首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysophosphatidic acid (LPA) and phosphatidic acid (PA) are critical phospholipid intermediates in the biosynthesis of cell membranes. In Escherichia coli, LPA acyltransferase (1-acyl-sn-glycerol-3-phosphate acyltransferase; EC 2.3.1.51) catalyses the transfer of an acyl chain from either acyl-coenzyme A or acyl-acyl carrier protein onto LPA to produce PA. While E. coli possesses one essential LPA acyltransferase (PlsC), Neisseria meningitidis possesses at least two LPA acyltransferases. This study describes the identification and characterization of nlaB (neisserial LPA acyltransferase B), the second LPA acyltransferase identified in N. meningitidis. The gene was located downstream of the Tn916 insertion in N. meningitidis mutant 469 and differed in nucleotide and predicted amino acid sequence from the previously characterized neisserial LPA acyltransferase homologue nlaA. NlaB has specific LPA acyltransferase activity, as demonstrated by complementation of an E. coli plsC(Ts) mutant in trans, by decreased levels of LPA acyltransferase activity in nlaB mutants and by lack of complementation of E. coli plsB26,X50, a mutant defective in the first acyltransferase step in phospholipid biosynthesis. Meningococcal nlaA mutants accumulated LPA and demonstrated alterations in membrane phospholipid composition, yet retained LPA acyltransferase activity. In contrast, meningococcal nlaB mutants exhibited decreased LPA acyltransferase activity, but did not accumulate LPA or display any other observable membrane changes. We propose that N. meningitidis possesses at least two LPA acyltransferases to provide for the production of a greater diversity of membrane phospholipids.  相似文献   

2.
Two pathogenic species within the genus Neisseria cause the diseases gonorrhoea and meningitis. While vaccines are available to protect against four N. meningitidis serogroups, there is currently no commercial vaccine to protect against serogroup B or against N. gonorrhoeae. Moreover, the available vaccines have significant limitations and with antibiotic resistance becoming an alarming issue, the search for effective vaccine targets to elicit long‐lasting protection against Neisseria species is becoming more urgent. One strategy for vaccine development has targeted the neisserial iron import systems. Without iron, the Neisseriae cannot survive and, therefore, these iron import systems tend to be relatively well conserved and are promising vaccine targets, having the potential to offer broad protection against both gonococcal and meningococcal infections. These efforts have been boosted by recent reports of the crystal structures of the neisserial receptor proteins TbpA and TbpB, each solved in complex with human transferrin, an iron binding protein normally responsible for delivering iron to human cells. Here, we review the recent structural reports and put them into perspective with available functional studies in order to derive the mechanism(s) for how the pathogenic Neisseriae are able to hijack human iron transport systems for their own survival and pathogenesis.  相似文献   

3.
Neisseria meningitidis (meningococcus) is a major causative organism of meningitis and sepsis and Neisseria gonorrhoeae (gonococcus) is the causative organism of the sexually transmitted disease gonorrhea. Infections caused by meningococci are vaccine-preventable, whereas gonococcal vaccine research and development has languished for decades and the correlates of protection are still largely unknown. In the past two decades, complementary ‘omic’ platforms have been developed to interrogate Neisseria genomes and gene products. Proteomic techniques applied to whole Neisseria bacteria, outer membranes and outer membrane vesicle vaccines have generated protein maps and also allowed the examination of environmental stresses on protein expression. In particular, immuno-proteomics has identified proteins whose expression is correlated with the development of human natural immunity to meningococcal infection and colonization and following vaccination. Neisseria proteomic techniques have produced a catalog of potential vaccine antigens and investigating the functional and biological properties of these proteins could finally provide ‘universal’ Neisseria vaccines.  相似文献   

4.
The immunophilin family of FK506-binding proteins (FKBPs), involved in eukaryotic protein folding and cell regulation, have recently been found to have prokaryotic homologues. Genes with sequences homologous to those encoding human FKBPs were examined in Neisseria species. An FKBP DNA sequence was present, as shown by the polymerase chain reaction and Southern blotting experiments, in the chromosome of Neisseria meningitidis (14 strains) and in all 11 different commensal Neisseria spp. studied, but was not found in Neisseria gonorrhoeae (11 strains tested) or in Moraxella catarrhalis. The nucleotide and predicted protein sequences of the FKBP-encoding domain from five of the meningococcal strains were highly conserved (e.g. ≥97% homologous). The meningococcal nucleotide sequence was ≥93% homologous and the consensus meningococcal protein sequence was ≥97% homologous to FKBP sequences found in seven different commensal Neisseria spp. The meningococcal nucleotide and predicted protein sequences were ≥59% homologous to the conserved C-terminus of the human FKBP gene family. The FKBP nucleotide sequence was present as a single copy in the chromosome of commensal Neisseria spp. and in most strains of N. meningitidis. The FKBP gene was linked to the silent pilin locus, pilS, in class II-piliated meningococcal strains. In meningococcal strains expressing class I pili, the FKBP gene was linked to one of several pilS loci but not the pilE locus present in these strains. FKBP genes found in commensal Neisseria spp. were not linked to known pilin loci.  相似文献   

5.
The major iron-regulated protein (MIRP) was purified, from both Neisseria gonorrhoeae and N. meningitidis by selective extraction with cetyltrimethylammonium bromide followed by ion-exchange and moleculair-seive chromatography. Solutions of the purified proteins had a characteristic pink color. The overall amino acid composition of these proteins was similar, although differences were noted in the number of serine, threonine, and lysine residues. Nevertheless, the N-terminal amino acid sequence was identical through 47 residues for both the meningococcal and gonococcal MIRP. Plasma emission spectrophotometry revealed that the meningococcal 37K protein contained ca. 1 mole Fe/mole protein.  相似文献   

6.
Cloning and sequencing of the IgA1 protease gene (iga) from Neisseria meningitidis strain HF13 showed an overall structure equivalent to iga genes from Neisseria gonorrhoeae and Haemophilus influenzae, although no region corresponding to the gonococcal α-peptide was evident. An additional 18 N. meningitidis and 3 H. influenzae iga genes were amplified by the polymerase chain reaction technique and sequenced corresponding approximately to the N-terminal half of the mature enzyme. Comparative analyses of a total of 29 iga genes showed that pathogenic Neisseria have iga genes with a significantly lower degree of heterogeneity than H. influenzae iga genes. Recombinational events indicated by mosaic-like structures corresponding to those found among N. gonorrhoeae protease genes were detected among N. meningitidis iga genes. One region showed characteristic differences in sequence and length which correlated with each of the different cleavage specificities. Meningococci were extremely conserved in this region with no evidence of recombination between isolates of different cleavage specificities. Sequences further downstream showed no obvious relationship with enzyme cleavage type. This region consisted of conserved areas interspersed with highly variable areas. Amino acid sequence homologies in the variable regions of meningococci reflected the antigenic types defined by using polyclonal neutralizing antibodies.  相似文献   

7.
Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI MS) was applied to develop a proteomics-based method to detect and identify Neisseria species. Heat-inactivated clinical isolate cell suspensions of Neisseria gonorrhoeae and strains belonging to five serogroups (A, B, C, W135, and Y) of Neisseria meningitidis were subjected to on-probe protein/peptide extraction and tryptic digestion followed by AP-MALDI tandem MS (MS/MS)-based proteomic analysis. Amino acid sequences derived from three protonated peptides with m/z values of 1743.8, 1894.8, and 1946.8 were identified by AP-MALDI MS/MS and MASCOT proteome database search analysis as belonging to neisserial acyl carrier protein, neisserial-conserved hypothetical protein, and neisserial putative DNA binding protein, respectively. These three peptide masses can thus be potential biomarkers for neisserial species identification by AP-MALDI MS.  相似文献   

8.
Identification and cloning of a fur homologue from Neisseria meningitidis   总被引:13,自引:1,他引:12  
The iron response in a number of bacterial systems is mediated by fur (f erric u ptake r egulation)-like regulatory systems. We have cloned and characterized a gene from Neisseria meningitidis that was homologous to Escherichia coli fur. This clone was capable of modulating expression from both E. coli and neisserial iron-regulated promoters in response to iron, and it produced a protein that reacted with anti-E. coli fur serum. Although the DNA and predicted amino acid sequences were very similar to those of four other published fur homologues, meningococcal fur was the most divergent of the group. Inability to construct a meningococcal fur mutant suggested that fur may be essential in this species.  相似文献   

9.
Infection of mucosal surfaces by N. gonorrhoeae and N. meningitidis may result in inflammation indicating potential injury to host cells. We used human fallopian tube organ cultures (FTOC) and human nasopharyngeal organ cultures (NPOC) to study the mechanisms by which gonococci and meningococci damage human mucosal surfaces. Early in the course of FTOC infected with gonococci and NPOC infected with meningococci, damage was most apparent to ciliary activity. Loss of ciliary activity was accompanied by sloughing of ciliated cells. The damage to ciliated cells was not associated with attachment of gonococci or meningococci to these cells or the presence of organisms within ciliated cells. Infection with the commensal N. subflava did not result in significant damage to human FTOC or NPOC ciliary activity. LPS appears to be a major toxin of gonococci for human FTOC ciliated cells. Gonococcal peptidoglycan fragments also damage FTOC ciliary activity. Both piliated (P+) and nonpiliated (P-) gonococci and meningococci damage FTOC and NPOC ciliary activity, but P+ organisms damage ciliary activity more rapidly than P- organisms. Damage to FTOC ciliated cells was produced by <10 g/ml of purified gonococcal and meningococcal LPS. By 1–2h after exposure to LPS, vesicles containing LPS were distributed throughout the cytoplasm of ciliated cells. Polymyxin B neutralized LPS-induced damage, suggesting that the lipid A portion of LPS was the toxic moiety. In contrast, purified gonococcal and meningococcal LPS at 100 g/ml did not damage human NPOC or FTOC from rabbits, pigs and cows. These studies indicate that N. gonorrhoeae and possibly N. meningitidis damage ciliated epithelial celsl indirectly by release of toxins from the organisms. The differences in susceptibility of FTOC and NPOC to LPS may suggest changes in density of receptors for LPS and may help explain variation in severity of gonococcal and meningococcal interactions at different human mucosal surfaces.  相似文献   

10.
The Neisseris meningitidis haemoglobin receptor gene, hmbR, was cloned by complementation in a porphyrin-requiring Escherichia coli mutant. hmbR encodes an 89.5 kDa outer membrane protein which shares amino acid homology with the TonB-dependent receptors of Gram-negative bacteria. HmbR had the highest similarity to Neisseria transferrin and lactoferrin receptors. The utilization of haemoglobin as an iron source required internalization of the haemin moiety by the cell. The mechanism of haemin internalization via the haemoglobin receptor was TonB-dependent in E. coli. A N. meningitidis hmbR mutant was unable to use haemoglobin but could still use haemin as a sole iron source. The existence of a second N. meningitidis receptor gene, specific for haemin, was shown by the isolation of cosmids which did not hybridize with the hmbR probe, but which were able to complement an E. coli hemA aroB mutant on haemin-supplemented plates. The N. meningitidis hmbR mutant was attenuated in an infant rat model for meningococcal infection, indicating that haemoglobin utilization is important for N. meningitidis virulence.  相似文献   

11.
12.
A. vaginal isolate of Neisseria has been reported to resemble Neisseria meningitidis in biochemical characteristics but to react with serological reagents that are specific to the PI porin from Neisseria gonorrhoeae. We have confirmed that this isolate has the biochemical attributes of a meningococcus and have shown that it clusters among meningococcal Isolates on a dendrogram based on isoenzyme variation within housekeeping enzymes from populations of N. meningitidis and N. gonorrhoeae. Furthermore, the sequences of the fbp and adk genes were typical of those of N. meningitidis and were distinct from those of N. gonorrhoeae. However, the porB gene was very similar to the por genes of N. gonorrhoeae isolates that express the PIB class of outer-membrane porin (differing from one gonococcal por allele at only a single nucleotide site), and was clearly distinct from the porB genes of N. meningitidis. The isolate therefore appears to be a typical meningococcus, except that its porB gene has been replaced with the por gene from a gonococcus.  相似文献   

13.
The pilus of pathogenic Neisseria is a polymer composed mainly of the glycoprotein, pilin. Recent investigations significantly enhanced characterization of pilin glycan (Pg) from N. gonorrhoeae (gonococcus, GC) and N. meningitidis (meningococcus, MC). Several pilin glycosylation genes were discovered recently from these bacteria and some of these genes transfer sugars previously unknown to be present in neisserial pili. Due to these findings, glycans of GC and MC pilin are now considered more complex. Furthermore, various Pg can be expressed by different strains and variants of GC, as well as MC. Intra-species variation of Pg between different groups of GC or MC can partly be due to polymorphisms of glycosylation genes. In pilus of pathogenic Neisseria, alternative glycoforms are also produced due to phase-variation (Pv) of pilin glycosylation genes. Most remarkably, the pgtA (pilin glycosyl transferase A) gene of GC can either posses or lack the ability of Pv. Many GC strains carry the phase-variable (Pv+) pgtA, whereas others carry the allele lacking Pv (Pv–). Mostly, the GC isolates from disseminated gonococcal infection (DGI) carry Pv+ pgtA but organisms from uncomplicated gonorrhea (UG) contain the Pv– allele. This data suggests that Pv of pgtA facilitates DGI, whereas constitutive expression of the Pv– pgtA may promote UG. Additional implications of Pg in various physiological and pathogenic mechanisms of Neisseria can also be envisaged based on various recent data.  相似文献   

14.
The genus Neisseria includes both commensal and pathogenic species which are genetically closely related. However, only meningococcus and gonococcus are important human pathogens. Very few toxins are known to be secreted by pathogenic Neisseria species. Recently, toxins secreted via type V secretion system and belonging to the widespread family of contact-dependent inhibition (CDI) toxins have been described in numerous species including meningococcus. In this study, we analyzed loci containing the maf genes in N. meningitidis and N. gonorrhoeae and proposed a novel uniform nomenclature for maf genomic islands (MGIs). We demonstrated that mafB genes encode secreted polymorphic toxins and that genes immediately downstream of mafB encode a specific immunity protein (MafI). We focused on a MafB toxin found in meningococcal strain NEM8013 and characterized its EndoU ribonuclease activity. maf genes represent 2% of the genome of pathogenic Neisseria, and are virtually absent from non-pathogenic species, thus arguing for an important biological role. Indeed, we showed that overexpression of one of the four MafB toxins of strain NEM8013 provides an advantage in competition assays, suggesting a role of maf loci in niche adaptation.  相似文献   

15.

Background  

Two previously uncharacterized Arabidopsis genes that encode proteins with acyltransferase PlsC regions were selected for study based on their sequence similarity to a recently identified lung lysophosphatidylcholine acyltransferase (LPCAT). To identify their substrate specificity and biochemical properties, the two Arabidopsis acyltransferases, designated AtLPEAT1, (At1g80950), and AtLPEAT2 (At2g45670) were expressed in yeast knockout lines ale1 and slc1 that are deficient in microsomal lysophosphatidyl acyltransferase activities.  相似文献   

16.
The physical properties of most bacterial genomes are largely unexplored. We have previously demonstrated that the strict human pathogen Neisseria gonorrhoeae is polyploid, carrying an average of three chromosome copies per cell and only maintaining one pair of replication forks per chromosome (D. M. Tobiason and H. S. Seifert, PLos Biol. 4:1069-1078, 2006). We are following up this initial report to test several predictions of the polyploidy model of gonococcal chromosome organization. We demonstrate that the N. gonorrhoeae chromosomes exist solely as monomers and not covalently linked dimers, and in agreement with the monomer status, we show that distinct nucleoid regions can be detected by electron microscopy. Two different approaches to isolate heterozygous N. gonorrhoeae resulted in the formation of merodiploids, showing that even with more than one chromosome copy, these bacteria are genetically haploid. We show that the closely related bacterium Neisseria meningitidis is also polyploid, while the commensal organism Neisseria lactamica maintains chromosomes in single copy. We conclude that the pathogenic Neisseria strains are homozygous diploids.Bacteria are unicellular organisms that exhibit a multitude of shapes and sizes and exist in a wide range of environments. Despite the extreme diversity of capabilities and physiology evidenced by different bacterial species, most bacteria are assumed to conform to the enteric model of genomic organization, chromosomal replication, and genomic segregation during cell division exemplified by Escherichia coli. In contradiction to this limited view of bacterial genome biology, some bacterial species have their genome divided between multiple DNA elements (10), and some possess linear chromosomes (2, 19). A few bacterial species have been reported to carry multiple genome copies per cell (members of the genera Azotobacter, Borrelia, Buchnera, Deinococcus, Neisseria, and Epulopiscium), with copy number estimates ranging from two copies to thousands of copies per cell (1, 7, 17, 23, 25, 26, 34, 35, 39, 46). The exact number of genomes per cell has not been determined for most of these organisms, and the mechanisms for organizing polyploid genomes and segregating them during cell division remain to be determined. An exception is Deinococcus radiodurans, which has been shown to possess four complete chromosomes during exponential growth and up to 16 genomes within the stationary phase. The polyploid genomes of D. radiodurans have been proposed to assemble into a toroidal mass in the cell (29), but the validity of this finding has been questioned (11, 13, 49). There are few obvious commonalities between these polyploid organisms, except that some Neisseria, Deinococcus, and Borrelia species utilize homologous recombination to mediate specialized processes essential for the survival of these species. In addition, members of the Azotobacter, Buchnera, and Epulopiscium genera are obligate symbionts that do not possess a free-living stage, but the reasons why obligate symbionts would possess polyploid chromosomes are unknown.Neisseria gonorrhoeae and Neisseria meningitidis are the two pathogenic members of the Neisseria genus. N. gonorrhoeae is the sole causative agent of the disease gonorrhea, and N. meningitidis is the most common cause of bacterial meningitis in adolescents and young adults. One attribute that these human-specific pathogens use to coexist and evolve within humans lies in their capacity to antigenically vary and phase vary several outer membrane structures, including pili, Opa proteins, and the lipooligosaccharide (LOS) (12, 21). Variation of the Opa and LOS antigens is mediated by polynucleotide repeat variation that modulates expression of biosynthetic genes (40, 48). These changes in polynucleotide repeat sequences are mediated through slipped-strand mispairing that occurs during normal DNA replication and therefore would not obviously benefit from polyploidy. In contrast, pilin antigenic variation is a RecA-mediated gene conversion event (27), which could be aided by having two copies of all the recombining pilin loci within a single cell to facilitate the nonreciprocal transfer of pilin sequences. Therefore, we postulated that the presence of multiple genome copies per gonococcal cell may be required to facilitate these high-frequency gene conversion events. Analysis of gonococcal genome content by flow cytometry and fluorescent microscopy indicated that there existed greater than one genome equivalent of gonococcal DNA content per cell (46). Additionally, quantitative real-time PCR and genome microarray analysis measured a marker frequency pinpointing a single DNA replication event per round of cell division. On average, each coccal unit had three genome copies per cell, and a population of cells with a single genome equivalent per cell was never observed, even under conditions of slower growth. These observations predicted a model for gonococcal replication (Fig. (Fig.1)1) in which each coccal unit has a minimum of two chromosomes that replicate in unison to produce four chromosomes prior to cell division and the conclusion that this species is diploid.Open in a separate windowFIG. 1.Model of gonococcal DNA replication and chromosome segregation in a monococcus. The gonococcal chromosome is indicated by a dotted line. An antibiotic resistance (AbR) marker recombined into a gonococcal chromosome (solid line). At time zero minutes, DNA replication begins, and after 35 min, DNA replication is complete. Gonococcal cell division occurs after 60 min. In scenario I, homozygous chromosomes are segregated together. In scenario II, heterozygous bacteria are produced.Though the analysis of the genomic content has only been reported for the gonococcus, the genus Neisseria encompasses a number of pathogenic and commensal bacteria. N. meningitidis is the leading cause of bacterial meningitis worldwide and is asymptomatically carried in the human nasopharynx (47). Most of the Neisseria species are commensal organisms that inhabit the nasopharynx and rarely cause disease (24). The most extensively studied commensal Neisseria species, N. lactamica, shares extensive homology with the pathogenic Neisseriae species and also predominately resides in the human nasopharynx (31). Only the pathogenic neisseriae, N. gonorrhoeae and N. meningitidis, have been shown to undergo pilin antigenic variation (43). Since the polyploid nature of N. gonorrhoeae has been proposed to be required for pilin antigenic variation, N. meningitidis may also have multiple genome copies per cell. The genomic copy number of other Neisseria species and the putative relationship between genomic content and pathogenesis remain to be determined.In this work, we tested several predictions or models resulting from the observation that the gonococcus is polyploid. We confirmed that the chromosomes exist as separate molecules and show that the gonococcal nucleoids reside in discrete cellular regions. We confirm that these bacteria are genetically haploid, suggesting that chromosomal segregation mechanisms ensure a homozygous population. Finally, we show that the other pathogenic Neisseria species, N. meningitidis, is also polyploid, while a commensal Neisseria species, N. lactamica, is not. These studies show that polyploidy is correlated with Neisseria pathogenesis and suggest that this property has evolved to allow diploid chromosomes while maintaining the haploid status of these obligate human pathogens.  相似文献   

17.
Here we report the cloning and expression, in Escherichia coli, of PCR-amplified DNA encoding the 63-kDa stress-inducible protein of Neisseria gonorrhoeae strains VP1 and PiD2, Neisseria meningitidis 2996 and the commensal Neisseria flavescens. DNA sequence analysis revealed in all cases one open reading frame of 541-544 amino acids corresponding to a protein of approximately 57 000 Da. The various neisserial proteins were >98% identical at the amino acid level and showed extensive homology with proteins belonging to the HspSO heat-shock-protein family. We constructed defined glutathione S-transferase fusion polypeptides of the gonococcal Hsp60 homologue to locate antigenic domains on the recombinant protein. Variation in the immunoreactivity of two monoclonal antibodies recognizing a conserved and a neisseria-unique antigenic Hsp60 determinant, respectively, could thus be deduced to result from single amino acid substitutions. Analysis of the antibody response in patients’sera demonstrated reactivity with the same fusion polypeptides in six out of nine sera, indicating that neisserial Hsp60 is expressed during the natural infection and that distinct domains on the protein are immunodominant in vivo.  相似文献   

18.
19.
O-Glycosylation is emerging as a common posttranslational modification of surface exposed proteins in bacterial mucosal pathogens. In pathogenic Neisseria an O-glycosylation pathway modifies a single abundant protein, pilin, the subunit protein that forms pili. Here, we identify an additional outer membrane glycoprotein in pathogenic Neisseria, the nitrite reductase AniA, that is glycosylated in its C-terminal repeat region by the pilin glycosylation pathway. To our knowledge, this is the first report of a general O-glycosylation pathway in a prokaryote. We also show that AniA displays polymorphisms in residues that map to the surface of the protein. A frame-shift mutation abolishes AniA expression in 34% of Neisseria meningitidis strains surveyed, however, all Neisseria gonorrhoeae strains examined are predicted to express AniA, implying a crucial role for AniA in gonococcal biology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号