首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Construction of a mitotic spindle requires biochemical pathways to assemble spindle microtubules and structural proteins to organize these microtubules into a bipolar array. Through a complex with dynein, the receptor for hyaluronan-mediated motility (RHAMM) cross-links mitotic microtubules to provide structural support, maintain spindle integrity, and correctly orient the mitotic spindle. Here, we locate RHAMM to sites of microtubule assembly at centrosomes and non-centrosome sites near kinetochores and demonstrate that RHAMM is required for the activation of Aurora kinase A. Silencing of RHAMM delays the kinetics of spindle assembly, mislocalizes targeting protein for XKlp2 (TPX2), and attenuates the localized activation of Aurora kinase A with a consequent reduction in mitotic spindle length. The RHAMM–TPX2 complex requires a C-terminal basic leucine zipper in RHAMM and a domain that includes the nuclear localization signal in TPX2. Together, our findings identify RHAMM as a critical regulator for Aurora kinase A signaling and suggest that RHAMM ensures bipolar spindle assembly and mitotic progression through the integration of biochemical and structural pathways.  相似文献   

2.
Although considered a pericellular matrix component, hyaluronan was recently localized in the cytoplasm and nucleus of proliferating cells, supporting earlier reports that hyaluronan was present in locations such as the nucleus, rough endoplasmic reticulum, and caveolae. This suggests that it can play roles both inside and outside the cell. Hyaluronan metabolism is coupled to mitosis and cell motility, but it is not clear if intracellular hyaluronan associates with cytoskeletal elements or plays a structural role. Here we report the distribution of intracellular hyaluronan, microtubules, and RHAMM in arterial smooth muscle cells in vitro. The general distribution of intracellular hyaluronan more closely resembled microtubule staining rather than actin filaments. Hyaluronan was abundant in the perinuclear microtubule-rich areas and was present in lysosomes, other vesicular structures, and the nucleolus. Partially fragmented fluorescein-hyaluronan was preferentially translocated to the perinuclear area compared with high-molecular-weight hyaluronan. In the mitotic spindle, hyaluronan colocalized with tubulin and with the hyaladherin RHAMM, a cell surface receptor and microtubule-associated protein that interacts with dynein and maintains spindle pole stability. Internalized fluorescein-hyaluronan was also seen at the spindle. Following telophase, an abundance of hyaluronan near the midbody microtubules at the cleavage furrow was also noted. In permeabilized cells, fluorescein-hyaluronan bound to RHAMM-associated microtubules. These findings suggest novel functions for hyaluronan in cellular physiology.  相似文献   

3.
The receptor for hyaluronan mediated motility (RHAMM), which is a hyaluronan-binding protein, is a centrosomal and microtubal protein. Here, we have identified two RHAMM-binding proteins, glucose regulated protein (GRP) 78 and GRP75, using co-immunoprecipitation analysis. These two proteins directly bound to glutathione-S-transferase-RHAMM fusion proteins. By double immunostaining, GRP78 and GRP75 colocalized with RHAMM in interphase microtubules, but were separated in mitotic spindles. Prevention of microtubule polymerization by TN-16 and vincristine sulfate induced RHAMM overexpression without a significant change in GRP78/75. Taken together, GRP78/75 and RHAMM complexes may stabilize microtubules in the interphase, associated with a downregulation of RHAMM. These results reveal a new biochemical activity of RHAMM.  相似文献   

4.
Microtubule nucleation is the best known function of centrosomes. Centrosomal microtubule nucleation is mediated primarily by gamma tubulin ring complexes (gamma TuRCs). However, little is known about the molecules that anchor these complexes to centrosomes. In this study, we show that the centrosomal coiled-coil protein pericentrin anchors gamma TuRCs at spindle poles through an interaction with gamma tubulin complex proteins 2 and 3 (GCP2/3). Pericentrin silencing by small interfering RNAs in somatic cells disrupted gamma tubulin localization and spindle organization in mitosis but had no effect on gamma tubulin localization or microtubule organization in interphase cells. Similarly, overexpression of the GCP2/3 binding domain of pericentrin disrupted the endogenous pericentrin-gamma TuRC interaction and perturbed astral microtubules and spindle bipolarity. When added to Xenopus mitotic extracts, this domain uncoupled gamma TuRCs from centrosomes, inhibited microtubule aster assembly, and induced rapid disassembly of preassembled asters. All phenotypes were significantly reduced in a pericentrin mutant with diminished GCP2/3 binding and were specific for mitotic centrosomal asters as we observed little effect on interphase asters or on asters assembled by the Ran-mediated centrosome-independent pathway. Additionally, pericentrin silencing or overexpression induced G2/antephase arrest followed by apoptosis in many but not all cell types. We conclude that pericentrin anchoring of gamma tubulin complexes at centrosomes in mitotic cells is required for proper spindle organization and that loss of this anchoring mechanism elicits a checkpoint response that prevents mitotic entry and triggers apoptotic cell death.  相似文献   

5.
The focusing of microtubules into mitotic spindle poles in vertebrate somatic cells has been assumed to be the consequence of their nucleation from centrosomes. Contrary to this simple view, in this article we show that an antibody recognizing the light intermediate chain of cytoplasmic dynein (70.1) disrupts both the focused organization of microtubule minus ends and the localization of the nuclear mitotic apparatus protein at spindle poles when injected into cultured cells during metaphase, despite the presence of centrosomes. Examination of the effects of this dynein-specific antibody both in vitro using a cell-free system for mitotic aster assembly and in vivo after injection into cultured cells reveals that in addition to its direct effect on cytoplasmic dynein this antibody reduces the efficiency with which dynactin associates with microtubules, indicating that the antibody perturbs the cooperative binding of dynein and dynactin to microtubules during spindle/aster assembly. These results indicate that microtubule minus ends are focused into spindle poles in vertebrate somatic cells through a mechanism that involves contributions from both centrosomes and structural and microtubule motor proteins. Furthermore, these findings, together with the recent observation that cytoplasmic dynein is required for the formation and maintenance of acentrosomal spindle poles in extracts prepared from Xenopus eggs (Heald, R., R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, A. Hyman, and E. Karsenti. 1996. Nature (Lond.). 382: 420–425) demonstrate that there is a common mechanism for focusing free microtubule minus ends in both centrosomal and acentrosomal spindles. We discuss these observations in the context of a search-capture-focus model for spindle assembly.  相似文献   

6.
The maternally expressed C. elegans gene spd-5 encodes a centrosomal protein with multiple coiled-coil domains. During mitosis in mutants with reduced levels of SPD-5, microtubules assemble but radiate from condensed chromosomes without forming a spindle, and mitosis fails. SPD-5 is required for the centrosomal localization of gamma-tubulin, XMAP-215, and Aurora A kinase family members, but SPD-5 accumulates at centrosomes in mutants lacking these proteins. Furthermore, SPD-5 interacts genetically with a dynein heavy chain. We propose that SPD-5, along with dynein, is required for centrosome maturation and mitotic spindle assembly.  相似文献   

7.
An oncogenic form of RHAMM (receptor for hyaluronan-mediated motility, mouse, amino acids 163–794 termed RHAMMΔ163) is a cell surface hyaluronan receptor and mitotic spindle protein that is highly expressed in aggressive human cancers. Its regulation of mitotic spindle integrity is thought to contribute to tumor progression, but the molecular mechanisms underlying this function have not previously been defined. Here, we report that intracellular RHAMMΔ163 modifies the stability of interphase and mitotic spindle microtubules through ERK1/2 activity. RHAMM−/− mouse embryonic fibroblasts exhibit strongly acetylated interphase microtubules, multi-pole mitotic spindles, aberrant chromosome segregation, and inappropriate cytokinesis during mitosis. These defects are rescued by either expression of RHAMM or mutant active MEK1. Mutational analyses show that RHAMMΔ163 binds to α- and β-tubulin protein via a carboxyl-terminal leucine zipper, but in vitro analyses indicate this interaction does not directly contribute to tubulin polymerization/stability. Co-immunoprecipitation and pulldown assays reveal complexes of RHAMMΔ163, ERK1/2-MEK1, and α- and β-tubulin and demonstrate direct binding of RHAMMΔ163 to ERK1 via a D-site motif. In vitro kinase analyses, expression of mutant RHAMMΔ163 defective in ERK1 binding in mouse embryonic fibroblasts, and blocking MEK1 activity collectively confirm that the effect of RHAMMΔ163 on interphase and mitotic spindle microtubules is mediated by ERK1/2 activity. Our results suggest a model wherein intracellular RHAMMΔ163 functions as an adaptor protein to control microtubule polymerization during interphase and mitosis as a result of localizing ERK1/2-MEK1 complexes to their tubulin-associated substrates.  相似文献   

8.
Cytoplasmic dynein is recruited to the cell cortex in early mitosis, where it can generate pulling forces on astral microtubules to position the mitotic spindle. Recent work has shown that dynein displays a dynamic asymmetric cortical localization, and that dynein recruitment is negatively regulated by spindle pole-proximity. This results in oscillating dynein recruitment to opposite sides of the cortex to center the mitotic spindle. However, although the centrosome-derived signal that promotes displacement of dynein has been identified, it is currently unknown how dynein is re-recruited to the cortex once it has been displaced. Here we show that re-recruitment of cortical dynein requires astral microtubules. We find that microtubules are necessary for the sustained localized enrichment of dynein at the cortex. Furthermore, we show that stabilization of astral microtubules causes spindle misorientation, followed by mispositioning of dynein at the cortex. Thus, our results demonstrate the importance of astral microtubules in the dynamic regulation of cortical dynein recruitment in mitosis.  相似文献   

9.
We use both in vitro and in vivo approaches to examine the roles of Eg5 (kinesin-related protein), cytoplasmic dynein, and dynactin in the organization of the microtubules and the localization of NuMA (Nu-clear protein that associates with the Mitotic Apparatus) at the polar ends of the mammalian mitotic spindle. Perturbation of the function of Eg5 through either immunodepletion from a cell free system for assembly of mitotic asters or antibody microinjection into cultured cells leads to organized astral microtubule arrays with expanded polar regions in which the minus ends of the microtubules emanate from a ring-like structure that contains NuMA. Conversely, perturbation of the function of cytoplasmic dynein or dynactin through either specific immunodepletition from the cell free system or expression of a dominant negative subunit of dynactin in cultured cells results in the complete lack of organization of microtubules and the failure to efficiently concentrate the NuMA protein despite its association with the microtubules. Simultaneous immunodepletion of these proteins from the cell free system for mitotic aster assembly indicates that the plus end- directed activity of Eg5 antagonizes the minus end-directed activity of cytoplasmic dynein and a minus end-directed activity associated with NuMA during the organization of the microtubules into a morphologic pole. Taken together, these results demonstrate that the unique organization of the minus ends of microtubules and the localization of NuMA at the polar ends of the mammalian mitotic spindle can be accomplished in a centrosome-independent manner by the opposing activities of plus end- and minus end-directed motors.  相似文献   

10.
The cytoplasmic dynein motor generates pulling forces to center and orient the mitotic spindle within the cell. During this positioning process, dynein oscillates from one pole of the cell cortex to the other but only accumulates at the pole farthest from the spindle. Here, we show that dynein light chain 1 (DYNLL1) is required for this asymmetric cortical localization of dynein and has a specific function defining spindle orientation. DYNLL1 interacted with a spindle-microtubule–associated adaptor formed by CHICA and HMMR via TQT motifs in CHICA. In cells depleted of CHICA or HMMR, the mitotic spindle failed to orient correctly in relation to the growth surface. Furthermore, CHICA TQT motif mutants localized to the mitotic spindle but failed to recruit DYNLL1 to spindle microtubules and did not correct the spindle orientation or dynein localization defects. These findings support a model where DYNLL1 and CHICA-HMMR form part of the regulatory system feeding back spindle position to dynein at the cell cortex.  相似文献   

11.
Bipolar spindle assembly critically depends on the microtubule plus‐end‐directed motor Eg5 that binds antiparallel microtubules and slides them in opposite directions. As such, Eg5 can produce the necessary outward force within the spindle that drives centrosome separation and inhibition of this antiparallel sliding activity results in the formation of monopolar spindles. Here, we show that upon depletion of the minus‐end‐directed motor dynein, or the dynein‐binding protein Lis1, bipolar spindles can form in human cells with substantially less Eg5 activity, suggesting that dynein and Lis1 produce an inward force that counteracts the Eg5‐dependent outward force. Interestingly, we also observe restoration of spindle bipolarity upon depletion of the microtubule plus‐end‐tracking protein CLIP‐170. This function of CLIP‐170 in spindle bipolarity seems to be mediated through its interaction with dynein, as loss of CLIP‐115, a highly homologous protein that lacks the dynein–dynactin interaction domain, does not restore spindle bipolarity. Taken together, these results suggest that complexes of dynein, Lis1 and CLIP‐170 crosslink and slide microtubules within the spindle, thereby producing an inward force that pulls centrosomes together.  相似文献   

12.
Non-erythroid protein 4.1R (4.1R) consists of a complex family of isoforms. We have shown that 4.1R isoforms localize at the mitotic spindle/spindle poles and associate in a complex with the mitotic-spindle organization proteins Nuclear Mitotic Apparatus protein (NuMA), dynein, and dynactin. We addressed the mitotic function of 4.1R by investigating its association with microtubules, the main component of the mitotic spindles, and its role in mitotic aster assembly in vitro. 4.1R appears to partially co-localize with microtubules throughout the mitotic stages of the cell cycle. In vitro sedimentation assays showed that 4.1R isoforms directly interact with microtubules. Glutathione S-transferase (GST) pull-down assays using GST-4.1R fusions and mitotic cell extracts further showed that the association of 4.1R with tubulin results from both the membrane-binding domain and C-terminal domain of 4.1R. Moreover, 4.1R, but not actin, is a mitotic microtubule-associated protein; 4.1R associates with microtubules in the microtubule pellet of the mitotic asters assembled in mammalian cell-free mitotic extract. The organization of microtubules into asters depends on 4.1R in that immunodepletion of 4.1R from the extract resulted in randomly dispersed microtubules. Furthermore, adding a 135-kDa recombinant 4.1R reconstituted the mitotic asters. Finally, we demonstrated that a mitotic 4.1R isoform appears to form a complex in vivo with tubulin and NuMA in highly synchronized mitotic HeLa extracts. Our results suggest that a 135-kDa non-erythroid 4.1R is important to cell division, because it participates in the formation of mitotic spindles and spindle poles through its interaction with mitotic microtubules.  相似文献   

13.
Deregulation of the mitotic spindle has been implicated in genomic instability, an important aspect of tumorigenesis and malignant transformation. To ensure the fidelity of chromosome transmission, the mitotic spindle is assembled by exquisite mechanisms and orchestrated by centrosomes in animal cells. Centrosomal proteins especially are thought to act coordinately to ensure accurate spindle formation, but the molecular details remain to be investigated. In this study, we report the molecular characterization and functional analysis of a novel centrosomal protein, Cep70. Our data show that Cep70 localizes to the centrosome throughout the cell cycle and binds to the key centrosomal component, γ-tubulin, through the peptide fragments that contain the coiled-coil domains. Our data further reveal that the centrosomal localization pattern of Cep70 is dependent on its interaction with γ-tubulin. Strikingly, Cep70 plays a significant role in the organization of both preexisting and nascent microtubules in interphase cells. In addition, Cep70 is necessary for the organization and orientation of the bipolar spindle during mitosis. These results thus report for the first time the identification of Cep70 as an important centrosomal protein that interacts with γ-tubulin and underscore its critical role in the regulation of mitotic spindle assembly.  相似文献   

14.
During mitosis in budding yeast, cortically anchored dynein exerts pulling forces on cytoplasmic microtubules, moving the mitotic spindle into the mother-bud neck. Anchoring of dynein requires the cortical patch protein Num1, which is hypothesized to interact with PI(4,5)P2 via its C-terminal pleckstrin homology (PH) domain. Here we show that the PH domain and PI(4,5)P2 are required for the cortical localization of Num1, but are not sufficient to mediate the cortical assembly of Num1 patches. A GFP fusion to the PH domain localizes to the cortex in foci containing ~2 molecules, whereas patches of full-length Num1-GFP contain ~14 molecules. A membrane targeting sequence containing the CAAX motif from the yeast Ras2 protein can compensate for the PH domain to target Num1 to the plasma membrane as discrete patches. The CAAX-targeted Num1 exhibits overlapping but largely distinct localization from wild-type Num1. However, it is fully functional in the dynein pathway. More importantly, cortical PI(4,5)P2 is dispensable for the localization and function of the CAAX-targeted Num1. Together, these results demonstrate that cortical assembly of Num1 into functional dynein-anchoring patches is independent of its interaction with PI(4,5)P2.  相似文献   

15.
Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy.The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase NuSAP-chromatin interaction suggests additional functions for NuSAP, as recently identified for other nuclear spindle assembly factors with a role in gene expression or DNA damage response.  相似文献   

16.
Aurora A is a spindle pole–associated protein kinase required for mitotic spindle assembly and chromosome segregation. In this study, we show that Drosophila melanogaster aurora A phosphorylates the dynactin subunit p150glued on sites required for its association with the mitotic spindle. Dynactin strongly accumulates on microtubules during prophase but disappears as soon as the nuclear envelope breaks down, suggesting that its spindle localization is tightly regulated. If aurora A''s function is compromised, dynactin and dynein become enriched on mitotic spindle microtubules. Phosphorylation sites are localized within the conserved microtubule-binding domain (MBD) of the p150glued. Although wild-type p150glued binds weakly to spindle microtubules, a variant that can no longer be phosphorylated by aurora A remains associated with spindle microtubules and fails to rescue depletion of endogenous p150glued. Our results suggest that aurora A kinase participates in vivo to the phosphoregulation of the p150glued MBD to limit the microtubule binding of the dynein–dynactin complex and thus regulates spindle assembly.  相似文献   

17.
Liang Y  Yu W  Li Y  Yu L  Zhang Q  Wang F  Yang Z  Du J  Huang Q  Yao X  Zhu X 《Molecular biology of the cell》2007,18(7):2656-2666
The microtubule-based motor cytoplasmic dynein/dynactin is a force generator at the kinetochore. It also transports proteins away from kinetochores to spindle poles. Regulation of such diverse functions, however, is poorly understood. We have previously shown that Nudel is critical for dynein-mediated protein transport, whereas mitosin, a kinetochore protein that binds Nudel, is involved in retention of kinetochore dynein/dynactin against microtubule-dependent stripping. Here we demonstrate that Nudel is required for robust localization of dynein/dynactin at the kinetochore. It localizes to kinetochores after nuclear envelope breakdown, depending mostly ( approximately 78%) on mitosin and slightly on dynein/dynactin. Depletion of Nudel by RNA interference (RNAi) or overexpression of its mutant incapable of binding either Lis1 or dynein heavy chain abolishes the kinetochore protein transport and mitotic progression. Similar to mitosin RNAi, Nudel RNAi also leads to increased stripping of kinetochore dynein/dynactin in the presence of microtubules. Taking together, our results suggest a dual role of kinetochore Nudel: it activates dynein-mediated protein transport and, when interacting with both mitosin and dynein, stabilizes kinetochore dynein/dynactin against microtubule-dependent stripping to facilitate the force generation function of the motor.  相似文献   

18.
Microtubule arrays direct intracellular organization and define cellular polarity. Here, we show a novel function of glycogen synthase kinase-3beta (GSK-3beta) in the organization of microtubule arrays through the interaction with Bicaudal-D (BICD). BICD is known to form a complex with dynein-dynactin and to function in the intracellular vesicle trafficking. Our data revealed that GSK-3beta is required for the binding of BICD to dynein but not to dynactin. Knockdown of GSK-3beta or BICD reduced centrosomally focused microtubules and induced the mislocalization of centrosomal proteins. The unfocused microtubules in GSK-3beta knockdown cells were rescued by the expression of the dynein intermediate chain-BICD fusion protein. Microtubule regrowth assays showed that GSK-3beta and BICD are required for the anchoring of microtubules to the centrosome. These results imply that GSK-3beta may function in transporting centrosomal proteins to the centrosome by stabilizing the BICD1 and dynein complex, resulting in the regulation of a focused microtubule organization.  相似文献   

19.
Drosophila neural stem cells, larval brain neuroblasts (NBs), align their mitotic spindles along the apical/basal axis during asymmetric cell division (ACD) to maintain the balance of self-renewal and differentiation. Here, we identified a protein complex composed of the tumor suppressor anastral spindle 2 (Ana2), a dynein light-chain protein Cut up (Ctp), and Mushroom body defect (Mud), which regulates mitotic spindle orientation. We isolated two ana2 alleles that displayed spindle misorientation and NB overgrowth phenotypes in larval brains. The centriolar protein Ana2 anchors Ctp to centrioles during ACD. The centriolar localization of Ctp is important for spindle orientation. Ana2 and Ctp localize Mud to the centrosomes and cell cortex and facilitate/maintain the association of Mud with Pins at the apical cortex. Our findings reveal that the centrosomal proteins Ana2 and Ctp regulate Mud function to?orient the mitotic spindle during NB asymmetric division.  相似文献   

20.
Florian S  Mayer TU 《Cell reports》2012,1(5):408-416
During cell division, the molecular motor Eg5 crosslinks overlapping antiparallel microtubules and pushes them apart to separate mitotic spindle poles. Dynein has been proposed as a direct antagonist of Eg5 at the spindle equator, pulling on antiparallel microtubules and favoring spindle collapse. Some of the experiments supporting this hypothesis relied on endpoint quantifications of spindle phenotypes rather than following individual cell fates over time. Here, we present a mathematical model and proof-of-principle experiments to demonstrate that endpoint quantifications can be fundamentally misleading because they overestimate defective phenotypes. Indeed, live-cell imaging reveals that, while depletion of dynein or the dynein binding protein Lis1 enables spindle formation in presence of an Eg5 inhibitor, the activities of dynein and Eg5 cannot be titrated against each other. Thus, dynein most likely antagonizes Eg5 indirectly by exerting force at different spindle locations rather than through a simple push-pull mechanism at the spindle equator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号