首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Summary Sclerotinia sclerotiorum (Lib.) D By. was grown in stationary liquid mineral-salts medium, pH 4.3, containing various carbon sources and the weight of mycelia and sclerotia was determined at regular intervals. When grown on various glucose concentrations (0–24 g of C/l), more sclerotia were produced at 8–12 g of C/l. Sclerotia were not usually formed in shake cultures. The ability of the fungus to use other carbon sources for growth and sclerotium formation was tested at 12 g of C/l in the stationary mineral-salts medium. The highest weights of mycelia and sclerotia occurred with raffinose, sucrose, maltose, lactose, d-mannose, d-glucose, d-fructose or l-arabinose. Good growth but decreased sclerotium production were found on cellobiose and d-xylose. Reduced or poor growth, a long lag period and few or no sclerotia occurred on trehalose, melibiose, l-sorbose, l-rhamnose, d-ribose, d-arabinose, l-xylose or 8 polyols. No growth was observed with erythritol or i-inositol. A combination of glucose plus trehalose or polyols resulted in increased growth and the formation of sclerotia. Organic acids supported little or no growth and no sclerotia were produced. Generally culture filtrates which supported growth and formation of sclerotia became acid (about pH 3.5). The pH of the culture filtrate usually increased slowly during the growth period when the fungus grew poorly and no sclerotia were formed. The alcoholsoluble sugars and polyols present in culture filtrates, mycelia and sclerotia were determined by paper and thin-layer chromatography. Regardless of the carbon source, mannitol was usually present in culture filtrates. The occurrence of other compounds in the filtrates depended on the carbon source. Trehalose, mannitol and usually small quantities of glucose or fructose were present in mycelia and sclerotia from all carbon sources. Galactitol or pentitols occurred in mycelia and sclerotia when the fungus grew on galactose and oligosaccharides containing galactose or the corresponding pentose, sugars. Acid hydrolyzates of the alcohol-insoluble fraction of mycelia or sclerotia contained glucose, smaller amounts of galactose and mannose and traces of ribose and rhamnose.  相似文献   

2.
Carbohydrate concentrations in the marginal hypothallus and areolae of the crustose lichen Rhizocarpon geographicum (L.) DC. were measured in north Wales, U.K. using gas chromatography. Ribitol, arabitol, and mannitol were the most abundant carbohydrates while α- glucose β-glucose, fructose, sucrose, and trehalose were present in smaller amounts. The concentrations of arabitol, ribitol, mannitol, fructose, and α-glucose were greater in the areolae while the concentration of trehalose was greater in the hypothallus. Concentrations of carbohydrates varied little between sample days. Concentrations of polyols in the hypothallus were not correlated with those in the areolae. These results suggest: 1) the hypothallus has a lower demand for carbohydrates than the areolae or there is limited transport from areolae to hypothallus, 2) increased trehalose in the non-lichenised hypothallus may be an adaptation to withstand stress and desiccation, and 3) polyols are partitioned differently in the hypothallus and areolae.  相似文献   

3.
Summary Dikaryotic cells of S. commune synthesized polyols throughout the life cycle when grown on glucose, cellobiose, or cellulose. Basidiospores contained arabitol and mannitol which were depleted during germination. The mannitol content of the young germlings rose to normal levels within a day; arabitol accumulation remained depressed for 5 to 7 days and then returned to normal levels characteristic of vegetative cells. Individual homokaryons differed in their production of intracellular polyols, which, unlike germlings, remained constant with cultural age. Homokaryon (str. 699) produced low levels of arabitol but high levels of glycerol while another homokaryon (str. 845) was the reverse. Mixtures of these homokaryons as well as the dikaryon (699×845) produced arabitol and glycerol levels intermediate between the parent homokaryons. High concentrations of glucose did not change the nature of the polyols produced. Arabitol formation could be induced prematurely in germlings or elevated in the dikaryon by growth on acetate or ethanol. Both homokaryons responded to growth on acetate with elevated arabitol production; acetate induction of arabitol formation was repressed in all types of cells if glucose were added simultaneously with acetate. Maltose, cellobiose, and trehalose also stimulated arabitol formation in young germlings, suggesting that glucose repression was the cause of decreased arabitol formation in basidiospore germlings. There was no correlation between the formation of arabitol and the derepression of isocitrate lyase or change in specific activities of alkaline and acid phosphatase in germlings grown on various carbon sources.  相似文献   

4.
The accumulation of low molecular weight sugars and polyols is one of major mechanisms hypothesized to increase cold tolerance in overwintering insects. But little is known about whether these sugars and polyols are involved in geographic variation of cold tolerance. In this study, we investigated accumulation patterns of eight low molecular weight sugars and polyols of eggs in tropical and temperate populations of the migratory locust, which exhibits between-population variation in cold tolerance, in response to cold acclimation (5, 0 and −5 °C). Excluding erythritol, the other seven carbohydrates were identified as possible cryoprotectants in locust eggs. Basal maximal and minimal concentrations were 45 μg/g wet weight for trehalose and 0.59 μg/g wet weight for glycerol. Most sugars and polyols were elevated after a −5 °C exposure. In a tropical population, fructose, glucose, sorbitol and myo-inositol were significantly accumulated by low temperature treatments, but glycerol was not. In the temperate population, glycerol, glucose, mannitol, sorbitol, myo-inositol were significantly accumulated but trehalose did not increase. Our results suggest different accumulation patterns of these carbohydrates of locust eggs between tropical and temperate populations and highlighted possible roles for them in geographic variation of cold tolerance in the migratory locust.  相似文献   

5.
Abstract Mannitol and trehalose were the predominant soluble carbohydrates in Euglena gracilis strain z growing heterotrophically in complete darkness or in light. The ratio of trehalose to mannitol was correlated with the water activity of the medium. That is, extracts of Euglena gracilis adapted to grow in media supplemented with either sodium chloride or glucose, thereby reducing the water activity, yielded molar ratios of trehalose to mannitol 10 times greater than extracts of cultures grown under conditions in common usage.  相似文献   

6.
The temporal depletion and accumulation of polyols were investigated in the fungus Geotrichum candidum. The major intracellular polyols were tentatively identified by paper chromatography as mannitol and arabitol. Inositol was also present in small quantities, and trehalose was also detected in appreciable concentrations.Germination and vegetative growth depended on the type and concentration of the sole exogenous carbon source. Mannitol occurred in arthrospores at 9.4% of the dry weight after several days growth in 2% (w/v) glucose solid medium, and became depleted during germination and vegetative growth in liquid medium containing 2% (w/v) glucose, 2% (w/v) sodium acetate or 25% (w/v) glucose as sole carbon source. This hexitol latter accumulated during arthrosporulation. The depletion and accumulation of ethanol-soluble carbohydrate believed to be primarily trehalose was temporally similar to that of mannitol. Arabitol accumulated intracellularly during germination and vegetative growth in sodium acetate medium and 25% glucose medium. This pentitol was not detected intracellularly at any culture age during growth in 2% glucose medium.Prolonged incubation of the culture in 25% glucose medium after stationary phase was reached resulted in the gradual disappearance of arabitol from the arthrospores simultaneously with an increase in intracellular mannitol. In comparison, ethanol-soluble carbohydrate did not change with prolonged incubation in this medium.  相似文献   

7.
In this study, the collapse temperature was determined using the freeze‐drying microscopy (FDM) method for a variety of cell culture medium‐based solutions (with 0.05–0.8 M trehalose) that are important for long‐term stabilization of living cells in the dry state at ambient temperature (lyopreservation) by freeze‐drying. Being consistent with what has been reported in the literature, the collapse temperature of binary water‐trehalose solutions was found to be similar to the glass transition temperature (Tg ~ ?30°C) of the maximally freeze‐concentrated trehalose solution (~80 wt% trehalose) during the freezing step of freeze‐drying, regardless of the initial concentration of trehalose. However, the effect of the initial trehalose concentration on the collapse temperature of the cell culture medium‐based trehalose solutions was identified to be much more significant, particularly when the trehalose concentration is less than 0.2 M (the collapse temperature can be as low as ?65°C). We also determined that cell density from 1 to 10 million cells/mL and ice seeding at high subzero temperatures (?4 and ?7°C) have negligible impact on the solution collapse temperature. However, ice seeding does significantly affect the ice crystal morphology formed during the freezing step and therefore the drying rate. Finally, bulking agents (mannitol) could significantly affect the collapse temperature only when trehalose concentration is low (<0.2 M). However, improving the collapse temperature by using a high concentration of trehalose might be preferred to the addition of bulking agents in the solutions for freeze‐drying of living cells. We further confirmed the applicability of the collapse temperature measured with small‐scale (2 µL) samples using the FDM system to freeze‐drying of large‐scale (1 mL) samples using scanning electron microscopy (SEM) data. Taken together, the results reported in this study should provide useful guidance to the development of optimal freeze‐drying protocols for lyopreservation of living cells at ambient temperature for easy maintenance and convenient wide distribution to end users, which is important to the eventual success of modern cell‐based medicine. Biotechnol. Bioeng. 2010;106: 247–259. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
13C nuclear magnetic resonance spectroscopy has been used to follow the utilization of glucose for the synthesis of carbohydrates in the ectomycorrhizal ascomycete Cenococcum graniforme. The fate of 13C label was analyzed in vivo and in mycelial extracts. The major carbohydrates produced from [1-13C]glucose and [6-13C]glucose were mannitol and trehalose. Mannitol was mainly synthesized via a direct route from glucose. Scrambling of the 13C label was observed to occur in trehalose during glycolysis. From the analysis of the scrambling patterns, it is concluded that the mannitol cycle was operative and that a large part of the carbon of glucose was used to form trehalose after cycling through the mannitol pool. The activities of NAD-mannitol-l-P dehydrogenase (EC 1.1.1.17) and NADP-mannitol dehydrogenase (EC 1.1.1.138), which participate in the mannitol cycle relative to the activity of glycolytic enzymes, provide evidence that the cycle is important for NADPH production.  相似文献   

9.
Yeast (Y) and hyphal (H) cells of Mucor rouxii and Candida albicans were cultivated in liquid media containing different carbon nutrient sources (glucose, fructose, ribose), and their free acyclic polyol and trehalose contents determined using capillary gas liquid chromatography (TMS- and OAc-derivatization). Irrespective of growth form and C-source, the fraction of the water-soluble neutral components of the cellular mass of the cultures — highly homogeneous with regard to the respective cell form produced — contained glycerol, ribitol and arabitol, in addition to trehalose. The polyols contributed 0.5–2% to the biomass of M. rouxii and 1.5–6% to that of C. albicans; the values for trehalose ranged from 0.2–11% in the former and 1–3.5% in the latter species. Mucor contained higher amounts of ribitol and arabitol in H cells and larger quantities of trehalose and glycerol in Y cells. In Candida, too, hyphae always exhibited higher ribitol contents, whereas arabitol attained higher levels in yeasts under almost any conditions — regardless of the type of medium (synthetic vs. complex), stage of culture (early vs. late log-phase) and strain used. Glycerol concentration was not correlated with the growth form; trehalose contents tended to be higher in Y cells. Taking into account the facts that C. albicans and certain Mucor species are agents of opportunistic infections and are invasive mainly in the filamentous form, and that the prospective hosts do not accumulate either of these carbohydrates, the possibility is considered of using trehalose- and polyol-metabolizing enzymes as targets for designing antifungal drugs.  相似文献   

10.
食用菌子实体通常会在生长过程中积累较高含量的糖醇及海藻糖,这些碳水化合物的积累能够促进食用菌的生长,而在灵芝中的同类研究较少,本研究通过高效阴离子-脉冲安培法对沪农灵芝一号子实体发育过程中不同部位的糖类成分的含量变化进行分析,发现灵芝子实体中主要的可溶性糖类成分是阿拉伯糖醇、甘露醇和海藻糖,甘露醇在子实体成熟时的菌盖中的含量达到最高值,阿拉伯糖醇在产孢子期的子实体中含量较高,两种糖醇的含量呈现相反的变化趋势,一种糖醇积累的同时会消耗利用另一种糖醇,而海藻糖在灵芝子实体的整个生长过程中含量处于较低水平,仅在子实体初期的菌基部位检测到较高的含量;同时通过qRT-PCR技术检测灵芝子实体不同部位中这几种糖类的主要代谢酶基因的表达变化,发现这些代谢酶在子实体的菌基部位的表达水平相对其他部位较高,且随着子实体生长这一差异更加显著,这一结果表明灵芝中的糖醇和海藻糖分布差异可能是先由菌基的菌丝体中合成产物并转运到子实体不同部位,再经过一段时间的积累和代谢之后产生。  相似文献   

11.
The growth and conidial physiology of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus were studied under different conditions. The effects of culture age (up to 120 days), temperature (5 to 35(deg)C), and pH (2.9 to 11.1) were determined. Growth was optimal at pH 5 to 8 for each isolate and between 20 and 35(deg)C, depending on the isolate. The predominant polyol in conidia was mannitol, with up to 39, 134, and 61 mg g of conidia(sup-1) for B. bassiana, M. anisopliae, and P. farinosus, respectively. Conidia of M. anisopliae contained relatively small amounts of lower-molecular-weight polyols and trehalose (less than 25 mg g(sup-1) in total) in all treatments. Conidia of B. bassiana and P. farinosus contained up to 30, 32, and 25 mg of glycerol, erythritol, and trehalose, respectively, g(sup-1), depending on the treatment. Conidia of P. farinosus contained unusually high amounts of glycerol and erythritol at pH 2.9. The apparent effect of pH on gene expression is discussed in relation to the induction of a water stress response. To our knowledge, this is the first report of polyols and trehalose in fungal propagules produced over a range of temperature or pH. Some conditions and harvesting times were associated with an apparent inhibition of synthesis or accumulation of polyols and trehalose. This shows that culture age and environmental conditions affect the physiological quality of inoculum and can thereby determine its potential for biocontrol.  相似文献   

12.
When fed to starved adults of Anthonomus grandis, several pentoses and hexoses were metabolized to the corresponding polyols (sugar alcohols). Xylitol, galactitol, arabitol, ribitol, rhamnitol, mannitol, and sorbitol were metabolites of d-xylose, d-galactose and lactose, d-arabinose, d-ribose, l-rhamnose, d-mannose, and d-glucose and d-fructose, respectively. l-Sorbose was not metabolized to a polyol. Large quantities of xylitol and galactitol and intermediate amounts of arabitol, ribitol, and rhamnitol accumulated while only small amounts or traces of mannitol and sorbitol were detected. The limited accumulation of sorbitol in the glucose- and fructose-fed weevils probably was caused by the rapid metabolism of sorbitol to glucose, fructose, trehalose, and glycogen. Each of the ingested sugars, the corresponding polyols, and trehalose were present in the weevil haemolymph. Most of the polyols had never before been detected as metabolites in an insect.  相似文献   

13.
To explore possible role of intracellular trehalose accumulation in fungal tolerance to summer-like thermal stress, 3-day colonies of Beauveria bassiana grown on a glucose-free medium at 25°C were separately exposed to 35, 37.5 and 40°C for 1–18 h, respectively. Trehalose accumulation in stressed mycelia increased from initial 4.2 to 88.3, 74.7 and 65.5 mg g−1 biomass after 6-h stress at 35, 37.5 and 40°C, respectively, while intracellular mannitol level generally declined with higher temperatures and longer stress time. The stress-enhanced trehalose level was significantly correlated to decreased trehalase activity (r 2 = 0.73) and mannitol content (r 2 = 0.38), which was inversely correlated to the activity of mannitol dehydrogenase (r 2 = 0.41) or mannitol 1-phosphate dehydrogenase (r 2 = 0.30) under the stresses. All stressed cultures were successfully recovered at 25°C but their vigor depended on stressful temperature, time length and the interaction of both (r 2 = 0.98). The highest level of 6-h trehalose accumulation at 35°C was found enhancing the tolerance of the stressed cultures to the greater stress of 48°C. The results suggest that the trehalose accumulation result partially from metabolized mannitol and contribute to the fungal thermotolerance. Trehalase also contributed to the thermotolerance by hydrolyzing accumulated trehalose under the conditions of thermal stress and recovery.  相似文献   

14.
In industrial production of enzymes using the filamentous fungus Aspergillus niger supply of sufficient oxygen is often a limitation, resulting in the formation of by‐products such as polyols. In order to identify the mechanisms behind formation of the different by‐products we studied the effect of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations. Indeed, at these conditions, a decrease in the mitochondrial respiratory chain activity leads to an accumulation of NADH and to a decreased ATP production which uncouples catabolism and anabolism, influences the intracellular pH and leads to production and excretion of organic acids. Moreover, mannitol is being produced in order to ensure reoxidation of NADH, and this is the main cellular response to balance the ratio NADH/NAD at low oxygen availability. Mannitol production is also coupled to low specific growth rate, which suggests a control of carbon catabolite repression on the mannitol pathway. The roles of two other polyols, erythritol and glycerol, were also investigated. Both compounds are known to accumulate intracellularly, at high osmotic pressure, in order to restore the osmotic balance, but we show that the efficiency of this system is affected by a leakage of polyols through the membrane. Biotechnol. Bioeng. Biotechnol. Bioeng. 2009;103: 956–965. © 2009 Wiley Periodicals, Inc.  相似文献   

15.
S. Türkel 《Microbiology》2006,75(6):639-643
Trehalose and glycogen accumulate in certain yeast species when they are exposed to unfavorable growth conditions. Accumulations of these reserve carbohydrates in yeasts provide resistance to stress conditions. The results of this study indicate that certain Pichia species do not accumulate high levels of glycogen and trehalose under normal growth conditions. However, depending on the Pichia species, both saccharides accumulate at high levels when the Pichia cells are exposed to unfavorable or stress-inducing growth conditions. Growth in glycerol or methanol medium mostly led to trehalose accumulation in Pichia species tested in this study. It was shown that the metabolic pathways for glycogen and trehalose biosynthesis are present in Pichia species. However, it appears that the biosynthesis of trehalose and glycogen may be regulated in different manners in Pichia species than in the yeast S. cerevisiae. Published in Russian in Mikrobiologiya, 2006, Vol. 75, No. 6, pp. 737–741. The text was submitted by the author in English.  相似文献   

16.
The fungus Claviceps purpurea was grown on a rich and a limited nutrient medium such that alkaloid was produced after 8 days on the former medium and after 3 days on the latter medium. Cultures grown on both were assayed for the primary shunt metabolic products, polyols, trehalose, lipids, ribonucleic acid, and polyphosphate, and the secondary metabolic product, ergot alkaloid. Although differing considerably in composition, the two media nevertheless allowed formation of both primary and secondary shunt products. In both instances, however, the secondary product, ergot alkaloid, did not form until formation and accumulation of the primary products had ceased and the mycelial content of these products was actually decreasing. In both instances, alkaloid formation took place after the total dry weight of the mycelium had begun to decrease but while the dry weight of the residual, or structural portion of the mycelium, was either constant or increasing. The dilution of labeling in mannitol isolated from mycelia grown on rich medium containing 1,6-C14-labeled mannitol was 2.2. Thus, about half of the mycelial mannitol was actually mannitol which had been taken up directly from the medium.  相似文献   

17.
Cellulomonas flavigena strain KU (ATCC 53703) is a cellulolytic, Gram-positive bacterium which produces large quantities of an insoluble exopolysaccharide (EPS) when grown in minimal media with a high carbon-to-nitrogen (C/N) ratio. Earlier studies proved the EPS is structurally identical to the linear β-1,3-glucan known as curdlan and provided evidence that the EPS functions as a carbon and energy reserve compound. We now report that C. flavigena KU also accumulates two intracellular, glucose-storage carbohydrates under conditions of carbon and energy excess. These carbohydrates were partially purified and identified as the disaccharide trehalose and a glycogen/amylopectin-type polysaccharide. A novel method is described for the sequential fractionation and quantitative determination of all three carbohydrates from culture samples. This fractionation protocol was used to examine the effects of C/N ratio and osmolarity on the accumulation of cellular carbohydrates in batch culture. Increasing the C/N of the growth medium caused a significant accumulation of curdlan and glycogen but had a relatively minor effect on accumulation of trehalose. In contrast, trehalose levels increased in response to increasing osmolarity, while curdlan levels declined and glycogen levels were generally unaffected. During starvation for an exogenous source of carbon and energy, only curdlan and glycogen showed substantial degradation within the first 24 h. These results support the conclusion that extracellular curdlan and intracellular glycogen can both serve as short-term reserve compounds for C. flavigena KU and that trehalose appears to accumulate as a compatible solute in response to osmotic stress.  相似文献   

18.
Jobic C  Boisson AM  Gout E  Rascle C  Fèvre M  Cotton P  Bligny R 《Planta》2007,226(1):251-265
Interactions between the necrotrophic fungus Sclerotinia sclerotiorum and one of its hosts, Helianthus annuus L., were analyzed during fungal colonization of plant tissues. Metabolomic analysis, based on 13C- and 31P-NMR spectroscopy, was used to draw up the profiles of soluble metabolites of the two partners before interaction, and to trace the fate of metabolites specific of each partner during colonization. In sunflower cotyledons, the main soluble carbohydrates were glucose, fructose, sucrose and glutamate. In S. sclerotiorum extracts, glucose, trehalose and mannitol were the predominant soluble carbon stores. During infection, a decline in sugars and amino acids was observed in the plant and fungus total content. Sucrose and fructose, initially present almost exclusively in plant, were reduced by 85%. We used a biochemical approach to correlate the disappearance of sucrose with the expression and the activity of fungal invertase. The expression of two hexose transporters, Sshxt1 and Sshxt2, was enhanced during infection. A database search for hexose transporters homologues in the S. sclerotiorum genome revealed a multigenic sugar transport system. Furthermore, the composition of the pool of reserve sugars and polyols during infection was investigated. Whereas mannitol was produced in vitro and accumulated in planta, glycerol was exclusively produced in infected tissues and increased during colonization. The hypothesis that the induction of glycerol synthesis in S. sclerotiorum exerts a positive effect on osmotic protection of fungal cells and favors fungal growth in plant tissues is discussed. Taken together, our data revealed the importance of carbon–nutrient exchanges during the necrotrophic pathogenesis of S. sclerotiorum.  相似文献   

19.
《Experimental mycology》1991,15(3):279-282
The metabolism of glucose in resting cells ofCandida albicans was studied by13C NMR spectrometry using13C-labeled glucose. Under aeration, the formation of ethanol, glycerol, arabitol, mannitol, and trehalose was observed. The addition of inhibitors of the respiratory chain or the omission of aeration resulted in a total loss of formation of those polyols and trehalose, with ethanol being the only detectable product. Thus, respiration seems to favor the production of polyols including glycerol, as well as that of trehalose. With regard to glycerol, this finding is in contrast with the previous observation inSaccharomyces cerevisiae that oxygenation represses its production.  相似文献   

20.
The bacterial gene mtlD, which encodes mannitol 1-phosphate dehydrogenase (E. C. 1. 1. 1. 17), was transformed into Arabidopsis thaliana and expressed under control of the CaMV 35S promoter. MtlD-transformants accumulated mannitol, a sugar alcohol that is not normally found in Arabidopsis. Amounts of soluble carbohydrates, sucrose, glucose, fructose, myo-inositol and mannitol were determined in different tissues of wild-type and transgenic plants. We estimated that less than 1& of the carbon assimilated was converted into mannitol by the transgenic plants. The establishment of individual transformed lines (after self-crossing three times) resulted in high and low mannitol-producing lines which were stably maintained. The presence of mannitol did not alter plant appearance or growth habit. When MtlD-expressing seeds and control seeds (T3 generation) were imbibed with solutions containing NaCl (range 0 to 400 mol m?3), transgenic seeds containing mannitol germinated in medium supplemented with up to 400 mol m?3 NaCl, while control seeds ceased germination at 100 mol m?3 NaCl. It is doubtful whether the ability to germinate in high salt was a result of an osmotic effect exerted by elevated levels of mannitol, considering that mannitol concentrations were in the mol m?3 range in seeds. A specific effect of polyols, for example on the integrity of subcellular membranes or enzymes, cannot be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号