首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ekesi S 《Mycopathologia》1999,148(3):131-139
The virulence of 8 isolates of entomopathogenic hyphomycetes against adult and 5th instar nymph of Clavigralla tomentosicollis was evaluated in the laboratory at 4 different concentrations of inoculum. At all concentrations, Beauveria bassiana CPD 9 and Metarhizium anisopliae CPD 5 caused the highest mortality in adult bug ranging from 58 to 97% and 53 to 100%, respectively at 7 days post inoculation. The same isolates had the shortest LT50 (3.5 and 4.1 days, respectively) and the lowest LC50 (1.8 × 105 and 9.8 × 104 conidia ml-1 values in adult insects. In nymphs, M. anisopliae CPD 5 was the most virulent isolate causing mortality of between 43 to 92% with the shortest LT50 of 2.7 days and the lowest LC50of 4.6 × 105 conidia ml-1 which however did not differ significant from LC50 observed in B. bassiana CPD 9 isolate at 5 days post inoculation. A significant reduction in feeding in both developmental stages treated with fungi was observed at 2 days after treatment with the greatest reduction occurring in insects treated with B. bassiana CPD 9 and M. anisoplia CPD 5. In adult insects treated with these isolates, some bugs ceased feeding 24 h before death. When these two isolates were compared in caged experiment with an untreated control using a susceptible, tolerant and moderately resistant variety of cowpea, percentage pod and seed damage were significantly lower in fungal treated cages than in the control cages on all varieties tested. Grain yield per plant was also significantly higher in fungal treated cages than in the control cages on all varieties. The performance of M. anisopliae CPD 5 was however superior to B. bassiana CPD 9. Application of the fungi on moderately resistant variety of cowpea was found to enhance the performance of the pathogen. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
《Journal of Asia》2019,22(1):208-214
Ectropisgrisescens Warren (Lepidoptera: Geometridae) is one of the most severe defoliating pests of tea plants. Synthetic pesticides have been widely applied to control this pest in tea plantations, but pesticide residues may decrease the quality and safety of tea products. In the present study, we hypothesized that soil treatment with the two commercial biopesticides (Shuiguxin®) based on Metarhizium anisopliae (Metchnikoff) Sorokin and Beauveria bassiana (Balsamo) could reduce the survivorship and fitness of E. grisescens. Wandering larvae of E. grisescens were allowed to pupate in soil treated with each biopesticide, and the concentrations of M. anisopliae (Shuiguxin®) and B. bassiana (Shuiguxin®) that produced the 50% mortality values (LC50) were 2.9 × 106 and 1.6 × 107 conidia/g soil, respectively. Artificial burying the pupae using soil treated with M. anisopliae (Shuiguxin®) and B. bassiana (Shuiguxin®) (1 × 108 or 1 × 109 conidia/g soil for both biopesticides) also significantly reduced emergence success of E. grisescens. In addition, choice tests showed that soil treated with the high concentration of M. anisopliae (Shuiguxin®) or B. bassiana (Shuiguxin®) had repellent effects on pupating E. grisescens. However, sublethal concentrations (LC25 and LC50) of both biopesticides did not significantly affect fecundity, fertility and longevity of post-emerged adults. Our study showed that soil treatment with the two commercial biopesticides caused direct mortality of pupating E. grisescens, but may not effectively suppress E. grisescens populations at sublethal concentrations. The realistic application of the fungal dosage in fields should be determined in future studies  相似文献   

3.
Aphids (Homoptera: Aphididae) are sap-sucking insect pests that feed on several plants of agronomical importance. Entomopathogenic fungi are valuable tools for potential aphid control. As part of a selection process, laboratory bioassays were carried with five different concentrations of Aspergillus clavatus (Desmazières), Aspergillus flavus (Link) and Metarhizium anisopliae ((Metschnikoff) Sorokin) spores against the pea aphid, Acyrthosiphon pisum (Harris). Aspergillus isolates induced higher mortalities than M. anisopliae, which is a well-known entomopathogen in the literature. Lethal concentrations (LC50 and LC90) were 1.23 × 103 and 1.34 × 107 spores/ml for A. flavus, 4.95 × 102 and 5.65 × 107 spores/ml for A. clavatus, and 3.67 × 103 and 9.71 × 107 spores/ml for M. anisopliae 5 days after treatment. Mycelia development and sporulation on adult cadavers were observed 48 h after incubation. The intrinsic growth rate of A. pisum decreased with increased spore concentration for all fungal strains, suggesting an increase in pathogen fitness related to a consumption of host resources. In conclusion, Aspergillus species could be useful in aphid control as pest control agents despite their saprophytic lifestyle. This is also to our knowledge the first report of A. clavatus and A. flavus strains pathogenic to aphids.  相似文献   

4.
Control of Anopheles albimanus, the main vector of malaria on the coast of the State of Chiapas, is based mainly on application of chemical insecticides, which has resulted in resistance to most registered insecticides. Strategies for biological control may provide sustainable alternatives. We report on the lethal effects of a native isolate of Gliocladium virens on An. albimanus larvae and adults, compared to that of strains of Beauveria bassiana and Metarhizium anisopliae. Conidial suspensions of G. virens, B. bassiana and M. anisopliae cultured on Sabouraud agar were tested in bioassays with An. albimanus larvae and adults. Mosquito larvae were more susceptible to all fungi, compared to adults. On early and late instar larvae, M. anisopliae showed the most pathogenic effect (LC50 of 1.4×105 conidia/mL in early instars; 1.1×105 conidia/mL in late instars), followed by G. virens (LC50 of 3.3×105 conidia/mL in early instars and 3.5×106 conidia/mL in late instars). Metarhizium anisopliae sensu lato and the native G. virens could be considered good choices for An. albimanus control in southern Mexico.  相似文献   

5.
The virulence of the DAT F-001 isolate ofMetarhizium anisopliae forAdoryphorus couloni was tested by exposing final instar larvae (L3) to concentrations of 101 to 107 spores/g in a sand-peat mix for up to 112 days at 20°±2°C. All concentrations were pathogenic to L3 larvae and survival was dependent on concentration and correlated with exposure time. The time to kill 50% of the treated larvae (LT50) ranged from 18.9 days (107 spores/g) to 82.7 days (101 spores/g). The effect of DAT F-001 on feeding by L3 larvae was determined by comparing the production and weight of frass pellets/larva/day of untreated control larvae with larvae rolled in sporulating cultures ofM. anisopliae DAT F-001 and DAT F-054 (low virulence). Exposure to, and infection byM. anisopliae DAT F-001 had minimal impact on larval feeding. L3 larvae continued to feed at the same rate as both untreated and DAT F-054 treated larvae virtually until they died.
Résumé La virulence deM. anisopliae DAT F-001 pourA. couloni a été analysée en exposant des larves L3 à des concentrations de 101 à 107 spores/g dans un mélange de sable et de tourbe pendant un maximum de 112 jours à une température de 20°±2°C. Toutes les concentrations sont pathogènes pour les larves L3; la survie dépendait de la concentration et est en corrélation avec le temps d'exposition. Les LT50 sont compris entre 18,9 jours (107 spores/g) et 82,7 jours (101 spores/g). L'effet de DAT F-001 sur l'alimentation des larves L3 a été évalué en comparant la production et le poids des fèces/larve/jour des larves non-traitées avec des larves roulées dans des cultures sporulées deM. anisopliae DAT F-001 et DAT F-054 (faible virulence). L'exposition àM. anisopliae DAT F-001 suivie de l'infection a peu d'effet sur l'alimentation des larves. Les larves L3 continuent à s'alimenter au même rythme que les larves non-traitées de DAT F-054, quasiment jusqu'à leur mort.
  相似文献   

6.
Considering the rapid transmission of the dengue virus, substantial efforts need to be conducted to ward-off the epidemics of dengue viruses. The control effort is depending on chemical insecticides and had aroused undesirable conflicts of insecticide resistance. Here, we study the entomopathogenic fungus, Metarhizium anisopliae as a promising new biological control agent for vector control. The pathogenicity effects of Metarhizium anisopliae against field and laboratory strains of Aedes albopictus and Aedes aegypti larvae were tested using the larvicidal bioassay technique. The results demonstrate that the treatments using M. anisopliae isolate MET-GRA4 were highly effective and able to kill 100% of both Ae. albopictus and Ae. aegypti mosquito larvae at a conidia concentration of 1 × 10?/ml within 7 days of the treatment period. The fungus displayed high larvicidal activity against laboratory and field strain of Ae. aegypti larvae with LC50 values (9.6 × 103/ml, 1.3 × 103/ml) and LC95 values (1.2 × 10?/ml, 5.5 × 105/ml) respectively. For Ae. albopictus, LC50 values for laboratory and field strains were (1.7 × 104/ml, 2.7 × 104/ml) and the LC95 values were (2.1 × 10?/ml, 7.0 × 105/ml) respectively. Interestingly, the susceptibility of field strain towards M. anisopliae was higher as compared to the laboratory strain Aedes larvae. In which, the causative agents of all the dead larvae were verified by the virulence of M. anisopliae and caused morphological deformities on larval body. The findings from this study identify this isolate could be an effective potential biocontrol agent for vector mosquitoes in Malaysia.  相似文献   

7.
Seven isolates of entomopathogenic fungi, Isaria fumosorosea (IFCF-H and IFCF-L), Beauveria bassiana s.l. (Bb02 and Bb04) and Metarhizium anisopliae s.l. (Ma01, SM076 and M09), were selected for their pathogenicity against Solenopsis invicta as well as feeding preference of S. invicta. When ants were treated with a conidial suspension at a concentration of 1 × 108 conidia/ml, the median lethal times (LT50) of IFCF-H, IFCF-L, Bb02, Bb04, Ma01, SM076 and M09 were 3.4, 162.6, 7.3, 2.8, 3.8, 7.3 and 2.7 days, respectively, after 10 days. The median lethal concentrations (LC50) on the 10th day after inoculation were 1.20 × 107, 1.56 × 1010, 4.23 × 107, 3.04 × 106, 6.13 × 106, 2.90 × 107 and 9.90 × 105 conidia/ml, respectively. Furthermore, S. invicta consumed significantly less solution flavoured with Bb04 conidia than the control, which was demonstrated by the lowest preference index (PREF = 0.09). S. invicta did not have a significant feeding preference for other fungal isolates. The pathogenicity (LC50) of fungal isolates was not significantly correlated (R2 = 0.013) with the PREF of S. invicta. However, in the paired-choice experiments between different virulent isolates belonging to the same genera, S. invicta tended to select the solution flavoured with conidia of relatively lower pathogenic isolates such as IFCF-L, Bb02 and SM076. We conclude that the pathogenicity of congeneric fungi may affect the feeding preference of S. invicta. Red imported fire ants might adjust their feeding response to entomopathogenic fungi based on the profile of microbial volatile organic compounds.  相似文献   

8.
Aims: Larval stages of Frankliniella occidentalis are known to be refractory to fungal infection compared with the adult stage. The objective of this study was to identify promising fungal isolate(s) for the control of larval stages of F. occidentalis. Methods and Results: Ten isolates of Metarhizium anisopliae and eight of Beauveria bassiana were screened for virulence against second‐instar larvae of F. occidentalis. Conidial production and genetic polymorphism were also investigated. Metarhizium anisopliae isolates ICIPE 7, ICIPE 20, ICIPE 69 and ICIPE 665 had the shortest LT50 values of 8·0–8·9 days. ICIPE 69, ICIPE 7 and ICIPE 20 had the lowest LC50 values of 1·1 × 107, 2·0 × 107 and 3·0 × 107 conidia ml?1, respectively. Metarhizium anisopliae isolate ICIPE 69 produced significantly more conidia than M. anisopliae isolates ICIPE 7 and ICIPE 20. Internally transcribed spacers sequences alignment showed differences in nucleotides composition, which can partly explain differences in virulence. Conclusion: These results coupled with the previous ones on virulence and field efficacy against other species of thrips make M. anisopliae isolate ICIPE 69 a good candidate. Significance and Impact of the Study: Metarhizium anisopliae isolate ICIPE 69 can be suggested for development as fungus‐based biopesticide for thrips management.  相似文献   

9.
The pathogenicity of four isolates each of the entomopathogenic fungi, Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok. to apterous adult Aphis craccivora Koch was evaluated in the laboratory at 4 concentrations of conidia. All fungi isolates tested were found to be pathogenic to the insect but their virulence varied among species and isolates within species. Three isolates, B. bassiana CPD 11 and M. anisopliae CPD 4 and 5 caused significantly higher mortality than the other isolates at the various concentrations tested causing mortality of between 58–91%, 64 to 93% and 66–100%, respectively, at 7 days post treatment. At the highest concentration of 1 × 108conidiaml‐1, these isolates produced the shortest LT50s of 3.5, 3.6 and 3.4 days, respectively. Their LC50s were 6.8 × 105, 3.1 × 105 and 2.7 × 105 conidia ml‐1, respectively. The results indicate that these isolates are promising candidates for the control of the cowpea aphid but their pathogenicity to various aphid non‐target beneficial organisms within the cowpea agroecosystem warrant further investigation before initiating field control.  相似文献   

10.
The pathogenicity and virulence of 10 isolates of entomopathogenic fungi from the soil of lodging pens of dairy production units in Aguascalientes, Mexico, on adults of Stomoxys calcitrans and Musca domestica were determined. All isolates were pathogenic when exposed by aspersion to a concentration of 1×108 conidia/ml, causing between 20.3 and 91.7% mortality in S. calcitrans and between 31 and 91.7% in M. domestica at 7 days post-exposure; in S. calcitrans isolates of Beauveria bassiana (Bb114) and Metarhizium anisopliae (Ma135), sensu lato, were the most noteworthy as mortality reached above 90% with an LC50 of 3.5×105 conidia/ml for Bb114, while for Ma135 reached 1.6×104 conidia/ml. In M. domestica Ma134 and Ma135 showed mortality above 90% with an LC50 of 4.3×104 and 1.4×105 conidia/ml, respectively.  相似文献   

11.
The effect of repeated conidial sub-culturing of Metarhizium anisopliae on its virulence against Helicoverpa armigera (Hübner) was studied. The LT50 observed against third instar larvae of H. armigera for the first sub-culture was 3.4 days; it increased to 4.5 and 5.6 days for the 20th and the 40th sub-cultures, respectively. The LT50 values after passage of the 40th sub-culture on H. armigera decreased to 4.4 and 3.7 days for the 40th (first in vivo) and the 40th (fifth in vivo) passages, respectively. Similarly, the LC50 of M. anisopliae towards third instar larvae of H. armigera increased from the first sub-culture (0.17×104) to (3.0×104) for the 40th conidial transfers on potato dextrose agar and again decreased to 0.74×104 and 0.23×104 in the 40th (first in vivo) and the 40th (fifth in vivo) passage, respectively. Similar trends for LC50 and LT50 values were seen when sugarcane woolly aphid, Ceratovacuna lanigera Zehntner was used as a host. Significant variation in appressorium formation and cuticle-degrading enzyme production such as chitinase, chitin deacetylase, chitosanase and protease during subsequent sub-culturing and passage through H. armigera was observed. Though there was no effect on internal transcribed spacer (ITS) sequence pattern, interestingly, in randomly amplified polymorphic DNA (RAPD), significant differences in the band intensities and in the banding pattern for different sub-cultures of M. anisopliae were observed. As stable virulence towards the insect pest is desirable for commercialisation of a mycoinsecticide, such changes in virulence due to repeated in vitro transfer need to be monitored and minimised.  相似文献   

12.
To evaluate the pathogenicity of Metarhizium anisopliae (Metschinkoff) Sorokin (Deuteromycotina: Hyphomycetes) a bioassay was designed under laboratory conditions against Rhyzopertha dominica F. (Coleoptera: Bostrychidae) on stored wheat. The fungus was applied at the dose rates of 8 × 103, 8 × 105, 8 × 107 and 8 × 109 conidia/kg of wheat and the bioassay was conducted at 25°C with 60% relative humidity. The data regarding the mortality was recorded after 7 and 14 days exposure intervals. All the treatments gave the significant mortality of R. dominica and M. anisopliae of 8 × 109 conidia/kg was found to be the most effective after a 14-day exposure interval. There was greater production of progeny when the low rate of M. anisopliae was applied to wheat. Overall, our study showed that M. anisopliae is vigorous when applied at a high dose rate which revealed an effective control of R. dominica and also played a pivotal role in the integrated pest management program (IPM) of stored wheat insect pests.  相似文献   

13.
The spore productivity and insecticidal activity of two opportunistic insect pathogenic Aspergillus species (namely: Aspergillus clavatus Desmazieres and Aspergillus flavus Link (Ascomycota: Eurotiales, Trichocomaceae)) were compared to Metarhizium anisopliae sensu lato (Metchnikoff) Sorokin (Ascomycota: Hypocreales, Clavicipitaceae) for mosquito (Diptera: Culicidae) control. The production of aerial spores on wheat bran and white rice was investigated in solid-, semi-solid-, and liquid-state media supplemented with a nutritive solution. Wheat bran-based media increased the spore yield in solid-state from three to sevenfold: A. clavatus produced 48.4?±?5.2 and 15.7?±?1.6?×?108 spores/g, A. flavus produced 22.3?±?4.1 and 3.1?±?2.5?×?108 spores/g, and M. anisopliae produced 39.6?±?6.5 and 13.1?±?2.6?×?108 spores/g of wheat bran or white rice, respectively. A. clavatus, A. flavus and M. anisopliae spores harvested from wheat bran-based solid-state media showed lethal concentrations (LC50) of 1.1, 1.8, and 1.3?×?108 spores/ml against Culex quinquefasciatus Say larvae in 72?h. Because A. clavatus and M. anisopliae displayed similar features when cultured under these conditions, our results suggest that insect pathogenic Aspergillus species may be as productive and virulent against mosquito larvae as a well-recognised entomopathogenic fungus.  相似文献   

14.
Asiatic citrus psylla, Diaphorina citri, Kuwayama (Hemiptera: Liviidae) is an economic pest of citrus groves and a vector of the bacterium, Candidatus Liberibacter spp., one of the causative agents of citrus greening. In order to estimate the infectivity of six different isolates of Beauveria bassiana, Metarhizium anisopliae and Isaria fumosorosea, fungal bioassay was performed on the adults of D. citri. Adults of D. citri were treated individually with 1 × 105, 1 × 106, 1 × 107, 1 × 108, 2 × 108 spores/mL fungal concentrations by the immersion method. Subsequent to fungal bioassay, treated D. citri were used to determine the levels of esterase and glutathione S‐transferases (GST) enzymes over a period of 3–7 days. The mortality results suggest that I. fumosorosea isolates (If‐02) caused 82.2% mortality on the seventh day of treatment. However, B. bassiana isolate (Bb‐08) with lowest LC50 (1.4 × 107 spores/mL) proved to be highest potential isolate against D. citri. Biochemical determination of esterase and GST activity assay showed significant differences in activities after infection of fungi. Significantly high activity of esterase was observed by Bb‐01 (27.0 unit per mg protein) on the seventh day, while Ma‐11.1 and If‐2.3 (16.9 and 36.3 unit per mg protein) on the third day post treatment. However, maximum GST's activity was showen by isolates Bb‐08,Ma‐M2 and If‐2.3 (37.6, 1.40 and 10.9 unit per mg protein) on the third day. The current investigation will help to explore the relations between the insect defense system and entomopathogenic fungi. Moreover, the determination of enzymatic activities will be useful for selecting the most pathogenic isolates.  相似文献   

15.
This study was performed to evaluate the effective concentration of the anaesthetic 2‐phenoxyethanol (2‐PE) on juvenile (1.3 ± 0.03 g) meagre (Argyrosomus regius, Asso, 1801) and establish the LC50 (through a series of exposure concentrations) and LT50 of 2‐PE at 20 ± 0.5°C, salinity 38 g × L?1, pH 8.2–8.4 and dissolved oxygen >7 mg × L?1. The induction time decreased and the recovery time increased with increasing concentrations. Conflicting results were found only in recovery time and there were no significant differences among the recovery times from all concentrations. The most suitable concentration of 2‐PE was 0.3 ml × L?1 for about or over 15 min exposure time. The LC50 and LT50 for the 3–60 min exposure periods were estimated for juvenile meagre. The toxic effect of 2‐PE on survival rates of A. regius juveniles increased depending on the exposure period. In addition, 2‐phenoxyethanol LT50 (median survival time) values, slope function (S) and lower and upper 95% confidence limits were estimated.  相似文献   

16.
Effectiveness of the entomopathogenic fungus Metarhizium anisopliae, for controlling nymphal Ixodes scapularis, was tested in laboratory and field trials. In the laboratory, M. anisopliae (Metschnikoff) Sorokin strain ESC1 was moderately pathogenic, with an LC50 of 107 spores/ml and induced 70% mortality at 109 spores/ml. In a field study, however, 109 spores/ml M. anisopliae did not effectively control questing I. scapularis nymphs, and significant differences were not detected in pre- and post-treatment densities. For nymphs collected and returned to the laboratory for observation, mortality was low in treatment groups, ranging from 20 to 36%. To assess whether a chemical acaricide would synergistically enhance pathogenicity of the fungus, we challenged unfed nymphal I. scapularis with combinations of M. anisopliae and permethrin, a relatively safe pyrethroid acaricide, in two separate bioassays. Significant interactions between M. anisopliae and permethrin were not observed, supporting neither synergism nor antagonism.  相似文献   

17.
Three Metarhizium anisopliae and three Beauveria bassiana isolates were cultivated in media containing casamino acids, soybean flour or sunflower seed flour and were shaken for three days. M. anisopliae presented similar yields of around 106 submerged spores/ml without significant differences among them, whereas B. bassiana produced yields of around 108 spores/ml, of which GHA strain produced more submerged spores in the casamino acids medium. The other two strains showed no significant difference in the production of submerged spores in the three media used. Differences in mortality on Aedes aegypti larvae were observed with the submerged spores of Metarhizium depending on isolate and medium used. M. anisopliae 2157 caused significantly higher mortality (40%) when cultivated in casamino acids medium. It presented an LC50 of 8.93 × 105 submerged spores/ml water against mosquito larvae five days after application, whereas it caused 27% mortality in Ae. aegypti adults 10 days after application. In conclusion, fungal nutrition affected virulence of some isolates of M. anisopliae against Ae. aegypti larvae while such an effect was not noted for B. bassiana isolates.  相似文献   

18.
Chagas disease is one of the most important insect-vectored diseases in Brazil. The entomopathogenic fungus Metarhizium anisopliae was evaluated against nymphs and adults of Panstrongylus megistus, Triatoma infestans, and T. sordida. Pathogenicity tests at saturated humidity demonstrated high susceptibility to fungal infection. The shortest estimates of 50% lethal time (LT50) for P. megistus varied from 4.6 (isolate E9) to 4.8 days (genetically modified strain 157p). For T. infestans, the shortest LT50 was 6.3 (E9) and 7.3 days (157p). For T. sordida, the shortest LT50 was 8.0 days (157p). The lethal concentration sufficient to kill 50% of T. infestans (LC50) was 1.9 × 107 conidia/ml for strain 157p. In three chicken coops that were sprayed with M. anisopliae, nymphs especially were well controlled, with a great population reduction of 38.5% after 17 days. Therefore M. anisopliae performed well, controlling Triatominae in both laboratory and field studies.  相似文献   

19.
【目的】测定金龟子绿僵菌(Metarhizium anisopliae)对斜纹夜蛾(Spodoptera litura) 2龄幼虫的毒力,研究金龟子绿僵菌侵染后寄主体内抗氧化酶活性和肠道内细菌群落的变化,探讨斜纹夜蛾对金龟子绿僵菌侵染的防御机制。【方法】采用浸渍法测定不同浓度金龟子绿僵菌对斜纹夜蛾2龄幼虫的毒力;应用IlluminaMiSeq高通量测序技术测定肠道细菌群落。【结果】不同浓度的孢悬液对斜纹夜蛾2龄幼虫均有一定的毒力,处理7 d时半致死浓度(LC_(50))为3.944 107个孢子/mL;浓度为1.0×10~9个孢子/mL时,半致死时间最短(LT_(50))为4.6 d,校正后的死亡率为81.03%。处理后未致死的斜纹夜蛾幼虫体内抗氧化酶活性显著高于对照组。处理后致死的斜纹夜蛾幼虫肠道细菌群落多样性显著高于对照组;且处理后致死的斜纹夜蛾幼虫肠道细菌群落组成与对照组差异显著。【结论】金龟子绿僵菌对斜纹夜蛾幼虫的致死率和致死效率与金龟子绿僵菌的浓度呈正相关;斜纹夜蛾幼虫体内的抗氧化酶可能在抵抗金龟子绿僵菌侵染的过程中起重要作用。金龟子绿僵菌的侵染会导致斜纹夜蛾幼虫肠道细菌群落多样性升高和组成发生变化,Enterococcus、Escherichia和Pseudomonas等属可能是影响斜纹夜蛾幼虫抵抗金龟子绿僵菌侵染致死的重要因素。  相似文献   

20.
In order to replace the conventional chemical pesticides, extensive researches have been done on entomopathogenic fungi. Entomopathogenic fungus Beauveria bassiana is an important biocontrol agent against major economic pests and is being employed in Integrated pest management (IPM) along with synthetic pesticides. Cabbage aphid Brevicoryne brassicae L. is one of the important pests of Brassicaceae family. Therefore, in this research, the virulence isolate of B. brassicae (IRAN 429C) was investigated on adults of cabbage aphid under laboratory conditions. The experiments were conducted at 25 ± 2 °C, 60 ± 10 R. H. and a photoperiod of 16:8 (L: D). After preliminary experiments, the adult aphids were treated with fungal concentrations of 1 × 103 to 1 × 107 spores/ml. Probit analysis was conducted to calculate LC50 and LC95 values for the isolate. Positive correlation was observed between concentrations and pest mortality. LC50 and LC95 values calculated for IRAN 429C isolate are 2.04 × 105 and 1.82 × 108, respectively. The mortality was counted one day after the treatment and then continued for 14 days. Cumulative mortality for 14 days after treatment varied from 54% for IRAN 429C at low concentration (103 conidia/ml) to 83% at high concentration (107 conidia/ml). The lowest LT50 was obtained at 7.67 days for IRAN 429C isolate at concentration 1 × 107 spore/ml. According to the insecticidal activity of mentioned fungi on cabbage aphid, it can be used in biocontrol programmes of B. brassicae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号