首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one] DIMBOA was extracted with ethyl acetate from acidified water homogenates of corn (Zea mays L.) seedlings. Pure DIMBOA or ethyl acetate extracts of corn tissue were added to bacterial growth medium at five concentrations (measured as hydroxamates). DIMBOA and corn extracts were more inhibitory to soft rot bacteria (Erwinia spp.) that are nonpathogenic to corn than to soft rot bacteria that are corn pathogens. The inhibitory activity of DIMBOA was similar to that of the ethyl acetate extracts. Both corn extracts and DIMBOA prolonged the lag phase of bacterial growth without significantly changing log phase growth rates. At various concentrations of the inhibitor, 50 to 100% of the activity of corn extracts inhibitory to different bacterial isolates was attributable to DIMBOA. Extracts of DIMBOA-deficient plants (genotype bxbx) were not inhibitory to Erwinia spp. It was concluded that DIMBOA is the major active component in those corn extracts which are inhibitory to soft rot Erwinia species.  相似文献   

2.
Factors affecting the inhibitory activity of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) against Erwinia carotovora, a nonpathogen of Zea mays L., and against a maize pathovar of Erwinia chrysanthemi (ECZ) were examined. Most experiments were performed with DIMBOA dissolved in a bacterial growth medium containing 10 g/liter of sucrose, inorganic salts, and 1 g/liter of casamino acids at pH 6.75. When temperature and pH were held constant, inhibition of E. carotovora varied linearly with the logarithm of the initial cell population. By altering temperatures, assays with constant pH and initial cell populations were performed under conditions of varying DIMBOA stability. When E. carotovora was grown at 24, 28, 32, and 36 C in the presence of 0.1 to 0.5 mm DIMBOA, the inhibition of bacterial growth was maintained long after DIMBOA had decomposed in the medium to levels which, if added initially, would not have been inhibitory. When assays were performed at pH 5.5, the pH of aqueous maize extracts, E. carotovora was more inhibited than at pH 6.75; however, ECZ was substantially less inhibited at the lower pH.  相似文献   

3.
Liquid phase extraction (LPE) and vapor phase extraction (VPE) methodologies were used to evaluate the impact of the plant activator, cis-jasmone, on the secondary metabolism of wheat, Triticum aestivum, var. Solstice. LPE allowed the measurement of benzoxazinoids, i.e. 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA) and 6-methoxy-benzoxazolin-2-one (MBOA), and phenolic acids such as trans-p-coumaric acid, syringic acid, p-hydroxybenzoic acid, vanillic acid and cis- and trans-ferulic acid. Using LPE, a significantly higher level of DIMBOA was found in aerial parts and roots of T. aestivum following treatment with cis-jasmone, when compared with untreated plants. Similar results were obtained for phenolic acids, such as trans-ferulic acid and vanillic acid in roots. Using VPE, it was possible to measure levels of 2-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (HBOA), benzoxazolin-2(3H)-one (BOA), ferulic acid, syringic acid and coumaric acid. The levels of HBOA in aerial parts and roots were significantly greater in cis-jasmone treated plants compared to untreated plants. cis-Jasmone is known to be a plant activator in terms of production of defence-related volatile semiochemicals that repel aphids and increase the foraging activity of aphid parasitoids. These results show, for the first time, that cis-jasmone also induces selective production of secondary metabolites that are capable of directly reducing development of pests, diseases and weeds.  相似文献   

4.
Hydroxamic acid content was analyzed in the root tissue of four maize, Zea mays L., lines using high-performance liquid chromatography (HPLC) and related to western corn rootworm, Diabrotica virgifera virgifera LeConte, larval development and survivorship. Maize lines evaluated included Mp710 (PI 596627), MpSWCB-4, (PI 550498), Sc213 (PI 548792), and Dk580 (DeKalb commercial hybrid). Maize plants from each line were grown in test tubes containing a transparent agarose gel medium in a growth chamber. After 8 d of growth, root tissue of each line was harvested and hydroxamic acid content analyzed using HPLC. Three hydroxamic acids, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), 6-methoxybenzoxazolinone (MBOA), and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), were identified in the maize roots tested. DIMBOA concentration was quantified and ranged from 246.37 +/- 70.53 micrograms to 91.84 +/- 49.82 micrograms DIMBOA per gram of root tissue. No significant difference was found among lines in D. v. virgifera larval development and survivorship.  相似文献   

5.
Bailey BA  Larson RL 《Plant physiology》1989,90(3):1071-1076
Hydroxamic acids occur in several forms in maize (Zea mays L.) with 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) being the predominant form and others including 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) being found at lower concentrations. Two enzymes capable of glucosylating hydroxamic acids were identified in maize protein extracts and partially purified and characterized. The total enzyme activity per seedling increased during the first 4 days of germination and was concurrent with the accumulation of DIMBOA. Purification of the enzymes by ammonium sulfate precipitation followed by Sephadex G-200 and Q-Sepharose gel chromatography resulted in a 13-fold increase in specific activity. The enzymes are initially separated into two peaks (peak 1 and peak 2) of activity by Q-Sepharose gel chromatography. The peak 1 glucosyltransferase had 3.6% of the DIMBOA glucosylating activity when DIBOA was used as substrate, whereas this percentage increased to 57% for the peak 2 enzyme. The enzyme in peak 2 has a Km of 174 micromolar for DIMBOA and a Km of 638 micromolar for DIBOA; the enzyme in peak 1 has a Km of 217 micromolar for DIMBOA and its activity on DIBOA was too low to determine a Km. The identification of two glucosyltransferases capable of glucosylating hydroxamic acids in vitro serves as an initial step in the characterization of the enzymes involved in production of hydroxamic acids in maize.  相似文献   

6.
Summary A method is described for detecting plant metabolites capable of inducing the virulence genes of Agrobacterium tumefaciens. The method uses A. tumefaciens containing a plasmid with an inducible virulence gene fused to a galactosidase gene (virE::lacZ). Thin layer chromatography plates are overlayed with agar containing the indicator bacterium and a chromogenic galactoside (X-gal). Virulence gene inducing plant metabolites induce galactosidase which releases an aglycone readily oxidized by air to a blue pigmented zone at the Rf of the inducer. The method has been used to demonstrate the presence of virulence gene inducers in corn, wheat and rye. The uninduced background level of galactosidase also permits detection of bacterial growth inhibitors after a longer incubation period.Abbreviations X-gal 5-Bromo-4-chloro-3-indoxyl ß-D-galactopyranoside - TLC Thin Layer Chromatography - AS Acetosyringone - DIMBOA 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one - MBOA 6-Methoxy-2(3H)-benzoxazolone - T-DNA Transfer DNA - Ti Plasmid Tumor-inducing Plasmid  相似文献   

7.
Germination of barley seeds was inhibited by 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA) at concentrations greater than 0.03mmol/L, and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) and benzoxazolin-2(3H)-one (BOA) at concentrations greater than 0.1mmol/L. These benzoxazinoids also inhibited the induction of alpha-amylase activity in the barley seeds, and inhibited gibberellin-induced alpha-amylase activity in de-embryonated barley seeds. Significant inhibition in the germination and alpha-amylase induction were observed as concentrations of DIMBOA, DIBOA, MBOA and BOA increased. These results suggest that DIMBOA, DIBOA, MBOA and BOA may inhibit the germination of barley seeds by inhibiting the gibberellin-induced process, leading to alpha-amylase production. The inhibitory activities of germination and alpha-amylase induction of DIMBOA and DIBOA were greater than those of their degraded substances MBOA and BOA, respectively, and the inhibitory activities of DIMBOA and MBOA were greater than those of their demethoxylated analogues DIBOA and BOA, respectively.  相似文献   

8.
A cyclic hydroxamate, 2,4-dihydroxy-7-methoxy-2H- 1,4-benzoxazin-3(4H)-one (DIMBOA), was isolated and identified from shoots of 6-day-old corn seedlings grown in the dark. From 100 g of plant tissue 100 mg of DIMBOA were isolated. This hydroxamate was very effective in catalysing the hydrolysis of the pyrimidinyl organophosphate insecticide, diazinon (O, O-diethyl- O-[6- methyl-2-(1-methylethyl)-4-pyrimidinyl] phosphorothioate) to 6- methyl-2-(1-methylethyl)-4-hydroxypyrimidine and diethyl phosphorothioic acid. The optimum pH for hydrolytic activity was 5 and at pH values equal to or higher than the pKa of the hydroxamic group (6.95) most of the activity was lost.  相似文献   

9.
A gas-liquid chromatographic (GLC) procedure is reported for the quantitation of the trimethylsilyl (TMS) derivatives of substituted 2-hydroxy-2H-1,4-benzoxazin-3(4H)-ones (2-hydroxy-2H-1,4-benzoxazin-3(4H)-one[HBOA]; 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one[HMBOA];2,4- dihydroxy-2H-1,4-benzoxazin-3(4H)-one[DIBOA]; 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one[DIMBOA]; and 2,4-dihydroxy-7,8-dimethoxy-2H-1,4-benzoxazin-3(4H)-one[DIM 2BOA]) found in maize (Zea mays L.) extracts. Derivatized samples were chromatographed on columns with liquid phases of 2% DC-11 and 3% OV-17 and detected by flame ionization. Internal standards were methyl palmitate and methyl stearate on DC-11 and methyl behenate on OV-17. Detector response was linear to at least 5 nanomoles for TMS2-HBOA and TMS2-DIBOA and to 19 nanomoles for TMS2-DIMBOA. Standard errors of 2% or less were obtained when four replicate samples were analyzed. For each of the 15 maize lines examined, the amount of DIMBOA determined by GLC was directly proportional to the amount of ferric chloride-reactive material determined colorimetrically.  相似文献   

10.
The thermodynamics of formation for DIMBOA-Cu(II) complexes (where DIMBOA = 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-4H-one, a hydroxamic acid from maize) has been investigated in aqueous solutions by a potentiometric method. DIMBOA forms 1:1 and 1:2 chelates with Cu(II) at ionic strength 0.05 M (NaCl04). The stability constants measured were about 105 and 104 for the 1:1 and 1:2 complexes respectively, determined at 10, 20 and 30°. The contribution of ΔH and ΔS to the stability of complexes is examined and the pK values are compared with other ligands found in maize. Although DIMBOA has similar or higher constants to form copper complexes than other plant ligands, its possible role as a transport agent in maize remains to be established.  相似文献   

11.
Gas-liquid chromatography-mass spectrometry (GLC-MS) has been used for the separation, detection, and identification of 1,4-benzoxazin-3-ones (hydroxamic acids and lactams) and benzoxazolinones found in maize (Zea mays L.) extracts. Compounds of interest were partitioned into ethyl acetate from aqueous maize seedling extracts. For analysis by GLC-MS, trimethylsilyl derivatives were prepared, chromatographed on a column of 3% OV-1, and detected in the mass spectrometer. Mass spectra were obtained for all peaks present in extracts of four maize lines. A data comparison system was developed for relating unidentified spectra to the spectra of the reference compounds. Based on spectral comparisons, three hydroxamic acids (2,4-dihydroxy-2H-1, 4-benzoxazin-3(4H)-one; 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one; and 2,4-dihydroxy-7,8-dimethoxy-2H-1,4-benzoxazin-3(4H)-one), three lactams (2-hydroxy-2H-1,4-benzoxazin-3(4H)-one; 2,7-dihydroxy-2H-1,4-benzoxazin-3(4H)-one; and 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), one benzoxazolinone (6-methoxybenzoxazolinone), and two organic acids (malic and aconitic) were identified in the extracts. In addition, one other hydroxamic acid and one other related compound were tentatively identified based on mass spectral evidence.  相似文献   

12.
The preformed antimicrobial compounds produced by maize, 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one and its desmethoxy derivative 2,4-dihydroxy-2H-1,4-benzoxazin-3-one, are highly reactive benzoxazinoids that quickly degrade to the antimicrobials 6-methoxy-2-benzoxazolinone (MBOA) and 2-benzoxazolinone (BOA), respectively. Fusarium verticillioides (= F. moniliforme) is highly tolerant to MBOA and BOA and can actively transform these compounds to nontoxic metabolites. Eleven of 29 Fusarium species had some level of tolerance to MBOA and BOA; the most tolerant, in decreasing order, were F. verticillioides, F. subglutinans, F. cerealis (= F. crookwellense), and F. graminearum. The difference in tolerance among species was due to their ability to detoxify the antimicrobials. The limited number of species having tolerance suggested the potential utility of these compounds as biologically active agents for inclusion within a semiselective isolation medium. By replacing the pentachloronitrobenzene in Nash-Snyder medium with 1.0 mg of BOA per ml, we developed a medium that resulted in superior frequencies of isolation of F. verticillioides from corn while effectively suppressing competing fungi. Since the BOA medium provided consistent, quantitative results with reduced in vitro and taxonomic efforts, it should prove useful for surveys of F. verticillioides infection in field samples.  相似文献   

13.
Larvae of the Asian corn borer Ostrinia furnacalis (Guenée) must cope with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), a major toxic allelochemical present in its host plant, maize Zea mays L. UDP-glucosyltransferase (UGT), which conjugates glucose to various lipophilic toxic compounds and thereby makes them more hydrophilic for easier excretion, has been suggested to be involved in the detoxification of DIMBOA in several insects. Our previous in vitro assays using O. furnacalis midgut homogenates demonstrated that DIMBOA was catabolized only when UDP-glucose, a glucose donor for UGT activity, was included in the reaction mixture; however, DIMBOA glucoside, the expected product of UGT activity, was only detected in trace amounts in assay products. The present study revealed that DIMBOA glucoside was produced, but was immediately degraded by unidentified enzymes in the midgut homogenate that do not require UDP-glucose for their activities, suggesting the presence of a novel route for DIMBOA catabolism in O. furnacalis.  相似文献   

14.

Background

Intercropping systems could increase crop diversity and avoid vulnerability to biotic stresses. Most studies have shown that intercropping can provide relief to crops against wind-dispersed pathogens. However, there was limited data on how the practice of intercropping help crops against soil-borne Phytophthora disease.

Principal Findings

Compared to pepper monoculture, a large scale intercropping study of maize grown between pepper rows reduced disease levels of the soil-borne pepper Phytophthora blight. These reduced disease levels of Phytophthora in the intercropping system were correlated with the ability of maize plants to form a “root wall” that restricted the movement of Phytophthora capsici across rows. Experimentally, it was found that maize roots attracted the zoospores of P. capsici and then inhibited their growth. When maize plants were grown in close proximity to each other, the roots produced and secreted larger quantities of 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and 6-methoxy-2-benzoxazolinone (MBOA). Furthermore, MBOA, benzothiazole (BZO), and 2-(methylthio)-benzothiazole (MBZO) were identified in root exudates of maize and showed antimicrobial activity against P. capsici.

Conclusions

Maize could form a “root wall” to restrict the spread of P. capsici across rows in maize and pepper intercropping systems. Antimicrobe compounds secreted by maize root were one of the factors that resulted in the inhibition of P. capsici. These results provide new insights into plant-plant-microbe mechanisms involved in intercropping systems.  相似文献   

15.
Hydroxamates (HX) are major secondary metabolites synthesized by rye and are responsible for some of the unique properties of this cereal, including good tolerance of biotic and abiotic stresses and allelopathy. Recently, five genes encoding enzymes taking part in HX biosynthesis have been sequenced and characterized, which was the starting point to undertake the present study. Association analysis of the content of six HX–HBOA (2-hydroxy-1,4-benzoxazin-3-one), GDIBOA (2,4-dihydroxy-1,4-benzoxazin-3(4H)-one glucoside), DIBOA (2,4-dihydroxy-1,4-benzoxazin-3(4H)-one), GDIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3(4H)-one glucoside), DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3(4H)-one) and MBOA (6-methoxy-benzoxazolin-2(3H)-one) in the above-ground parts of plants and roots was performed on a population consisting of 102 and 121 diverse inbred lines, in 2013 and 2014, respectively. Altogether, 48 single nucleotide polymorphisms (SNPs) were found to be associated with the content of at least one HX: 20 SNPs were associated with HX synthesized in the above-ground parts of rye plants (AG-SNP), and 28 were associated with HX synthesized in the roots (R-SNP). The highest number of SNPs was present in genes ScBx1 (9) and ScBx5 (11). The majority of SNPs were affected by environmental factors, except for two: ScBx4_1702 associated with GDIBOA and MBOA contents, and ScBx5_1105 associated with HBOA content in roots.  相似文献   

16.
The ability of phytopathogenic fungi to overcome the chemical defense barriers of their host plants is of great importance for fungal pathogenicity. We studied the role of cyclic hydroxamic acids and their related benzoxazolinones in plant interactions with pathogenic fungi. We identified species-dependent differences in the abilities of Gaeumannomyces graminis var. tritici, Gaeumannomyces graminis var. graminis, Gaeumannomyces graminis var. avenae, and Fusarium culmorum to detoxify these allelochemicals of gramineous plants. The G. graminis var. graminis isolate degraded benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) more efficiently than did G. graminis var. tritici and G. graminis var. avenae. F. culmorum degraded BOA but not MBOA. N-(2-Hydroxyphenyl)-malonamic acid and N-(2-hydroxy-4-methoxyphenyl)-malonamic acid were the primary G. graminis var. graminis and G. graminis var. tritici metabolites of BOA and MBOA, respectively, as well as of the related cyclic hydroxamic acids. 2-Amino-3H-phenoxazin-3-one was identified as an additional G. graminis var. tritici metabolite of BOA. No metabolite accumulation was detected for G. graminis var. avenae and F. culmorum by high-pressure liquid chromatography. The mycelial growth of the pathogenic fungi was inhibited more by BOA and MBOA than by their related fungal metabolites. The tolerance of Gaeumannomyces spp. for benzoxazolinone compounds is correlated with their detoxification ability. The ability of Gaeumannomyces isolates to cause root rot symptoms in wheat (cultivars Rektor and Astron) parallels their potential to degrade wheat allelochemicals to nontoxic compounds.  相似文献   

17.
Contents of the hydroxamic acids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA), and 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in leaves and roots of 14 cultivars of rye, Secale cereale L., were determined. Dynamics of accumulation in three cultivars were evaluated. DIBOA was the main cyclic hydroxamic acid in leaves but the contents differed significantly between the cultivars. Both DIBOA and DIMBOA were present in the roots. Maximum concentration of DIBOA in leaves and DIMBOA in roots was reached between 48-54 h and 54-72 h after germination, respectively. Antifeedant activity of DIBOA towards the aphid Rhopalosiphum padi and the feeding behavior were studied by electronic recording in barley leaves treated with different contents of DIBOA. The deleterious activity of DIBOA could arise by starvation and/or a toxic effect. Additionally, allelopathic potential of pure DIBOA and aqueous extracts of leaves and roots of rye (Tetra-Baer) on the germination of lettuce (Lactuca sativa) and rye (Tetra-Baer) seeds was evaluated. A high percentage of germination inhibition of pure DIBOA and the extracts of leaves and roots was observed. The activity is in agreement with the contents of hydroxamic acids in the plants. The substrates had no allelopathic effect on rye seeds.  相似文献   

18.
19.
Two hydroxamic acids isolated from maize extracts, 2,4-dihydroxy-7-methoxy-1,4-(2H)-benzoxazin-3(4H)-one (DIMBOA) and the 2-O-beta-d-glucopyranoside of DIMBOA, inhibit photophosphorylation by spinach chloroplasts. Both cyclic and noncyclic photophosphorylations were inhibited to the same extent. The concentrations producing 50% inhibition for DIMBOA and its glucoside were about 1 and 4 millimolar, respectively. These compounds inhibit coupled electron transport but do not affect basal or uncoupled electron transport. Both acids inhibit the ATPase activities of membrane-bound coupling factor 1 (CF(1)) and of purified CF(1). On the basis of these results, it is concluded that DIMBOA and its glucoside act as energy transfer inhibitors of photophosphorylation.  相似文献   

20.
The role of 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA), on feeding of Asian corn borer (ACB), Ostrinia furnacalis (Guenée), was observed and quantified. DIMBOA had an antifeedant effect on ACB and a mathematical model was built for the correlation between DIMBOA concentration and antifeedant index. DIMBOA increased the time that the larvae required to reach the pupal stage and the larval weights in treatment were significantly less than those in control. The number of entrances of ACB on the plant sites were positively correlative to the DIMBOA concentrations, suggesting that feeding stimulants in the corn plants could probably override the antifeedant effect of DIMBOA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号