首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 722 毫秒
1.
Culture conditions which lead to the intracellular accumulation of arabitol and mannitol in Geotrichum candidum were investigated. The accumulation of arabitol was dependent on the concentrations of metabolizable hexoses, the non-metabolizable disaccharide sucrose, NaCl and KCl in the growth medium. In media containing 2% (w/v) glucose, fructose or l-sorbose cultures contained only mannitol after 48 h or 72 h growth. In media containing 10% (w/v) to 30% (w/v) glucose, or 25% (w/v) fructose or l-sorbose there was an increase in the total concentration of intracellular polyol due to the accumulation of arabitol. This pentitol was also found to accumulate intracellularly when the organism was grown in medium containing 34% (w/v) sucrose, 0.7 M NaCl or 0.7 M KCl in addition to 2% (w/v) glucose. Under the conditions tested no change in the accumulation of mannitol or ethanol-soluble carbohydrate, believed to be primarily composed of trehalose, was evident.Intracellular polyol was released during incubation of arthrospores obtained from media containing 25% or 10% glucose, in distilled water at 25° C, but no polyol was released under these conditions from arthrospores obtained from growth in 2% glucose medium.  相似文献   

2.
Summary Dikaryotic cells of S. commune synthesized polyols throughout the life cycle when grown on glucose, cellobiose, or cellulose. Basidiospores contained arabitol and mannitol which were depleted during germination. The mannitol content of the young germlings rose to normal levels within a day; arabitol accumulation remained depressed for 5 to 7 days and then returned to normal levels characteristic of vegetative cells. Individual homokaryons differed in their production of intracellular polyols, which, unlike germlings, remained constant with cultural age. Homokaryon (str. 699) produced low levels of arabitol but high levels of glycerol while another homokaryon (str. 845) was the reverse. Mixtures of these homokaryons as well as the dikaryon (699×845) produced arabitol and glycerol levels intermediate between the parent homokaryons. High concentrations of glucose did not change the nature of the polyols produced. Arabitol formation could be induced prematurely in germlings or elevated in the dikaryon by growth on acetate or ethanol. Both homokaryons responded to growth on acetate with elevated arabitol production; acetate induction of arabitol formation was repressed in all types of cells if glucose were added simultaneously with acetate. Maltose, cellobiose, and trehalose also stimulated arabitol formation in young germlings, suggesting that glucose repression was the cause of decreased arabitol formation in basidiospore germlings. There was no correlation between the formation of arabitol and the derepression of isocitrate lyase or change in specific activities of alkaline and acid phosphatase in germlings grown on various carbon sources.  相似文献   

3.
Summary Intracellular arabitol and mannitol accumulation is under nutritional and temporal control during arthrospore germination, vegetative growth, and arthrospore formation in Geotrichum. Arabitol is not produced if the glucose concentration in the medium is low. Arabitol is produced in large quantities in the cells if the carbon source is acetate or if the glucose level is above 10%. Low levels of glucose do not repress acetate induction of arabitol formation. Arabitol began to accumulate during spore swelling and vegetative growth in the presence of acetate. Mannitol appeared to serve as a carbon and energy reserve during starvation and arthrospore germination; the concentration of mannitol in vegetative cells remained barely detectable until sporulation commenced.This research was supported by National Science Foundation Grant GB-8327 and Public Health Service Grant Al-04603-09 to D.J.N.  相似文献   

4.
The entomopathogenic fungus Beauveria bassiana was grown in 1% (wt/vol) gelatin-liquid media singly supplemented with a monosaccharide (glucose or fructose), a disaccharide (maltose or trehalose), a polyol (glycerol, mannitol, or sorbitol), or the amino sugar N-acetyl-d-glucosamine. The relative contributions of the carbohydrate, protein, and water contents in the fungal biomass were determined. Carbohydrates composed 18 to 42% of the mycelial dry weight, and this value was lowest in unsupplemented medium and highest in medium supplemented with glucose, glycerol, or trehalose. Biomass production was highest in liquid cultures supplemented with trehalose. When liquid cultures were grown in medium supplemented with 0 to 1% (wt/vol) glucose, trehalose, or N-acetyl-d-glucosamine, there was an increase in the biomass production and the contribution of carbohydrate to mycelial dry weight. Regardless of the glucose concentration in the culture, water content of the mycelia remained about 77.5% (wt/wt). Mycelial storage carbohydrates were determined by capillary gas chromatography. In gelatin-liquid medium supplemented with 1% (wt/vol) glucose, B. bassiana stored glycogen (12.0%, wt/dry wt) and the polyols mannitol (2.2%), erythritol (1.6%), glycerol (0.4%), and arabitol (0.1%). Without glucose, B. bassiana stored glycogen (5.4%), mannitol (0.8%), glycerol (0.6%), and erythritol (0.6%) but not arabitol. To our knowledge, this is the first report of carbohydrate storage in an entomopathogenic fungus, and the results are discussed in relation to other fungi and the potential implications to commercial formulation and insect-fungus interactions.  相似文献   

5.
The biocontrol agent Candida sake was cultured on either an unmodified molasses-based medium (water activity, a(w) 0.996) or on water stressed media produced by the addition of glycerol, glucose, NaCl, sorbitol, or proline to 0.98, and 0.96 a(w) for 24, 48, and 72 h, to study their impact on subsequent cell viability, and on concentrations of endogenous sugars (trehalose and glucose) and polyols (glycerol, erythritol, arabitol, and mannitol). The viability of cells of different ages cultured on these media was evaluated on NYDA medium with freely available water (a(w) 0.995), and on medium modified with polyethylene glycol to a(w) 0.95. Regardless of solute used, viable counts of cells grown on molasses-based medium (a(w) 0.98) were equal to or higher than those obtained from the medium with water freely available. The amino acid proline stimulated growth at 10% concentration. In contrast, water stress induced by addition of NaCl, glucose, or sorbitol at a(w) 0.96 caused a significant reduction in viable counts. Older cultures were more resistant to water stress. Glycerol and arabitol were the main solutes accumulated by C. sake cells in response to lowered a(w). Intracellular concentration of these polyols depended more on the solute used to adjust the a(w) than on the a(w) itself. Candida sake was more resistant to water stress with higher intracellular concentration of glycerol and erythritol.  相似文献   

6.
AIM: To evaluate the effect of modifications of water activity (aw 0. 996-0.92) of a molasses medium with different solutes (glycerol, glucose, NaCl, proline or sorbitol) on growth, intracellular water potentials (psi(c)) and endogenous accumulation of polyols/sugars in the biocontrol yeast Candida sake. METHODS AND RESULTS: Modification of solute stress significantly influenced growth, psi(c) and accumulation of sugars (glucose/trehalose) and polyols (glycerol, erythritol, arabitol and mannitol) in the yeast cells. Regardless of the solute used to modify aw, growth was always decreased as water stress increased. Candida sake cells grew better in glycerol- and proline-amended media, but were sensitive to NaCl. The psi(c) measured using psychrometry showed a significant effect of solutes, aw and time. Cells from the 0.96 aw NaCl treatment presented the lowest psic value (- 5.20 MPa) while cells from unmodified media (aw = 0. 996) had the highest value (- 0.30 MPa). In unmodified medium, glycerol was the predominant reserve accumulated. Glycerol and arabitol were the major compounds accumulated in media modified with glucose or NaCl. In proline media, the concentration of arabitol increased. In glycerol- and sorbitol-amended media, the concentration of glycerol rose. Some correlations were obtained between compatible solutes and psi(c). CONCLUSIONS AND SIGNIFICANCE: This study demonstrates that subtle changes in physiological parameters significantly affect the endogenous contents of C. sake cells. It may be possible to utilize such physiological information to develop biocontrol inocula with improved quality.  相似文献   

7.
Electron microscopic features and biochemical events were outlined in basidiospore germination of Schizophyllum commune. Normal ultrastructural changes included prominent vacuolization and more abundant endoplasmic reticulum. A lag phase in outgrowth included depletion of cellular reserves of trehalose, mannitol, and arabitol and subsequent increases in ribonucleic acid and protein. Depletion of polyols required exogenous carbon and nitrogen sources and was arrested by protein synthesis antagonists. Outgrowth subsequent to the lag period was accompanied by increased glycogen deposition and alkali-soluble glucan production.  相似文献   

8.
When fed to starved adults of Anthonomus grandis, several pentoses and hexoses were metabolized to the corresponding polyols (sugar alcohols). Xylitol, galactitol, arabitol, ribitol, rhamnitol, mannitol, and sorbitol were metabolites of d-xylose, d-galactose and lactose, d-arabinose, d-ribose, l-rhamnose, d-mannose, and d-glucose and d-fructose, respectively. l-Sorbose was not metabolized to a polyol. Large quantities of xylitol and galactitol and intermediate amounts of arabitol, ribitol, and rhamnitol accumulated while only small amounts or traces of mannitol and sorbitol were detected. The limited accumulation of sorbitol in the glucose- and fructose-fed weevils probably was caused by the rapid metabolism of sorbitol to glucose, fructose, trehalose, and glycogen. Each of the ingested sugars, the corresponding polyols, and trehalose were present in the weevil haemolymph. Most of the polyols had never before been detected as metabolites in an insect.  相似文献   

9.
Summary Uptake and respiration of radioactive glucose, mannitol and arabitol were studied during basidiospore germination of the woodrotting mushroomSchizophyllum commune. Glucose uptake was rapid and immediate, depressed at 4° C and unaffected by the protein synthesis antagonist cycloheximide. In contrast, uptake of either mannitol or arabitol exhibited a lag phase while the induction of this process was sensitive to cycloheximide. Prior incubation of basidiospores in unlabelled mannitol induced uptake processes for either labelled mannitol or arabitol. Respiratory rates for either arabitol or mannitol increased markedly upon germination in glucose-asparagine minimal culture medium.This research was supported by Public Health Service Grant AI-04603-09 to Donald J. Niederpruem.  相似文献   

10.
Aureobasidium pullulans produced extracellularly considerable amounts of polyols in the media with sucrose, glucose, fructose and mannose as sole carbon source during the late exponential and stationary phase of growth. The maximum yield of polyol was about 23% in the 20%(w/v) sucrose medium, of which mannitol was the main polyol associated with minute quantities of glycerol. Stress solutes such as NaCl and KCl did not promote polyol production.  相似文献   

11.
Sugars and sugar alcohols present in extracts of the wood-rotting mushroom Schizophyllum commune were identified by paper chromatography during fruiting, basidiospore germination, and growth of vegetative mycelium. Homokaryotic fruitbodies and dikaryotic fruits derived from several compatible matings of S. commune contained mannitol and arabitol. Basidiospores shed from dikaryotic fruits also contained mannitol and arabitol while the latter disappeared during spore germination. Vegetative mycelium (strain 699) contained glucose, fructose, mannitol and glycerol while these compounds as well as arabitol occurred in mycelium of strain 845. Polyols are not, therefore, associated exclusively with the sporulation process in S. commune.  相似文献   

12.
Carbohydrate concentrations in the marginal hypothallus and areolae of the crustose lichen Rhizocarpon geographicum (L.) DC. were measured in north Wales, U.K. using gas chromatography. Ribitol, arabitol, and mannitol were the most abundant carbohydrates while α- glucose β-glucose, fructose, sucrose, and trehalose were present in smaller amounts. The concentrations of arabitol, ribitol, mannitol, fructose, and α-glucose were greater in the areolae while the concentration of trehalose was greater in the hypothallus. Concentrations of carbohydrates varied little between sample days. Concentrations of polyols in the hypothallus were not correlated with those in the areolae. These results suggest: 1) the hypothallus has a lower demand for carbohydrates than the areolae or there is limited transport from areolae to hypothallus, 2) increased trehalose in the non-lichenised hypothallus may be an adaptation to withstand stress and desiccation, and 3) polyols are partitioned differently in the hypothallus and areolae.  相似文献   

13.
AIMS: The effect of osmotic and matric potential stress on growth and sugar alcohols (polyols: glycerol, erythritol, arabitol and mannitol) and sugars (trehalose and glucose) accumulation in toxigenic and nontoxigenic colonies of Aspergillus flavus and A. parasiticus was evaluated. METHODS AND RESULTS: Growth of Aspergillus section Flavi with significant reductions at 20 and 30 degrees C was more sensitive to changes in matric potential, between 60 and 100% in the range of -7 to -14 MPa. No significant differences were found between toxigenic and nontoxigenic strains for both species. Total polyol accumulation in unamended maize meal agar medium (-0.75 MPa water potential) was higher at 30 than 20 degrees C. The major change in concentrations of endogenous sugars and total polyols was in matrically amended medium (with PEG 8000) at -7 and -10 MPa. Accumulation of glucose, arabitol, mannitol and erythritol content of A. flavus and A. parasiticus mycelial colonies was greater in normal unstressed maize meal agar medium (-0.75 Mpa) at 20 degrees C. This was modified by solute and matric stress. CONCLUSIONS: The data showed relative sensitivity to osmotic and matric potential, and temperature, and the impact on growth rates, polyol and sugar accumulation in mycelia of A. flavus and A. parasiticus. SIGNIFICANCE AND IMPACT OF THE STUDY: The matric potential effects on growth may be of particular importance for growth and survival in environments with low-matric potential stress. The tolerance of spoilage fungi such as Aspergillus section Flavi to such modifications could increase the potential for spoilage and mycotoxin production in such substrates. This knowledge is important for understanding the relative ecological fitness of these aflatoxigenic species and in the development of prevention strategies for their control.  相似文献   

14.
Using high-resolution 13C nuclear magnetic resonance, we examined the mobilization of endogenous trehalose in suspensions of yeast asci. Sporulation of yeast cells in [1-13C]acetate resulted in incorporation of label into the C-3 and C-4 positions of trehalose within the asci. During germination of these asci with [1-13C]glucose, the consumption of both endogenous trehalose and exogenous glucose were followed simultaneously by 13C nuclear magnetic resonance, as was the formation of glycerol and ethanol, their glycolytic and products. Time courses for carbohydrate consumption indicated that trehalose, although it decreased to 25% of its initial value upon germination, was not preferentially catabolized and did not provide the primary energy supply for germination with glucose. The ratio of trehalose to glucose catabolized was 0.09. Exogenous glucose levels appeared to regulate trehalose mobilization since trehalose was only consumed when sufficiently high levels (more than 2 mM) of glucose were present. Upon glucose depletion newly synthesized [1-13C]trehalose was observed. Nuclear magnetic resonance spectra of extracts confirmed the trehalose peak assignments and showed products of [1-13C]glucose catabolism. In addition by quantitating trehalose consumption and 2-deoxyglucose incorporation in dormant yeast asci, we found that 3.8 +/- 0.l4 molecules of 2-deoxyglucose were incorporated for each trehalose molecule consumed. Trehalose can therefore function as a carbohydrate source for ATP formation during dormancy.  相似文献   

15.
Summary The yeastZygosaccharomyces rouxii ATCC 12572 was selected for its ability to produce appreciable levels of ethanol and of various polyols from concentrated glucose media (20 %, w/v).Z. rouxii was shown to yield large quantities of glycerol and of the mixture arabitol + mannitol. Good agitation combined with appropriate aeration (1 vvm) allowedZ. rouxii to utilize glucose readily leading to high polyol production. Depending on the fermentation conditions used,Z. rouxii ATCC 12572 will give either ethanol or various polyols as main fermentation product(s).  相似文献   

16.
Glycerol, arabitol and trehalose were the principle solutes detected in cellular extracts of Hansenula anomala, using natural-abundance 13C nuclear magnetic resonance spectroscopy. Only the two polyols accumulated in response to increased salinity, glycerol increase being far greater. Arabitol content also increased with culture age, independently of the presence or absence of salt and in line with the evolution of trehalose content. Glycerol retention potential was 15 times greater for Hansenula than for Saccharomyces cerevisiae. The former displayed the specific property of increasing this capacity in high salt concentrations. Under such conditions its growth was associated with a limited increase in glucose consumption per unit biomass, relative to S. cerevisiae, the salt-sensitive reference yeast. In addition, a polysaccharide, the chemical nature of which was not further characterized, was detected exclusively in the external medium of Hansenula growing in the presence of salt.  相似文献   

17.
Growth on a medium containing succinic acid as the sole carbon source produced 1 g (dry weight) of mycelium per liter of medium by 50 days of incubation, whereas 25 g of mycelium was produced in 10 days when glucose was also present in the medium. Primary shunt metabolism took place during growth on succinic acid in spite of the extremely slow growth. Mycelia grown on succinic acid contained a higher percentage of residual mycelium and phosphate, but a lower percentage of mannitol, carbohydrate, lipid, and water-soluble nitrogen, than mycelia grown on a mixture of glucose and succinic acid. Thus, although primary shunt metabolism is favored by rapid growth on a rich, balanced sugar medium, it can also take place during extremely restricted growth in a medium containing succinic acid as the sole carbon source.  相似文献   

18.
Summary The kinetics, nutritional requirements and inhibitor properties of basidiospore germination in the wood-rotting mushroom Schizophyllum commune were investigated. Measurements of changes in absorbancy and dry weight showed a lag period of approximately 15–20 hrs, followed by an abrupt increase in the rate of both processes. Individual basidiospore elongation also showed a lag phase and population changes were heterogenous in this regard.Carbohydrates active for basidiospore germination were grouped into four categories. Those sugars active between 15 and 20 hrs included glycogen, turanose, cellobiose, maltose, sucrose, glucose, fructose, mannose, galactose and xylose. Several sugar alcohols were only active between 30 and 60 hrs incubation and these included mannitol, sorbitol, ribitol, xylitol, arabitol, erythritol and glycerol. A third category of carbohydrates active for germination required prolonged incubation between 30 hrs and 7 days and included lactose, sorbose, raffinose, melezitose, trehalose, ribose and melibiose. Compounds without activity after 7 days included galactitol, inositol, acetate, succinate, gluconate, citrate, fumarate, rhamnose, fucose and inulin.Nitrogen sources active in basidiospore germination included complex organic nitrogenous substrates, asparagine, glutamine, arginine, urea and various ammonium salts.Germination was inhibited by cycloheximide, l-ethionine, p-fluoro-dl-phenylalanine, sodium azide, 2,4-dinitrophenol, phenylmercuric acetate and 2-deoxy-d-glucose. Alkali as a trapping agent arrested germination in glucose-(NH4)2SO4 medium but was without ill-effect in glucose peptone broth.  相似文献   

19.
Yeast (Y) and hyphal (H) cells of Mucor rouxii and Candida albicans were cultivated in liquid media containing different carbon nutrient sources (glucose, fructose, ribose), and their free acyclic polyol and trehalose contents determined using capillary gas liquid chromatography (TMS- and OAc-derivatization). Irrespective of growth form and C-source, the fraction of the water-soluble neutral components of the cellular mass of the cultures — highly homogeneous with regard to the respective cell form produced — contained glycerol, ribitol and arabitol, in addition to trehalose. The polyols contributed 0.5–2% to the biomass of M. rouxii and 1.5–6% to that of C. albicans; the values for trehalose ranged from 0.2–11% in the former and 1–3.5% in the latter species. Mucor contained higher amounts of ribitol and arabitol in H cells and larger quantities of trehalose and glycerol in Y cells. In Candida, too, hyphae always exhibited higher ribitol contents, whereas arabitol attained higher levels in yeasts under almost any conditions — regardless of the type of medium (synthetic vs. complex), stage of culture (early vs. late log-phase) and strain used. Glycerol concentration was not correlated with the growth form; trehalose contents tended to be higher in Y cells. Taking into account the facts that C. albicans and certain Mucor species are agents of opportunistic infections and are invasive mainly in the filamentous form, and that the prospective hosts do not accumulate either of these carbohydrates, the possibility is considered of using trehalose- and polyol-metabolizing enzymes as targets for designing antifungal drugs.  相似文献   

20.
Summary Production of poly(3-hydroxybutyric acid) [P(3HB)] by Rhodopseudomonas palustris SP5212 isolated in this laboratory has been optimized under phototrophic microaerophilic conditions. Cells grown in malate medium accumulated 7.7% (w/w) P(3HB) of cellular dry weight at the early stationary phase of growth. The accumulated P(3HB) however, attained 15% (w/w) of cellular dry weight when acetate (1.0%, w/v) was used as the sole carbon source under nitrogen-limiting conditions. Synthesis and accumulation of polymer was favoured by sulphate-free conditions and at a phosphate concentration sub-optimal for growth. The polymer content of cells was increased drastically (34% of cellular dry weight) when the acetate containing medium was supplemented with n-alkanoic acids. Compositional analysis by H1 NMR revealed that these accumulated polymers were composed of 3-hydroxybutyric acid and 3-hydroxyvaleric acid (3HV). The contents of 3HV in these copolymers ranged from 14 to 38 mol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号