首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neisseria meningitidis FAM20 has recently been shown to produce two Fe-regulated proteins (FrpA and FrpC) related to the RTX family of cytotoxins. Here we report the cloning and DNA sequence of the locus containing the gene encoding the larger meningococcal RTX protein FrpC. FrpC was highly similar to FrpA throughout much of the predicted protein, with two main differences. Whereas the FrpA protein had 13 copies of the nine-amino-acid repeat units typical of RTX proteins, FrpC had 43 copies. The additional copies in FrpC apparently arose from a threefold tandem amplification of a 600bp DNA fragment encoding the repeats. In addition, the frpC gene lacked good promoter consensus sequences. An open reading frame (0RF1) of unknown function was found immediately upstream of frpC, suggesting the possibility that frpC was cotranscribed with ORF1. A probable promoter was found 300 bp upstream of ORF1, and it contained a Fur protein-binding sequence found in the promoters of Fe-regulated Escherichia coli genes. DNA upstream of the ORF 1/frpC promoter was homologous to IStO76-like elements surrounding capsulation loci of strains of Haemophilus influenzae. A FrpC-like protein (reactive in immunoblots with monoclonal antibody 9D4; multiple reactive bands of about 200 to 120kDa) was found in five out of eight meningococcal strains but only in one out of 14 other Neisseria, suggesting that FrpC may participate in the pathogenesis of meningococcal disease.  相似文献   

2.
The nucleotide sequence has been determined for the expressed pilin (pilE) locus of Neisseria meningitidis strain C311 which produces class I pili that are antigenically and structurally similar to those of gonococci. The deduced amino acid sequence of the N. meningitidis pilE translation product contains a 7 amino acid N-terminal pre-pilin leader sequence which is identical to that found in gonococcal pilin and which is characteristic of N-methylphenylalanine pili in general. The succeeding N-terminal 53 amino acids are identical to those found in the equivalent position in antigenically variant gonococcal pilins and confirm direct peptide sequencing of the amino-terminus of at least one type of meningococcal pilin. Other regions that are conserved in variant pilin polypeptides from Neisseria gonorrhoeae are conserved at the amino acid level in the class I meningococcal pilin but the coding DNA contains numerous base substitutions when compared with the equivalent gonococcal pil sequence. Sequences extending downstream for about 140 bp on the 3' side of the coding region for both pilin genes are only about 85% homologous.  相似文献   

3.
The pili expressed by all isolates of Neisseria gonorrhoeae react with two monoclonal antibodies, SM1 and SM2. In contrast, although many isolates of Neisseria meningitidis also express pili (class I) which react with antibodies SM1 and SM2, a proportion express pili (class II) which fail to react. In order to define the epitopes recognized by these antibodies, a series of overlapping peptides corresponding to the amino acid sequence of conserved regions of gonococcal pili have been synthesized. The minimum epitope recognized by antibody SM1 was found to comprise a linear peptide EYYLN, corresponding to residues 49-53 of mature pilin. In contrast, antibody SM2 reacted with a number of peptides from around the cysteine residue (Cys 1) at position 120, suggesting that an extended region may contribute to a conformational epitope recognized by this antibody in the native protein. The identification of the two epitopes defines structural differences between the classes of pili expressed by meningococci. In order to determine the distribution of pilin gene sequences in Neisseria we used as hybridization probes an oligonucleotide (PS1) with the sequence 5'-GAGTATTACCTGAATCA-3' which spans the coding region for the SM1 epitope, and a fragment of the 3' end of the gonococcal pilE gene which contains conserved sequences flanking the two Cys codons and encodes the SM2 epitope. All strains of N. gonorrhoeae and N. meningitidis tested, regardless of piliation phenotype, harboured DNA sequences homologous to those encoding the carboxy-terminus of meningococcal class I pilin. Furthermore, all gonococci and all meningococci producing class I pili hybridized with oligonucleotide probe PS1. Non-reverting non-piliated derivatives of previously class I pilus-producing strains showed reduced hybridization signals with this probe, but nevertheless retained sequences homologous to the coding sequence for the SM1 epitope. However, meningococci producing class II pili could be divided into two groups on the basis of their reaction with the PS1 probe: half the strains tested failed to react, which is consistent with our previous analysis of silent class I pilin sequences; the remainder reacted (relatively weakly) with the probe, suggesting that the silent pil sequences in these strains extend further towards the 5' end of the pilin gene than in strains studied previously. Some strains of Neisseria lactamica reacted weakly with both types of probe but failed to produce SM1-reactive pili. In contrast, isolates of Neisseria flava, Neisseria pharyngis, Neisseria sicca and a series of unrelated bacteria failed to react with both SM1 antibody and the DNA probes. This confirms that possession of 'gonococcal' pilin sequences is limited to the pathogenic neisseriae.  相似文献   

4.
Abstract The distribution of distinct sequences in pathogenic and commensal Neisseria species was investigated systematically by dot blot analysis. Probes representing the genes of Rmp, pilin and IgA1 protease were found to hybridize exclusively to the chromosomal DNA of the pathogenic species, Neisseria gonorrhoeae and/or Neisseria meningitidis . In contrast, specific sequences for the genes of the porin protein Por and the opacity protein (Opa) were also detected in a panel of commensal Neisseria species such as N. lactamica, N. subflava, N, flava, N. mucosa and N. sicca . Using opa -specific oligonucleotides as probes in chromosomal blots, the genomes of the commensal Neisseria species show a totally reduced repertoire of cross-hybridizing loci compared to the complex opa gene family of N. gonorrhoeae . DNA sequence analysis of one opa -related gene derived from N. flava and N. sicca , respectively, revealed a large degree of homology with previously described gonococcal and meningococcal genes e.g., a typical repetitive sequence in the leader peptide and the distribution of the hypervariable and conserved regions. This observation, together with the finding, that the gene is constitutively transcribed, leads to the assumption that some of the commensal Neisseria species may have the potential for the expression of a protein harboring similar functions as the Opa proteins in pathogenic Neisseriae .  相似文献   

5.
Visual inspection showed clear evidence of a history of intraspecies recombinational exchanges within the neighbouring meningococcal shikimate dehydrogenase ( aroE  ) and glutamine synthetase ( glnA) genes, which was supported by the non-congruence of the trees constructed from the sequences of these genes from different meningococcal strains, and by statistical tests for mosaic structure. Many examples were also found of highly localized interspecies recombinational exchanges between the meningococcal aroE and glnA genes and those of commensal Neisseria species. These exchanges appear to have inflated the sequence variation at these loci, and have resulted in major distortions of the phylogenetic trees constructed from the sequences of the aroE and glnA genes of human pathogenic and commensal Neisseria species. Statistical tests for sequence mosaicism, and for anomalies within the Neisseria species trees, strongly supported the view that frequent interspecies recombination has occurred within aroE and glnA . The high levels of sequence variation, and intra- and interspecies recombination, within aroE and glnA did not appear to be due to a 'hitch-hiking' effect caused by positive selection for variation at a neighbouring gene. Our results suggest that interspecies recombinational exchanges with commensal Neisseria occur frequently in some meningococcal 'housekeeping' genes as they can be observed readily even when there appears to be no obvious selection for the recombinant phenotypes.  相似文献   

6.
Natural sequence variation was investigated among serogroup A subgroup IV-1 Neisseria meningitidis isolated from diseased patients and healthy carriers in The Gambia, West Africa. The frequencies of DNA import were analysed by sequencing fragments of four linked genes encoding the immunogenic outer membrane proteins TbpB (transferrin binding protein B) and OpaA (an adhesin) plus two housekeeping enzymes. Seventeen foreign tbpB alleles were independently imported into the 98 strains tested, apparently due to immune selection. The median size of the imported DNA fragments was 5 kb, resulting in the occasional concurrent import of linked housekeeping genes by hitchhiking. Sequences of tbpB from other strains of N. meningitidis as well as commensal Neisseria lactamica and Neisseria spp. isolated from the same geographical area revealed that these species share a common tbpB gene pool and identified several examples of interspecific genetic exchange. These observations indicate that recombination can be more frequent between related species than within a species and indicate that effective vaccination against serogroup B meningococcal disease may be difficult to achieve.  相似文献   

7.
Lysophosphatidic acid (LPA) acyltransferases of Neisseria meningitidis and Neisseria gonorrhoeae were identified which share homology with other prokaryotic and eukaryotic LPA acyltransferases. In Escherichia coli, the conversion of LPA to phosphatidic acid, performed by the 1-acyl-sn-glycerol-3-phosphate acyltransferase PlsC, is a critical intermediate step in the biosynthesis of membrane glycerophospholipids. A Tn916-generated mutant of a serogroup B meningococcal strain was identified that exhibited increased amounts of capsular polysaccharide, as shown by colony immunoblots, and a threefold increase in the number of assembled pili. The single, truncated 3.8 kb Tn916 insertion in the meningococcal mutant was localized within a 771 bp open reading frame. The gonococcal equivalent of this gene was identified by transformation with the cloned meningococcal mutant gene. In N. gonorrhoeae, the mutation increased piliation fivefold. The insertions were found to be within a gene that was subsequently designated nIaA (n eisserial L PA acyltransferase). The predicted neisserial LPA acyltransferases were homologous (>20% identity,>40% amino acid similarity) to the family of PlsC protein homologues. A cloned copy of the meningococcal nIaA gene complemented in trans a temperature-sensitive E. coli PlsCts? mutant. Tn916 and Ω-cassette insertional inactivations of the neisserial nIaA genes altered the membrane glycerophospholipid compositions of both N. meningitidis and N. gonorrhoeae but were not lethal. Therefore, the pathogenic Neisseria spp. appear to be able to utilize alternative enzyme(s) to produce phosphatidic acid. This hypothesis is supported by the observation that, although the amounts of mature glycerophospholipids were altered in the meningococcal and the gonococcal nIaA mutants, glycerophospholipid synthesis was detectable at significant levels. In addition, acyltransferase enzymatic activity, while reduced in the gonococcal nIaA mutant, was increased in the meningococcal nIaA mutant. We postulate that the pathogenic Neisseria spp. are able to utilize alternate acyltransferases to produce glycerophospholipids in the absence of nIaA enzymatic activity.Implementation of these secondary enzymes results in alterations of glycerophospholipid composition that lead to pleiotropic effects on the cell surface components, including effects on capsule and piliation.  相似文献   

8.
9.
Neisseria meningitidis (meningococcus) is a major causative organism of meningitis and sepsis and Neisseria gonorrhoeae (gonococcus) is the causative organism of the sexually transmitted disease gonorrhea. Infections caused by meningococci are vaccine-preventable, whereas gonococcal vaccine research and development has languished for decades and the correlates of protection are still largely unknown. In the past two decades, complementary ‘omic’ platforms have been developed to interrogate Neisseria genomes and gene products. Proteomic techniques applied to whole Neisseria bacteria, outer membranes and outer membrane vesicle vaccines have generated protein maps and also allowed the examination of environmental stresses on protein expression. In particular, immuno-proteomics has identified proteins whose expression is correlated with the development of human natural immunity to meningococcal infection and colonization and following vaccination. Neisseria proteomic techniques have produced a catalog of potential vaccine antigens and investigating the functional and biological properties of these proteins could finally provide ‘universal’ Neisseria vaccines.  相似文献   

10.
Abstract The pathogenic Neisseria and most commensal Neisseria species produce an iron-binding protein (Fbp) when grown under iron-limited conditions. In the current study, we confirmed the presence of Fbp, as well as DNA sequences homologous to the gonococcal fbp , in strains of N. gonorrhoeae, N. meningitidis, N. cinerea, N. lactamica, N. subflava, N. kochii and N. polysaccharea . The fbp genes from these strains were amplified by the polymerase chain reaction, digested with Stu I or Rsa I, and the restriction patterns examined. The patterns for the gonococcal and meningococcal fbp were virtually identical; however, variations were observed in the fbp sequences of the commensal Neisseria species. N. flavescens, N. mucosa, N. sicca, N. ovis and Branhamella catarrhalis , did not produce Fbp as detected by sodium dodecyl sulfate-polyacrylamide gel electropheris and reactivity with an Fbp specific monoclonal antibody, nor did they hybridize to an fbp -specific DNA probe.  相似文献   

11.

Background  

Horizontal gene transfer is an important source of genetic variation among Neisseria species and has contributed to the spread of resistance to penicillin and sulfonamide drugs in the pathogen Neisseria meningitidis. Sulfonamide resistance in Neisseria meningitidis is mediated by altered chromosomal folP genes. At least some folP alleles conferring resistance have been horizontally acquired from other species, presumably from commensal Neisseriae. In this work, the DNA sequence surrounding folP in commensal Neisseria species was determined and compared to corresponding regions in pathogenic Neisseriae, in order to elucidate the potential for inter-species DNA transfer within this region.  相似文献   

12.
The pili of Neisseria meningitidis are a key virulence factor, being major adhesins of this capsulate organism that contribute to specificity for the human host. Recently it has been reported that meningococcal pili are post-translationally modified by the addition of an O-linked trisaccharide, Gal (β1–4) Gal (α1–3) 2,4-diacetimido-2,4,6-trideoxyhexose. Using a set of random genomic sequences from N. meningitidis strain MC58, we have identified a novel gene homologous to a family of glycosyltransferases. A plasmid clone containing the gene was isolated from a genomic library of N. meningitidis strain MC58 and its nucleotide sequence determined. The clone contained a complete copy of the gene, here designated pglA (pilin glycosylation). Insertional mutations were constructed in pglA in a range of meningococcal strains with well-defined lipopolysaccharide (LPS) or pilin-linked glycan structures to determine whether pglA had a role in the biosynthesis of these molecules. There was no alteration in the phenotype of LPS from pglA mutant strains as judged by gel migration and the binding of monoclonal antibodies. In contrast, decreased gel migration of the pilin subunit molecules of pglA mutants was observed, which was similar to the migration of pilins of galE mutants of same strains, supporting the notion that pglA is a glycosyltransferase involved in the biosynthesis of the pilin-linked trisaccharide structure. The pglA mutation, like the galE mutation reported previously, had no effect on pilus-mediated adhesion to human epithelial or endothelial cells. Pilin from pglA mutants were unable to bind to monospecific antisera recognizing the Gal (β1–4) Gal structure, suggesting that PglA is a glycosyltransferase involved in the addition of galactose of the trisaccharide substituent of pilin.  相似文献   

13.
Three closely related bacterial species within the genus Neisseria are of importance to human disease and health. Neisseria meningitidis is a major cause of meningitis, while Neisseria gonorrhoeae is the agent of the sexually transmitted disease gonorrhea and Neisseria lactamica is a common, harmless commensal of children. Comparative genomics have yet to yield clear insights into which factors dictate the unique host-parasite relationships exhibited by each since, as a group, they display remarkable conservation at the levels of nucleotide sequence, gene content and synteny. Here, we discovered two rare alterations in the gene encoding the CcoP protein component of cytochrome cbb 3 oxidase that are phylogenetically informative. One is a single nucleotide polymorphism resulting in CcoP truncation that acts as a molecular signature for the species N. meningitidis. We go on to show that the ancestral ccoP gene arose by a unique gene duplication and fusion event and is specifically and completely distributed within species of the genus Neisseria. Surprisingly, we found that strains engineered to express either of the two CcoP forms conditionally differed in their capacity to support nitrite-dependent, microaerobic growth mediated by NirK, a nitrite reductase. Thus, we propose that changes in CcoP domain architecture and ensuing alterations in function are key traits in successive, adaptive radiations within these metapopulations. These findings provide a dramatic example of how rare changes in core metabolic proteins can be connected to significant macroevolutionary shifts. They also show how evolutionary change at the molecular level can be linked to metabolic innovation and its reversal as well as demonstrating how genotype can be used to infer alterations of the fitness landscape within a single host.  相似文献   

14.

Background  

Development of sulphonamide resistance in Neisseria meningitidis has been suggested to involve horizontal DNA-transfer from a commensal Neisseria species. In this study, we isolated commensal Neisseria from throat specimens and examined the isolates with respect to sulphonamide resistance.  相似文献   

15.
Structural analysis of the pilE region of Neisseria gonorrhoeae P9   总被引:6,自引:0,他引:6  
We have determined the nucleotide sequence of an expressed structural pilus gene (pilE) derived from Neisseria gonorrhoeae strain P9-2. Detailed analysis of nucleotide sequences upstream from pilE revealed a silent, truncated pilin gene segment that was linked to families of DNA elements (RS1 and RS3) that have previously been identified at the major silent pilin gene locus (pilS1) and at pilE of the independently isolated N. gonorrhoeae strain MS11ms. A nucleotide sequence downstream from pilE was reminiscent of the recognition sequences of several recombinases, including Tn3 tnpR product (resolvase), suggesting a possible role for site-specific events in the recombinational modulation of pilus expression.  相似文献   

16.
The galE gene from Haemophilus influenzae was used as a hybridization probe for the galE gene of Neisseria meningitidis Group B, identifying two different homologous loci. Each of the loci was cloned and nucleotide sequence analysis revealed that both loci contained sequences similar to galE. One contained a functional galE gene and mapped to the capsule biosynthetic locus. The second contained only a partial galE-coding sequence, which did not express a functional gene product. A galE mutant meningococcal strain was constructed by transformation with an inactivated galE gene. Analysis of the LPS from the galE mutant strain revealed an apparent reduction in molecular weight and a loss of reactivity with monoclonal antibodies specific for structures known to contain galactose. These results are consistent with an essential role for galE in the incorporation of galactose into meningococcal lipopolysaccharide.  相似文献   

17.
Expression of type IV pili appears to be a requisite determinant of infectivity for the strict human pathogens Neisseria gonorrhoeae and Neisseria meningitidis. The assembly of these colonization factors is a complex process. This report describes a new pilus-assembly gene, pilG, that immediately precedes the gonococcal (Gc) pilD gene encoding the pre-pilin leader peptidase. The nucleotide sequence of this region revealed a single complete open reading frame whose derived polypeptide displayed significant identities to the pilus-assembty protein PilC of Pseudomonas aeruginosa and other polytopic integral cytoplasmic membrane constituents involved in protein export and competence. A unique polypeptide of Mr 38kDa corresponding to the gene product was identified. A highly related gene and flanking sequences were cloned from a group E polysaccharide-producing strain of N. meningitidis (Mc). The results indicate that the pilG genes and genetic organization at these loci in Gc and Me are extremely conserved. Hybridization studies strongly suggest that pilG-related genes exist in commensal Neisseria species and other species known to express type IV pili. Defined genetic lesions were created by using insertional and transposon mutagenesis and moved into the Gc and Me chromosomes by allelic replacement. Chromosomal pilG insertion mutants were devoid of pili and displayed dramatically reduced competence for transformation. These findings could not be ascribed to pilin-gene alterations or to polarity exerted on pilD expression. The results indicated that PilG exerts its own independent role in neisserial pilus biogenesis.  相似文献   

18.
Pili have been shown to play an essential role in the adhesion of Neisseria meningitidis to epithelial cells. However, among piliated strains, both inter- and intrastrain variability exist with respect to their degree of adhesion to epithelial cells in vitro (Virji et al., 1992). This suggests that factors other than the presence of pili per se are involved in this process. The N. meningitidis pilin subunit undergoes extensive antigenic variation. Piliated low- and high-adhesive derivatives of the same N. meningitidis strain were selected and the nucleotide sequence of the pilin gene expressed in each was determined. The highly adhesive derivatives had the same pilin sequence. The alleles encoding the pilin subunit of the low-adhesive derivatives were completely different from the one found in the high-adhesive isolates. Using polyclonal antibodies raised against one hyperadhesive variant, it was confirmed that the low-adhesive piliated derivatives expressed pilin variants antigenically different from the highly adhesive strains. The role of antigenic variation in the adhesive process of N. meningitidis was confirmed by performing allelic exchanges of the pilE locus between low-and high-adhesive isolates. Antigenic variation has been considered a means by which virulent bacteria evade the host immune system. This work provides genetic proof that a bacterial pathogen, N. meningitidis, can use antigenic variation to modulate their degree of virulence.  相似文献   

19.
The amino-terminal amino acid sequences of the pili proteins from four antigenically dissimilar strains of Neisseria gonorrhoeae, from Neisseria meningiditis, and from Escherichia coli were determined. Although antibodies raised to the pili protein from a given strain of gonococcus cross-reacted poorly or not at all with each of the other strains tested, the amino-terminal sequences were all identical. The meningococcal protein sequence was also identical with the gonococcal sequence through 29 residues, and this sequence was highly homologous to the sequence of the pili protein of Moraxella nonliquifaciens determined by other workers. However, the sequence of the pili protein from E. coli showed no similarity to the other sequences. The gonococcal and meningococcal proteins have an unusual amino acid at the amino termini, N-methylphenylalanine. In addition, the first 24 residues of these proteins have only two hydrophilic residues (at positions 2 and 5) with the rest being predominantly aliphatic hydrophobic amino acids. The preservation of this highly unusual sequence among five antigenically dissimilar Neisseria pili proteins implies a role for the amino-terminal structure in pilus function. The amino terminus may be directly or indirectly (through preservation of tertiary structure) important for the pilus function of facilitating attachment of bacteria to human cells.  相似文献   

20.

Background  

The NMB0736 gene of Neisseria meningitidis serogroup B strain MC58 encodes the putative nitrogen regulatory protein, IIANtr (abbreviated to NM-IIANtr). The homologous protein present in Escherichia coli is implicated in the control of nitrogen assimilation. As part of a structural proteomics approach to the study of pathogenic Neisseria spp., we have selected this protein for structure determination by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号