首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Generation of new neurons persists in the normal adult mammalian brain, with neural stem/progenitor cells residing in at least two brain regions: the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus (DG). Adult neurogenesis is well documented in the rodent, and has also been demonstrated in vivo in nonhuman primates and humans. Brain injuries such as ischemia affect neurogenesis in adult rodents as both global and focal ischemic insults enhance the proliferation of progenitor cells residing in SGZ or SVZ. We addressed the issue whether an injury triggered activation of endogenous neuronal precursors also takes place in the adult primate brain. We found that the ischemic insult increased the number of progenitor cells in monkey SGZ and SVZ, and caused gliogenesis in the ischemia-prone hippocampal CA1 sector. To better understand the mechanisms regulating precursor cell division and differentiation in the primate, we analyzed the expression at protein level of a panel of potential regulatory molecules, including neurotrophic factors and their receptors. We found that a fraction of mitotic progenitors were positive for the neurotrophin receptor TrkB, while immature neurons expressed the neurotrophin receptor TrkA. Astroglia, ependymal cells and blood vessels in SVZ were positive for distinctive sets of ligands/receptors, which we characterized. Thus, a network of neurotrophic signals operating in an autocrine or paracrine manner may regulate neurogenesis in adult primate SVZ. We also analyzed microglial and astroglial proliferation in postischemic hippocampal CA1 sector. We found that proliferating postischemic microglia in adult monkey CA1 sector express the neurotrophin receptor TrkA, while activated astrocytes were labeled for nerve growth factor (NGF), ligand for TrkA, and the tyrosine kinase TrkB, a receptor for brain derived neurotrophic factor (BDNF). These results implicate NGF and BDNF as regulators of postischemic glial proliferation in adult primate hippocampus.  相似文献   

2.
Feng YH  Yu DQ  Peng Y  Yin SM  Sun YP  Wu XF  Zhang WQ  Zhao J 《中国应用生理学杂志》2007,23(3):315-318,I0002
目的:观察蝎毒耐热蛋白(SVHRP)对红藻氨酸(KA)诱导的原代培养海马神经肽Y(NPY)能神经元损伤的影响及其可能的分子机制。方法:制备原代培养10d的大鼠海马神经元并用神经元特异性MAP-2抗体进行鉴定,将鉴定成熟的神经元用终浓度为20μg/ml的SVHRP和10μmol/L的KA处理,共孵育24h后,分别用硫堇染色、MTT实验检测不同给药组残存神经元的数目和活力,用免疫细胞化学和RT-PCR技术检测NPY-IR和NPYmRNA的表达。结果:MAP-2-IR结果显示85%以上为阳性成熟神经元;硫堇染色显示,同模型组比较,模型给药组未见神经元形态异常,并且神经元数目未见明显减少(P<0.05);MTT实验显示,模型给药组海马神经元存活率较模型组明显增高(P<0.05);NPY-IR检测表明,模型组NPY阳性细神经元数目明显减少,模型给药组NPY阳性神经元数目明显多于模型组(P<0.01);RT-PCR实验表明,单独给药组海马神经元内NPYmRNA表达较其他三组明显增多(P<0.05)。结论:SVHRP对KA诱导的原代海马神经元的兴奋毒性损伤具有明显的保护作用,可能与SVHRP促进NPY合成有关。  相似文献   

3.
The long-term consequences of traumatic brain injury (TBI), specifically the detrimental effects of inflammation on the neurogenic niches, are not very well understood. In the present in vivo study, we examined the prolonged pathological outcomes of experimental TBI in different parts of the rat brain with special emphasis on inflammation and neurogenesis. Sixty days after moderate controlled cortical impact injury, adult Sprague-Dawley male rats were euthanized and brain tissues harvested. Antibodies against the activated microglial marker, OX6, the cell cycle-regulating protein marker, Ki67, and the immature neuronal marker, doublecortin, DCX, were used to estimate microglial activation, cell proliferation, and neuronal differentiation, respectively, in the subventricular zone (SVZ), subgranular zone (SGZ), striatum, thalamus, and cerebral peduncle. Stereology-based analyses revealed significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle. In parallel, significant decrements in Ki67-positive proliferating cells in SVZ and SGZ, but only trends of reduced DCX-positive immature neuronal cells in SVZ and SGZ were detected relative to sham control group. These results indicate a progressive deterioration of the TBI brain over time characterized by elevated inflammation and suppressed neurogenesis. Therapeutic intervention at the chronic stage of TBI may confer abrogation of these deleterious cell death processes.  相似文献   

4.
Migration of new neuroprogenitor cells (NPCs) from the subventricular zone (SVZ) plays an important role in neurorepair after injury. Previous studies have shown that brain derived neurotrophic factor (BDNF) enhances the migration of NPCs from SVZ explants in neonatal mice in vitro. The purpose of this study was to identify the role of BDNF in SVZ cells using AAV-BDNF in an animal model of stroke. BDNF protein production after AAV‐BDNF infection was verified in primary neuronal culture. AAV-BDNF or AAV-RFP was injected into the left SVZ region of adult rats at 14 days prior to right middle cerebral artery occlusion (MCAo). SVZ tissues were collected from the brain and placed in Metrigel cultures 1 day after MCAo. Treatment with AAV-BDNF significantly increased the migration of SVZ cells in the stroke brain in vitro. In another set of animals, AAV-GFP was co-injected with AAV-BDNF or AAV-RFP to label cells in left SVZ prior to right MCAo. Local administration of AAV-BDNF significantly enhanced recovery of locomotor function and migration of GFP-positive cells from the SVZ toward the lesioned hemisphere in stroke rats. Our data suggest that focal administration of AAV-BDNF to the SVZ increases behavioral recovery post stroke, possibly through the enhancement of migration of cells from SVZ in stroke animals. Regional manipulation of BDNF expression through AAV may be a novel approach for neurorepair in stroke brains.  相似文献   

5.
蝎毒耐热蛋白对大鼠急性分离海马神经元兴奋性的影响   总被引:4,自引:0,他引:4  
Wang Y  Zhang XY  Li S  Zhang J  Zhao J  Zhang WQ 《生理学报》2007,59(1):87-93
应用全细胞膜片钳记录技术在电流钳模式下观察经持续高温等特殊处理后分离纯化的30~50 kDa蝎毒耐热蛋白(scorpion venom heat resistant protein,SVHRP)(国家发明专利,专利号ZL01 106166.92)对急性分离大鼠海马神经元兴奋性的影响.结果发现SVHRP可致海马神经元兴奋性降低.神经元经1×10-2 μg/mL SVHRP处理后动作电位发放模式改变,发放频率减少.在52个受检细胞中,有45个细胞产生位相放电(占86.54%);7个细胞产生重复放电(占13.46%).在产生位相放电的45个细胞中,有8个细胞在SVHRP处理后仍可以诱发出位相放电(占17.78%);37个细胞在SVHRP处理后无法诱导出位相放电(占82.22%),SVHRP处理后动作电位的产生与处理前相比,有显著差异(P<0.01,n=45);在产生重复放电的7个细胞中,在1×10-2μg/mL SVHRP作用后均不能再次诱发出重复放电,而是产生一个动作电位或不再产生动作电位,药物处理前产生的动作电位个数为14.57±1.00,SVHRP处理后产生动作电位的个数为0.57±0.20,二者之间有显著性差异(P<0.01,n=7).1×10-4 μg/mLSVHRP处理后,诱发动作电位产生的基强度由(75.10±8.99)pA增加到(119.85±12.73)pA(P<0.01,n=8);阈电位由(-41.17±2.15)mV升至(-32.40±1.48)mV(P<0.01,n=8);动作电位峰值由(68.49±2.33)mV下降至(54.71±0.81)mV(P<0.01,n=8).由于神经元超兴奋性被认为是癫痫发作的基本机制之一,因此上述结果表明SVHRP有可能通过降低海马神经元兴奋性发挥其抗癫痫作用,这为蝎毒药物的进一步开发提供理论依据.  相似文献   

6.
7.
蝎毒耐热蛋白对大鼠海马神经元钠通道的抑制作用   总被引:5,自引:0,他引:5  
Zhang XY  Wang Y  Zhang J  Wang JY  Zhao J  Zhang WQ  Li S 《生理学报》2007,59(3):278-284
应用全细胞膜片钳技术观察蝎毒耐热蛋白(scorpion venom heat resistant protein,SVHRP)对急性分离大鼠海马神经元电压依赖性钠通道的影响。结果表明,急性分离大鼠海马神经元产生的河豚毒素(tetrodotoxin,TTX)敏感的电压依赖性钠电流被SVHRP浓度依赖性地抑制,半数抑制浓度为(0.0034±0.0004)μg/mL,Hill常数为0.4361±0.0318;SVHRP可使钠通道稳态激活曲线向电压的正方向移动,正常TTX敏感的钠通道的半数激活电压(V1/2)为(-34.38±0.62)mV(n=16),给予0.1μg/mL的SVHRP后V1/2为(-23.96±0.41)mV(n=8,P〈0.05),斜坡因子(κ)由正常的4.52±0.52变为3.73±0.08(n=8,P〈0.05)。SVHRP亦能改变电压依赖性钠通道的稳态失活曲线,使其向电位的负方向移动,SVHRP处理前钠通道半数失活电压(V1/2)为(-32.60±1.52)mV,κ为6.73±0.51(n=16);0.1μg/mL的SVHRP处理后V1/2变为(-50.69±2.55)mV(n=8,P〈0.01),κ为5.49±0.72(n=8,P〈0.05)。结果提示,SVHRP能抑制电压依赖性钠电流,改变钠通道的动力学特性,抑制其激活,促进其失活,从而影响神经元的兴奋性,这可能是其抗癫痫的机制之一。  相似文献   

8.
In a newly established model of unilateral, irradiation (IR)-induced injury we compared the outcome after IR to the immature and juvenile brain, using rats at postnatal days 9 or 23, respectively. We demonstrate that (i) the immature brains contained more progenitors in the subventricular zone (SVZ) and subgranular zone (SGZ) compared with the juvenile brains; (ii) cellular injury, as judged by activation of caspase 3 and p53, as well as nitrotyrosine formation, was more pronounced in the SVZ and SGZ in the immature brains 6 h after IR; (iii) the number of progenitor and immature cells in the SVZ and SGZ decreased 6 h and 7 days post-IR, corresponding to acute and subacute effects in humans, respectively, these effects were more pronounced in immature brains; (iv) myelination was impaired after IR at both ages, and much more pronounced after IR to immature brains; (v) the IR-induced changes remained significant for at least 10 weeks, corresponding to late effects in humans, and were most pronounced after IR to immature brains. It appears that IR induces both an acute loss of progenitors through apoptosis and a perturbed microenvironment incompatible with normal proliferation and differentiation, and that this is more pronounced in the immature brain.  相似文献   

9.
10.
Identification of neural stem and progenitor cells (NPCs) in vitro and in vivo is essential to the use of developmental and disease models of neurogenesis. The dog is a valuable large animal model for multiple neurodegenerative diseases and is more closely matched to humans than rodents with respect to brain organization and complexity. It is therefore important to determine whether immunohistochemical markers associated with NPCs in humans and rodents are also appropriate for the dog. The NPC markers CD15, CD133, nestin, GFAP and phosphacan (DSD-1) were evaluated in situ in the canine rostral telencephalon, hippocampal dentate gyrus, and cerebellum at different postnatal time-points. Positive staining results were interpreted in the context of region and cellular morphology. Our results showed that neurospheres and cells within the rostral subventricular zone (SVZ), dentate gyrus subgranular zone (SGZ), and white matter tracts of the cerebellum were immunopositive for CD15, nestin and GFAP. Neurospheres and the cerebellum were immunonegative for CD133, whereas CD133 staining was present in the postnatal rostral SVZ. Anti-phosphacan antibody staining delineated the neurogenic niches of the rostral lateral ventricle SVZ and the hippocampal SGZ. Positive staining for phosphacan was also noted in white matter tracts of the cerebellum and within the Purkinje layer. Our results showed that in the dog these markers were associated with regions shown to be neurogenic in rodents and primates.  相似文献   

11.
12.
Zhang XD  Guo ZF  Liu N  Roisen FJ 《生理学报》2000,52(3):193-198
在成熟神经系统中,嗅觉上皮(OE)很特殊,它能不断产生新的神经元。本文用细胞培养、组织化学和免疫细胞化学技术对成年小鼠的OE进行了研究。实验显示:双极细胞NF、NSE、MAP2、OMP和tau蛋白免疫染色为阳性,但keratin免疫染色为阴性,说明双极细胞是神经元。用不同浓度血清的培养基。离体培养成年小鼠的OE,观察碱性成纤维细胞生长因子(bFGF)和脑源神经营养因子(BDNF)对OE细胞数量和突  相似文献   

13.
Bone morphogenetic protein (BMP) and leukemia inhibitory factor (LIF) signaling both promote the differentiation of neural stem/progenitor cells into glial fibrillary acidic protein (GFAP) immunoreactive cells. This study compares the cellular and molecular characteristics, and the potentiality, of GFAP(+) cells generated by these different signaling pathways. Treatment of cultured embryonic subventricular zone (SVZ) progenitor cells with LIF generates GFAP(+) cells that have a bipolar/tripolar morphology, remain in cell cycle, contain progenitor cell markers and demonstrate self-renewal with enhanced neurogenesis - characteristics that are typical of adult SVZ and subgranular zone (SGZ) stem cells/astrocytes. By contrast, BMP-induced GFAP(+) cells are stellate, exit the cell cycle, and lack progenitor traits and self-renewal--characteristics that are typical of astrocytes in the non-neurogenic adult cortex. In vivo, transgenic overexpression of BMP4 increases the number of GFAP(+) astrocytes but depletes the GFAP(+) progenitor cell pool, whereas transgenic inhibition of BMP signaling increases the size of the GFAP(+) progenitor cell pool but reduces the overall numbers of astrocytes. We conclude that LIF and BMP signaling generate different astrocytic cell types, and propose that these cells are, respectively, adult progenitor cells and mature astrocytes.  相似文献   

14.
Degeneration of neural retina causes vision impairment and can lead to blindness. Neural stem and progenitor cells might be used as a tool directed to regenerative medicine of the retina. Here, we describe a novel platform for cell phenotype-specific drug discovery and screening of proneurogenic factors, able to boost differentiation of neural retinal progenitor cells. By using single cell calcium imaging (SCCI) and a rational-based stimulation protocol, a diversity of cells emerging from differentiated retinal neurosphere cultures were identified. Exposure of retinal progenitor cultures to KCl or to α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) stimulated Ca2+ transients in microtubule-associated protein 2 (MAP-2) positive neurons. Doublecortin (DCX) and polysialated neural cell adhesion molecule (PSA-NCAM) positive neuroblasts were distinguished from differentiated neurons on the basis of their response to muscimol. Ca2+ fluxes in glial fibrillary acidic protein (GFAP) or glutamine synthetase (GS) positive cells were induced by ATP. To validate the platform, neurospheres were treated with brain-derived neurotrophic factor (BDNF) (proneurogenic) or ciliary neurotrophic factor (CNTF) (gliogenic factor). BDNF increased the percentage of differentiated cells expressing Tuj-1 sensitive to KCl or AMPA and reduced the population of cells responding to muscimol. CNTF exposure resulted in a higher number of cells expressing GFAP responding to ATP. All together, our data may open new perspectives for cell type-specific discovery of drug targets and screening of novel proneurogenic factors to boost differentiation of neural retina cells to treat degenerative retinal diseases.  相似文献   

15.
For more than a decade, we have known that the human brain harbors progenitor cells capable of becoming mature neurons in the adult human brain. Since the original landmark article by Eriksson et al. in 1998 (Nat Med 4:1313-1317), there have been many studies investigating the effect that depression, epilepsy, Alzheimer's disease, Huntington's disease, and Parkinson's disease have on the germinal zones in the adult human brain. Of particular interest is the demonstration that there are far fewer progenitor cells in the hippocampal subgranular zone (SGZ) compared with the subventricular zone (SVZ) in the human brain. Furthermore, the quantity of progenitor cell proliferation in human neurodegenerative diseases differs from that of animal models of neurodegenerative diseases; there is minimal progenitor proliferation in the SGZ and extensive proliferation in the SVZ in the human. In this review, we will present the data from a range of human and rodent studies from which we can compare the amount of proliferation of cells in the SVZ and SGZ in different neurodegenerative diseases.  相似文献   

16.
17.
Lhx8, also named L3, is a recently identified member of the LIM homeobox gene family. Previously, we found acetylcholinesterase (AChE)-positive cells in fimbria?Cfornix (FF) transected rat hippocampal subgranular zone (SGZ). In the present study, we detected choline acetyltransferase (ChAT)-positive cholinergic cells in hippocampal SGZ after FF transaction, and these ChAT-positive cells were double labeled by Lhx8. Then we overexpressed Lhx8 during neural differentiation of hippocampal neural stem/progenitor cells on adherent conditions using lentivirus Lenti6.3-Lhx8. The result indicated that overexpression of Lhx8 did not affect the proportion of MAP2-positive neurons, but increased the proportion of ChAT-positive cells in vitro. These results suggested that FF-transected hippocampal niche promoted the ChAT/Lhx8-positive cholinergic neurons generation in rodent hippocampus, and Lhx8 was not associated with the MAP2-positive neurons differentiation on adherent conditions, but played a role in the specification of cholinergic neurons derived from hippocampal neural stem/progenitor cells in vitro.  相似文献   

18.
19.
A number of studies suggest that OLGs (oligodendrocytes), the myelinating cells of the central nervous system, are also a source of trophic molecules, such as neurotrophins that may influence survival of proximate neurons. What is less clear is how the release of these molecules may be regulated. The present study investigated the effects of BDNF (brain-derived neurotrophic factor) derived from cortical OLGs on proximate neurons, as well as regulatory mechanisms mediating BDNF release. Initial work determined that BDNF derived from cortical OLGs increased the numbers of VGLUT1 (vesicular glutamate transporter 1)-positive glutamatergic cortical neurons. Furthermore, glutamate acting through metabotropic, and not AMPA/kainate or NMDA (N-methyl-d-aspartate), receptors increased BDNF release. The PLC (phospholipase C) pathway is a key mediator of metabotropic actions to release BDNF in astrocytes and neurons. Treatment of OLGs with the PLC activator m-3M3FBS [N-(3-trifluoromethylphenyl)-2,4,6-trimethylbenzenesulfonamide] induced robust release of BDNF. Moreover, release elicited by the metabotropic receptor agonist ACPD [trans-(1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid] was inhibited by the PLC antagonist U73122, the IP3 (inositol triphosphate 3) receptor inhibitor 2-APB (2-aminoethoxydiphenylborane) and the intracellular calcium chelator BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid tetrakis(acetoxymethyl ester)]. Taken together, these results suggest that OLG lineage cells release BDNF, a molecule trophic for proximate neurons. BDNF release is regulated by glutamate acting through mGluRs (metabotropic glutamate receptors) and the PLC pathway. Thus glutamate and BDNF may be molecules that support neuron–OLG interactions in the cortex.  相似文献   

20.
Huntington's disease (HD) is caused by an expansion of CAG repeats in the HTT gene, leading to expression of mutant huntingtin (mHTT) and selective striatal neuronal loss, frequently associated with mitochondrial dysfunction and decreased support of brain-derived neurotrophic factor (BDNF). New neurons derived from the subventricular zone (SVZ) are apparently not able to rescue HD pathological features. Thus, we analyzed proliferation, migration and differentiation of adult SVZ-derived neural stem/progenitor cells (NSPC) from mild (6 month-old (mo)) and late (10 mo) symptomatic HD YAC128 mice expressing full-length (FL)-mHTT versus age-matched wild-type (WT) mice. SVZ cells derived from 6 mo YAC128 mice exhibited higher migratory capacity and a higher number of MAP2 + and synaptophysin + cells, compared to WT cells; MAP2 labeling was enhanced after exposure to BDNF. However, BDNF-evoked neuronal differentiation was not observed in 10 mo YAC128 SVZ-derived cells. Interestingly, 6 mo YAC128 SVZ-derived cells showed increased intracellular Ca2+ levels in response to KCl, which was potentiated by BDNF, evidencing the presence of differentiated neurons. In contrast, KCl depolarization-induced intracellular Ca2+ increase in 10 mo YAC128 SVZ-derived cells was shown to be increased only in BDNF-treated YAC128 SVZ-derived cells, suggestive of decreased differentiation capacity. In addition, BDNF-untreated NSPC from 10 mo YAC128 mice exhibited lower mitochondrial membrane potential and increased mitochondrial Ca2+ accumulation, in relation with NSPC from 6 mo YAC128 mice. Data evidence age-dependent reduced migration and decreased acquisition of a neuronal phenotype, accompanied by decreased mitochondrial membrane potential in SVZ-derived cells from YAC128 mice through HD symptomatic phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号