Here, we report that the excitatory action of muscimol is mediated indirectly by release of glutamate.  相似文献   

7.
Summary The putative role of non-NMDA excitatory amino acid (EAA) receptors in the ventral tegmental area (VTA) for the increase in dopamine (DA) release in the nucleus acumbens (NAC) and the behavioural stimulation induced by systemically administered dizocilpine (MK-801) was investigated. Microdialysis was utilized in rats with probes in the VTA and NAC. The VTA was perfused with the AMPA and kainate receptor antagonist CNQX (0.3 or 1.0 mM) or vehicle and dialysates from the NAC were analyzed with high-performance liquid chromatography for DA. Forty min after onset of CNQX or vehicle perfusion of the VTA MK-801 (0.1 mg/kg) was injected subcutaneously (sc). Subsequently, typical MK-801 induced behaviours were assessed. The MK-801 induced hyperlocomotion was associated with a 50% increase of DA levels in NAC dialysates. Both the MK-801 evoked hyperlocomotion and DA release in the NAC were effectively antagonized by CNQX perfusion of the VTA. However, by itself the CNQX or vehicle perusion of the VTA did not affect DA levels in NAC or the rated behaviours. The results indicate that MK-801 induced hyperlocomotion and increased DA release in the NAC are largely elicited within the VTA via activation of non-NMDA EAA receptors, tentatively caused by locally increased EAA release. In contrast, the enhanced DA output in the NAC induced by systemic nicotine (0.5 mg/kg sc) was not antagonized by intra VTA infusion of CNQX (0.3 or 1.0 mM), but instead by infusion of the NMDA receptor antagonist AP-5 (0.3 or 1.0 mM) into the VTA, which by itself did not alter DA levels in the NAC. Thus, the probably indirect, EAA mediated activation of the mesolimbic DA neurons in the VTA by MK-801 and nicotine, respectively, seems to be mediated via different glutamate receptor subtypes.  相似文献   

8.
The present study investigates the modulation of the ventral tegmental area (VTA)-ventral pallidum (VP) dopaminergic system by glutamate agonists in rats. The glutamate receptor agonists N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were infused via reversed microdialysis into the VTA, and dopamine (DA), glutamate, and aspartate levels in the VTA and ipsilateral VP were monitored together with motor behavior screened in an open field. NMDA (750 microM) infusion, as well as AMPA (50 microM) infusion, induced an increase of DA and glutamate levels in the VTA, followed by an increase of DA levels in the ipsilateral VP and by enhanced locomotor activity. The increase of DA in the VP was similar after administration of these two glutamate agonists, although motor activity was more pronounced and showed an earlier onset after NMDA infusion. Glutamate levels in the VP were not increased by the stimulation of DA release. It is concluded that DA is released from mesencephalic DA neurons projecting to the VP and that these neurons are controlled by glutamatergic systems, via NMDA and AMPA receptors. Thus, DA in the VP has to be considered as a substantial modulator. Dysregulation of the mesopallidal DA neurons, as well as their glutamatergic control, may play an additional or distinct role in disorders like schizophrenia and drug addiction.  相似文献   

9.
Modulation of the Mesolimbic Dopamine System by Glutamate   总被引:4,自引:0,他引:4  
Glutamate has been shown to modulate motor behavior, probably via N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that are involved in the control of the mesolimbic dopamine (DA) system, that is, the ventral tegmental area (VTA)-nucleus accumbens (NAC). In the present study, we investigated the effects of uncompetitive (MK-801) and competitive [DL-2-amino-5-phosphonopentanoic acid (AP-5), CGP 40116] NMDA receptor antagonists and NMDA and AMPA on DA release in the mesolimbic system and on motor behavior. Systemic injection and intrategmental infusion of MK-801 increased DA levels in the VTA, but the systemic administration enhanced DA exclusively in the NAC and increased motor behavior. In contrast, intrategmental infusion of AP-5, but not the systemic administration of its lipophilic analogue CGP 40116, decreased the DA release in the two regions without affecting motor behavior. NMDA and AMPA infusion into the VTA increased DA levels in both areas. This increase was accompanied by a strong motor behavioral stimulation after NMDA but only a moderate increase after AMPA infusion. The present results indicate that mesolimbic DA neurons are controlled by the glutamatergic system and that the effects of uncompetitive and competitive NMDA receptor antagonists on DA release are mediated by an interaction with different brain areas. These findings may account for the different effects of NMDA receptor ligands on motor behavior.  相似文献   

10.
Intravenous administration ofl-stepholidine (SPD), a dopamine (DA) receptor antagonist, increased the firing rate of DA neurons located in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) in both anaesthetized and paralyzed rats. However, with the increase of dose, SPD selectively inhibited the firing activity of DA neurons in the VTA but not in the SNC. The inhibition was reversed by the DA agonist apomorphine (APO), suggesting that it may be via the mechanism of depolarization inactivation (DI). In rats, chronic adrninistration of SPD for 21 d dose-dependently decreased the number of spontaneously active DA neurons in the VTA, of which effect was reversed by APO (i. v.). In contrast, the same treatment failed to affect the population of DA neurons in the SNC. Similarly, the acute treatment of SPD also decreased the number of spontaneously firing DA neurons in the VTA, but not in the SNC. SPD per se only induced very weak catalepsy. Its catalepsy which was not in proportion to dosage was only observed in the dose range of 10–40 mg/kg and lasted 15 min. SPD effectively antagonized the APO (2 mg/kg, i. p.)-induced stereotypy.The above-mentioned results suggest that SPD selectively inactivates the DA neurons in the VTA not in the SNC. SPD may associate with a low incidence of extrapyramidal side-effects and may be ranked as a promising compound for searching for a new kind of atypical neuroleptics.  相似文献   

11.
Kynurenic acid (KYNA) was quantified in the extracellular spaces of the rat hippocampus using microdialysis and HPLC (fluorimetric detection) to study the possible role of this tryptophan metabolite in the modulation of the function of the N-methyl-D-aspartate (NMDA) receptor. Addition of probenecid (1 mM), which is an inhibitor of the organic acid transport system, to the Ringer's solution perfusing the dialysis probe increased the KYNA concentration in the dialysate from 10.4 +/- 0.9 to 48 +/- 6 nM. Addition of 2 mM aminooxyacetic acid, a nonspecific inhibitor of KYNA synthesis, reduced this concentration by 50%. These data suggest that KYNA is continuously synthesized in the rat hippocampus. Nicotinylalanine (NAL), 200-400 mg/kg i.p., an analogue of kynurenine that is able to direct the flow of tryptophan metabolites toward the synthesis of KYNA, significantly increased the KYNA concentration in the hippocampal dialysate and significantly potentiated the effect of tryptophan on the accumulation of KYNA in the brain and other organs. This increase resulted in pharmacological actions compatible with an antagonism of the NMDA receptors. In fact, NAL antagonized sound-induced seizures and prevented death in DBA/2 mice. Pretreatment of the mice with D-serine (100 micrograms intracerebroventricularly), a glycine agonist and a competitive antagonist of KYNA, completely prevented the anticonvulsive action of NAL. These data suggest that changes in the extracellular concentration of KYNA in the brain are associated with a modulation of NMDA receptor function.  相似文献   

12.
Single neuron firing rate was recorded from dorsal raphe nucleus of anesthetized rats. The firing rate of raphe neurons varied from 4 to 8 discharge per second before drug administration and this neuronal activity was decreased by L-701,324 (2 mg/kg i.v. injection), a competitive antagonist of glycineB binding site of N-methyl-D-aspartate (NMDA) receptors. The glycine transporter type-1 (GlyT1) antagonists Org-24461 (10 mg/kg i.v.) and NFPS (3 mg/kg i.v.) reversed the inhibitory effect of L-701,324 on single neuron activity recorded from dorsal raphe nucleus of the rat. Org-24461 and NFPS both tended to increase the raphe neuronal firing rate also when given alone but their effect was not significant. This finding serves further evidence that glutamate released from axon terminals of the cortico-striatal projection neurons stimulates serotonergic neurons in the raphe nuclei and this effect is mediated at least in part by postsynaptic NMDA receptors. Thus, GlyT1 inhibitors are able to reverse the hypofunctional state of NMDA receptors, suggesting that these drugs may have beneficial therapeutic effects in neurological and psychiatric disorders characterized with impaired NMDA receptor-mediated transmission.  相似文献   

13.
Intravenous administration of l-stepholidine (SPD), a dopamine (DA) receptor antagonist, in-creased the firing rate of DA neurons located in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) in both anaesthetized and paralyzed rats. However, with the increase of dose, SPD selectively inhibited the fir-ing activity of DA neurons in the VTA but not in the SNC. The inhibition was reversed by the DA agonist apomor-phine (APO), suggesting that it may be via the mechanism of depolarization inactivation (DI). In rats, chronic admin-istration of SPD for 21 d dose-dependently decreased the number of spontaneously active DA neurons in the VTA, of which effect was reversed by APO (i. v. ). In contrast, the same treatment failed to affect the population of DA neu-rons in the SNC. Similarly, the acute treatment of SPD also decreased the number of spontaneously firing DA neurons in the VTA, but not in the SNC. SPD per se only induced very weak catalepsy. Its catalepsy which was not in pro-port  相似文献   

14.
Inhibition of kynurenine 3-hydroxylase suppresses quinolinic acid synthesis and, therefore, shunts all kynurenine metabolism toward kynurenic acid (KYNA) formation. This may be a pertinent antiexcitotoxic strategy because quinolinic acid is an agonist of NMDA receptors, whereas kynurenic acid antagonises all ionotropic glutamate receptors with preferential affinity for the NMDA receptor glycine site. We have examined whether the kynurenine 3-hydroxylase inhibitor Ro 61-8048 increases extracellular (KYNA) sufficiently to control excessive NMDA receptor function. Microdialysis probes incorporating an electrode were implanted into the striatum of anaesthetised rats, repeated NMDA stimuli were applied through the probe, and the resulting depolarisation was recorded. Changes in extracellular KYNA were assessed by HPLC analysis of consecutive dialysate samples. Ro 61-8048 (42 or 100 mg/kg) markedly increased the dialysate levels of KYNA. The maximum increase (from 3.0 +/- 1.0 to 31.0 +/- 6.0 nM; means +/- SEM, n = 6) was observed 4 h after administration of 100 mg/kg Ro 61-8048, but the magnitude of the NMDA-induced depolarisations was not reduced. A separate study suggested that extracellular KYNA would need to be increased further by two orders of magnitude to become effective in this preparation. These results challenge the notion that kynurenine 3-hydroxylase inhibition may be neuroprotective, primarily through accumulation of KYNA and subsequent attenuation of NMDA receptor function.  相似文献   

15.
Nucleus accumbens (nAcb), a major site of action of drugs of abuse and dopamine (DA) signalling in MSNs (medium spiny neurons), is critically involved in mediating behavioural responses of drug addiction. Most studies have evaluated the effects of DA on MSN firing properties but thus far, the effects of DA on a cellular circuit involving glutamatergic afferents to the nAcb have remained rather elusive. In this study we attempted to characterize the effects of dopamine (DA) on evoked glutamatergic excitatory postsynaptic currents (EPSCs) in nAcb medium spiny (MS) neurons in 1 to 21 day-old rat pups. The EPSCs evoked by local nAcb stimuli displayed both AMPA/KA and NMDA receptor-mediated components. The addition of DA to the superfusing medium produced a marked decrease of both components of the EPSCs that did not change during the postnatal period studied. Pharmacologically isolated AMPA/KA receptor-mediated response was inhibited on average by 40% whereas the isolated NMDA receptor-mediated EPSC was decreased by 90%. The effect of DA on evoked EPSCs were mimicked by the D1-like receptor agonist SKF 38393 and antagonized by the D1-like receptor antagonist SCH 23390 whereas D2-like receptor agonist or antagonist respectively failed to mimic or to block the action of DA. DA did not change the membrane input conductance of MS neurons or the characteristics of EPSCs produced by the local administration of glutamate in the presence of tetrodotoxin. In contrast, DA altered the paired-pulse ratio of evoked EPSCs. The present results show that the activation D1-like dopaminergic receptors modulate glutamatergic neurotransmission by preferentially inhibiting NMDA receptor-mediated EPSC through presynaptic mechanisms.  相似文献   

16.
In anesthetized rats, midbrain dopamine (DA) neuronal firing rate was differentially sensitive to focal brain microinjection of cholecystokinin peptides (CCK-4 and CCK-8) and N-methyl-D-aspartate (NMDA) into nucleus accumbens, amygdala and prefrontal cortex. Whereas changes in DA neuronal firing rate were frequently observed in response to intra-amygdalar microinjection of CCK peptides, NMDA was most effective in eliciting changes in DA neuronal activity following intra-accumbal microinjection. Thus, stimulation of amygdalar CCK receptors and accumbal excitatory amino acid receptors may participate in the afferent regulation of midbrain DA neuronal function.  相似文献   

17.
Atypical antipsychotics show preferential 5-HT 2A versus dopamine (DA) D2 receptor affinity. At clinical doses, they fully occupy cortical 5-HT2 receptors, which suggests a strong relationship with their therapeutic action. Half of the pyramidal neurones in the medial prefrontal cortex (mPFC) express 5-HT 2A receptors. Also, neurones excited through 5-HT 2A receptors project to the ventral tegmental area (VTA). We therefore hypothesized that prefrontal 5-HT 2A receptors can modulate DA transmission through excitatory mPFC-VTA inputs. In this study we used single unit recordings to examine the responses of DA neurones to local (in the mPFC) and systemic administration of the 5-HT 2A/2C agonist 1-[2,5-dimethoxy-4-iodophenyl-2-aminopropane] (DOI). Likewise, using microdialysis, we examined DA release in the mPFC and VTA (single/dual probe) in response to prefrontal and systemic drug administration. The local (in the mPFC) and systemic administration of DOI increased the firing rate and burst firing of DA neurones and DA release in the VTA and mPFC. The increase in VTA DA release was mimicked by the electrical stimulation of the mPFC. The effects of DOI were reversed by M100907 and ritanserin. These results indicate that the activity of VTA DA neurones is under the excitatory control of 5-HT 2A receptors in the mPFC. These observations may help in the understanding of the therapeutic action of atypical antipsychotics.  相似文献   

18.

Background

The initiation of behavioral sensitization to cocaine and other psychomotor stimulants is thought to reflect N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic plasticity in the mesolimbic dopamine (DA) circuitry. The importance of drug induced NMDAR mediated adaptations in ventral tegmental area (VTA) DA neurons, and its association with drug seeking behaviors, has recently been evaluated in Cre-loxp mice lacking functional NMDARs in DA neurons expressing Cre recombinase under the control of the endogenous dopamine transporter gene (NR1DATCre mice).

Methodology and Principal Findings

Using an additional NR1DATCre mouse transgenic model, we demonstrate that while the selective inactivation of NMDARs in DA neurons eliminates the induction of molecular changes leading to synaptic strengthening, behavioral measures such as cocaine induced locomotor sensitization and conditioned place preference remain intact in NR1DATCre mice. Since VTA DA neurons projecting to the prefrontal cortex and amygdala express little or no detectable levels of the dopamine transporter, it has been speculated that NMDA receptors in DA neurons projecting to these brain areas may have been spared in NR1DATCre mice. Here we demonstrate that the NMDA receptor gene is ablated in the majority of VTA DA neurons, including those exhibiting undetectable DAT expression levels in our NR1DATCre transgenic model, and that application of an NMDAR antagonist within the VTA of NR1DATCre animals still blocks sensitization to cocaine.

Conclusions/Significance

These results eliminate the possibility of NMDAR mediated neuroplasticity in the different DA neuronal subpopulations in our NR1DATCre mouse model and therefore suggest that NMDARs on non-DA neurons within the VTA must play a major role in cocaine-related addictive behavior.  相似文献   

19.
Abstract: In freely moving rats, the novel, selective dopamine (DA) D3 receptor agonist PD 128,907 dose-dependently [effective dose (ED25) = 0.07 mg/kg, s.c.] reduced dialysate levels of DA in the frontal cortex, a structure innervated by the ventral tegmental area (VTA). This action of PD 128,907 (0.16 mg/kg, s.c.) was abolished by a selective DA D3 receptor antagonist S 14297 (1.25 mg/kg, s.c.), which alone did not modify levels of DA. In contrast to S 14297, its inactive distomer, S 17777, did not modify the actions of PD 128,907. In addition, PD 128,907 dose-dependently and potently inhibited the firing rate of VTA-localized neurons in anesthetized rats (ED50 = 0.001 mg/kg, i.v.). S 14297, but not S 17777, completely reversed the actions of PD 128,907 (0.005 mg/kg, i.v.) with a 50% inhibitory dose of 0.03 mg/kg, i.v. and did not itself significantly modify the firing rate. In conclusion, these data provide the first direct evidence that DA D3 (auto)receptors modulate (inhibit) the release of DA in the frontal cortex.  相似文献   

20.
Dopamine (DA) neurons in the ventral tegmental area (VTA) not only participate in reward processing, but also respond to aversive stimuli. Although GABA neurons in this area are actively involved in regulating the firing of DA neurons, few data exist concerning the responses of these neurons to aversive sensory input. In this study, by employing extracellular single-unit recording and spectral analysis techniques in paralyzed and ventilated rats, we found that the firing pattern in 44% (47 of 106) of GABA cells in the VTA was sensitive to the sensory input produced by the ventilation, showing a significant ventilation-associated oscillation in the power spectra. Detailed studies revealed that most ventilation-sensitive GABA neurons (38 of 47) were excited by the stimuli, whereas most ventilation-sensitive DA neurons (11 of 14) were inhibited. When the animals were under anesthesia or the sensory pathways were transected, the ventilation-associated oscillation failed to appear. Systemic administration of non-competitive N-methyl-D-aspartase (NMDA) receptor antagonist MK-801 completely disrupted the association between the firing of GABA neurons and the ventilation. Interestingly, local MK-801 injection into the VTA dramatically enhanced the sensitivity of GABA neurons to the ventilation. Our data demonstrate that both GABA and DA neurons in the VTA can be significantly modulated by sensory input produced by the ventilation, which may indicate potential functional roles of VTA in processing sensation-related input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号